# A New Look at the Statistical Model Identification

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 716 IEEE TRANSACTIONS ON CONTROL, AUTOMATIC VOL. AC-19, KO. 6, DECEMBER 1974 A New Look at the Statistical Model Identification HIROTUGU AI(AIKE, JIEJIBER, IEEE Abstract-The history of the development of statistical hypothesis testing in time series analysis is reviewed briefly and it is pointed out that the hypothesis testing procedure is not adequately defined as the procedure for statistical model identilication. The classical maximum likelihood estimation procedure is reviewed and a new estimate minimum information theoretical criterion (AIC) estimate (MAICE) which is designed for the purpose of statistical identification is introduced. When there are several competing models the MAICE is defined by the model and the maximum likelihood estimates of the parameters which give the minimum of AIC defined by AIC = (-2)log(maximum likelihood) + 2(number of independently adjusted parameters within the model). MAICE provides a versatile procedure for statistical model identification which is free from the ambiguities inherent the application of conventional hypothesis testing procedure. The practical utility of MAICE in time series analysis is demonstrated with some numerical examples. I I. IXTRODUCTION X spite of the recent, development of t.he use of statistical concepts and models in almost, every field of engineering and science it seems as if the difficulty of constructing an adequate model based on the information provided by a finite number of observations is not fully recognized. Undoubtedly the subject of statistical model construction or ident.ification is heavily dependent on the results of theoret.ica1 analyses of the object. under observation. Yet. it must be realized that there is usually a big gap betn-een the theoretical results and the pract,ical procedures of identification. A typical example is the gap between the results of the theory of minimal realizations of a linear system and the identifichon of a Markovian representation of a stochastic process based on a record of finite duration. A minimal realization of a linear system is usually defined through t.he analysis of the rank or the dependence relation of the rows or columns of some Hankel matrix [l]. In a practical situation, even if the Hankel matrix is theoretically given! the rounding errors will always make the matrix of full rank. If the matrix is obtained from a record of obserrat.ions of a real object the sampling variabilities of the elements of the matrix nil1 be by far the greater than the rounding errors and also the system n-ill always be infinite dimensional. Thus it can be seen that the subject of statistical identification is essentially concerned with the art of approximation n-hich is a basic element of human intellectual activity. As was noticed by Lehman 12, p. viii], hypothesis t,esting procedures arc traditionally applied to the situations where actually multiple decision procedures are 3Iannscript received February 12, 1974; revised IIarch 2, The author is with the Institute of Statistical Mathen1atie, AIinato-ku, Tokyo, Japan. required. If the statistical identification procedure is considered as a decision procedure the very basic problem is the appropriate choice of t,he loss function. In the Seyman-Pearson theory of stat.istica1 hypothesis testing only the probabilit.ies of rejecting and accepting the correct and incorrect hypotheses, respectively, are considered to define the loss caused by the decision. In practical situations the assumed null hypotheses are only approxima- tions and they are almost ah-ays different from the reality. Thus the choice of the loss function in the test. theory makes its practical application logically contradictory. The rwognit,ion of this point that the hypothesis testing procedure is not adequa.tely formulated as a procedure of approximation is very important for the development of pracbically useful identification procedures. A nen- perspective of the problem of identification is obtained by the analysis of t,he very practical and successful method of maximum likelihood. The fact. t.hat the maximum likelihood estimates are. under certain regularity conditions, asymptot.ically efficient shom that the likelihood function tends to bc a quantity which is most. sensitive to the small variations of the parameters around the true values. This observation suggests thc use of S(g;f(.!e)) = J g(.~) d.~ as a criterion of fit of a model with thc probabilist.ic. structure defined by the probability density function to the structure defined hy the density function g(x). Contrary to the assumption of a single family of density f(x 0) in the classical maximum likelihood estimation procedure, several alternative models or families defined by the densities n-ith different forms and/or with one and the same form but with different restrictions on the parameter vector e arc contemplated in the usual situation of ident.ification. A detailed analysis of the maximum likelihood estimate (MLE) leads naturally to a definition of a nen- estimate x\-hich is useful for this type of multiple model situation. The new estimate is called the minimum information theoretic criterion (AIC) estimate (IIAICE), where -\$IC stands for an information theoretic criterion recently introduced by the present author [3] and is an estimate of a measurp of fit of the model. XIICE is defined by the model and its parameter valucs which give the minimum of AIC. B- the introduction of ILUCE the problem of statistical identification is explicitly formulated as a problem of estimation and the need of the subjective judgement required in the hypothesis testing procedure for the decision on the levels of significance is completely eliminated. To give an explicit definition of IIdICE and to discuss its characteristics by comparison with the conventional identification procedure based on estimation

2 AEAIKE: STATISTICAL MODEL IDENTIFICATION 717 and hypothesis testing form the main objectives of the present pa.per. Although MAICE provides a versatile method of identification which can be used in every field of st.atist,ica.l model building, its pract.ica1 utility in time series analysis is quit,e significant. Some numerical examples are given to show how MAICE ca.n give objectively defined ansm-ers to the problems of time series analysis in contrast with t.he conventional approach by hypothesis testing which can only give subject.ive and often inconclusive answers. 11. HYPOTHESIS TESTING TIME SERIES ANALYSIS The study of t,he t,esting procedure of time series start,ed with t.he investigation of the test. of a. simple hypot,hesis t,hat a. single serial correlation coefficient. is equal t.o 0. The utilit,y of this t.ype of t.est, is certa,inly t.oo limit,ed to make it a generally useful procedure for model identification. In 1%7 Quenouille 143 int.roduced a test for the goodness of fit of a.utoregressive (AR) models. The idea of the Quenouille s test was extended by Wold [5] to a test of goodness of fit of moving average (31-4) models. Several refinements and generalizations of these test. procedures followed [GI-[9] but a most, significant contribut,ion to trhe subject, of hypothesis testing in time series analysis was made by Whittle [lo], [ll] by a systematic application of the 7Veyma.n-Pearson likelihood ratio t.est. procedure to t.he time series situation. A very basic test of t,ime series is the test, of whiteness. In many situations of model identification the whiteness of the residual series after fitt,ing a model is required as a proof of adequacy of the model and the test of whitreness is widely used in practical applications [12]-[15]. For the test of whiteness the analysis of t,he periodgram provides a general solution.,4 good exposition of the classical hypothesis testing procedures including the test.s based on the periodgrams is given in Hannan [16]. The fitting of AR or RIA models is essentially a. subject of multiple decision procedure rather than t,hat, of hypothesis testing. Anderson [17] discussed the determination of the order of a Gaussian AR process explicit,ly as a multiple decision procedure. The procedure takes a form of a sequence of tests of the models starting a.t the highest order and successively down t.0 the lowest. order. To apply t:he procedure t.0 a real problem one has to specify the level of signifimnce of the t.est for each order of the model. Although t.he procedure is designed to satisfy certain clearly defined condition of optimalitg, the essential difficulty of the problem of order determination remains as the difficulty in choosing the levels of significance. Also the loss function of t.he decision procedure is defined by the probability of making incorrect, decisions and thus the procedure is not free from the 1ogica.l cont.radict.ion that in practical applicat,ions the order of the true struct.ure will always be infinite. This difficulty can only be avoided b- reformulat,ing t.he problem explicitly as a problem of approximation of the true st,ructure by the model DIRECT APPROACH TO MODEL ERROR CONTROL In the field of nont,ime series regression analysis Mallows introduced a statist.ic C, for the selection of variables for regression C, is defined by 6, = (&*)-I (residua.1 sum of squares) - N + 2p, where z2 is a properly chosen estimat.e of u2, t,he unknown mriance of t,he true residual, N is t,he number of observa- tions, and p is the number of variables in regression. The expected value of C, is roughly p if the fitt,ed model is exact, and greater ot,hemise. C, is an estimate of the expected sum of squares of the prediction, scaled by u*, when the estimated regression coefficient.s are used for prediction and has a. clearly defined meaning as a measure of adequacy of the adopted model. Defined with this clearly defined criterion of fit, C, attract.ed serious attention of the people who were concerned with the <<ion analyses of practical data. See t,he references of [HI. Unfortunately some subjective judgement is required for the choice of 62 in the definition of C,. At almost the same t.ime when C, was introduced, Da.visson [19] analyzed the mean-square prediction error of st,ationary Gaussia.n process when the est.imat.ed coef5cient.s of the predict.or were used for prediction and discussed the mean-square error of an adaptive smoot.hing filter [20]. The observed t.ime series xi is the sum of signal si and additive whit,e noise ni. The filtered output, Zi is given by L B* = pjxi+j, (i = 1,2,...J7) j = - Si where pj is determined from t.he sample xi (i = 1,2,...,X). The probiem is how t,o define L and M so that the meansquare smoothing error over the N samples E[(l/N) cy=l (si- a,) ] is minimized. Under appropriate assumptions of si and n i Davisson [20] a.rrived at an estin1at.e of this error which is defined by &x L, I- W,L] = s2 + 2?(M + L + l)/n, where s* is an estimate of the error variance and E is the slope of the curve of s2 as a funct.ion of ( X + L)/A7 at 1a.rger values of (L + X)/N. This result is in close correspondence with Mallows C,, and suggests the importance of t.his type of statistics in the field of model identificat,ion for prediction. Like t.he choice of k2 in Mallows C, the choice of E in the present st.atistic 6.v2 [U, L] becomes a. diffcult problcm in pract.ical application. In 1969, without knowing t,he close relat,ionship with the above two procedures, the present author introduced a fitting procedure of the unirariate AR. model defined by Yi = alyi apyi-, + xi, where xi is a white noise [21]. In this procedure t.he mean-square error of the onestepahea.d prediction obt.ained by using the least squares estimates of t.hc coefficients is controlled. The meansquare error is called t,he final prediction error (FPE) and when the data ;yi (i = 1,2;..,X) are given its estima.t,e is

3 defined by FPECP) = I<n: + P )/W - d l. (eo - 6 e C) Pl 1 PP P? where the mean of yi is assumed to be 0, PI = (l!x)x>=;' yi+!yi and are obtained by solving the Tule-Walker equation defined by cr?s. By scanning p successively from 0 to some upper limit L the identified modcl is given by the p and the corresponding Bpi's n-hich give the nlinimum of FPE(p) (p = O.l;..,L). In this procedure no subjective element is left in the definition of FPE(p). Only the determination of the upper limit L requires judgerncnt. The characteristics of the procedure n-as further analyzed [ E ] and the procedure worked remarlcablp 1~11 with practical data [33], Gersch and Sharp [25] discussed their experience of the use of the procedure. Bhansali [?GI reports vcrp disappointing results, claiming that they were obtained b- dkailre's method. Actually the disappointing results are due to his incorrect definition of the related statistic and have nothing to do with the present minimum FPE procedure. The procedure was extended to the case of multivariate AR nlodcl fitting [X]. A successful result of implementation of a computer control of cement kiln processes based on the results obtained by this identification procedure was reported bj- Otomo and others [as]. One common characteristic of the three procedures discussed in this section is that the analvsis of the statistics has to be extended to the order of 1/S of the main t,erm. IV. IIEAK LOGLIKELIHOOD AS A ~\IEASCRE OF FIT The well known fact that the MLE is, under regularity conditions, asymptotically efficient [29] shows that the likelihood function tends to be a most sensitive criterion of the deviation of the model parameters from the true values. Consider the situation where ~1.x~....,x.\- are obtained as the rcsults of 12: independent observations of a random variable with probability density function g(r). If n parametric famil- of density function is given by f(.&) with a vector parameter 0. the average log-likelihood. or the log-likelihood divided by X, is given by.. (1/1V) log f(zj18), (1) I= 1 where. as in the sequel of the present paper, log denotes the natural logarithms. As X is increased indefinitely, this average tends, with probabilit- 1. to s(g;f(+)) = &(x) logf(.+) d.r, where the esistence of the integral is assumed. From the efficiency of IILE it can be seen that the (average) mean log-likelihood S(g;f(.!e)) must be a most sensitive criterion to the small deviation of f(x)8) from g(.r). The difference kf(-le)) = s(g;g) - s(g;f(.io)) is kno-m as the Iiullback-Leibler mean information for discrimination between g(x) and f(.le) and takes positive value, unless f(~i8) = g(r) holds alnlost everyhere [30]. These observations show that S(g;f(.le)) n-ill be a reasonable criterion for defining a best fitting model by its maximization or, from the analogy to the concept of entropy? by minimizing -S(g:f(.18)). It should be mentioned here that in 1950 this last quantity was adopted as a definition of information function b?. Bartlctt [31]. One of the most important characteristics of S(g;f(. le)) is that its natural estimate, the average log-likelihood (1). can be obtained without the knowledge of ~(s). Xhen only one family f(s(0) is given. maximizing the cstinlatc (1) of S(g;f(. :e)) n-ith respect to 0 leads to the NLE 4. In the case of statistical idrntification. usually several families of f(s,e), with different forms off(.+) and/or with one and the samc form off(.+) but with different restrictions on the paranwtcr vector 8. are given and it is required to decide on the best choice of j(si0). Thc classical nlaxinlunl likelihood principle can not provide useful solution to this type of problems. -4 solution can be obtained by incorporating thc basic idea underlying the statistics discussed in the prcceding section with the masimum likelihood principle. Considcr the situation where ~(s) = j(r'8,). For this case I(g:f(-,e)) and S(q;f(. 10)) will simply be dcnotcd by l(eo:e) and S(e,;e), respectively. When e is sufficiently close to eo, I(8o;O) admit5 an approximation [SO] I(Oo;e, + A8) = (+)l,ao/i,?: =-here 1!A8;1J2 = Ae'JAf3 and J is the Fisher information matrix which is positive definite and defined by where Jij denotes the (i.j)th element of J and ei the ith component of 8. Thus n-hen the JILE 4 of eo lies very close to eo the deviation of the distribution defined by f(xl8) from the true distribution j(.rbo) in terms of the variation of S(c/:f(. le)) will be measured by (f) I e - e&?. Consider the situation n-here the variation of 8 for maximizing the lildihood is restricted to a lower dimensional subspace e of 0 v,-hich does not include 0,. For thc MLE 6 of eo restricted in 8: if 6 which is in e and gives the maximum of S(e,;e) is sufficiently close to eo. it can be shon-n that the distribution of X!;d - 6/iJe for sufficiently large l\7 is approsinlated under certain regularity conditions by n chi-square distribution thc degree of freedom equal to thc dimension of the restricted parameter space. See, for example. [32]. Thus it holds that E-3.\71(eo;4) = - eo ~f + X., (2) where E, denotes the mean of the approsinlate distribution and X. is the dimension of 8 or the number of parameters independently adjusted for thc masimization of the likelihood. Relation (2) is a generalization of the expected prediction error underlping the statistic5 discussed in the preceding section. When there are several models it will

4 .4l&i~~: STATISTICAL MODEL IDENTIFICATION 719 be natural to adopt, t,he one which will give the ninimum of EI(Oo;8). For this purpose, considering the situation where t,hese models have t,heir 8 s very close to Bo, it. becomes necessa,ry to develop some estimate of NllO - Oo11J2 of (2). The relation (2) is based on the fact. t,hat the asymptotic distribut,ion of dht(8-8) is approxima,t,ed by a Gaussian distribution with mean zero and variance mat,rix J-l. From tahk fact. if is used as an estimate of RTl18 - OO/lJ2 it needs a correctmion for the downward bias int.roduced by replacing 8 by 8. This correct,ion is simply realized by adding k to (3). For the purpose of ident.ification only t.he comparison of the values of t,he estimates of EI(Oo;8) for various models is necessary and thus the conlmon term in (3) which includes eo can be discarded. v. DEFINITION OF AN IhTORMATIOS CRITERION Based on the observations of the preceding sect,ion an informat,ion criterion AIC of 13 is defined by AIC(8) = (-2) log (maximum likelihood) + 2, where, as is defined before, k is t.he number of independent.ly adjusted parameters to get. 8. (l/n)aic(8) may be considered as a.n estimate of -2ES(Oo;8). IC st,ands for infornlation criterion and A is added so that similar &atistics, BIC, DIC etc., ma>- follow. When there are several specificat.ions of f(z)o) corresponding to several models, the MAICE is defined by the f(z(8) which gives the minimum of AIC(8). When there is only one unrestricted family of f(zlo), the JldICE is defined by f(z(8) with 8 identical to the classical MLE. It should be not,iced t.hat an arbitrary a.ddit,ive constant can be int,roduced int.0 t.he definition of AIC(8) when the comparison of the results for different sets of observations is not intended. The present, definition.of MAICE gives a mat,hematical formulat,ion of the principle of parsimony in model building. When the maxinlum likelihood is identical for two models t.he MAICE, is t,he one defined witlth the smaller number of parameters. In t,ime series analysis, even under the Gaussia.n assumption, the exact definition of likelihood is usually too complicated for practical use and some approximation is necessary. For the applicat.ion of JIAICE t.here is a subtle problem in defining the approximat.ion to the likelihood funct.ion. This is due to the fact that. for the definit,ion of AIC the log-likelihoods must. be defined consistent.ly to the order of magnit,ude of 1. For the fitting of a shtionary Gaussia.n process model a. measure of the deviation of a model from a true structure can be defined as the limit of t.he average mean log-likelihood when the number of obserrat,ions AT is increased indefinitely. This quantity is ident.ica1 to the mean log-likelihood of innovation defined by the fitted model. Thus a natural procedure for t,he fitting of a st.ationary zero-mean Gaussian process model to t.he sequence of observations yl,y?,..., yay is t.o define a. primitive sta.t,ionarg Gaussian model with t.he Z-lag CO- variance matrices which a.re defined by and fit a model by ma.ximizing t,he mean log-likelihood of innovation or equivalently, if the elements of t,he covariance matrix of innovation a.re within the paramet,er set, by minimizing the log-det,erminant of the variance matrix of innovation, ht times of which is to be used in place of the log-likelihood in the definit,ion of AIC. The adoption of the divisor N in the definition of R(1) is import.ant t.o keep t.he sequence of the covariance matrices positive definite. The present procedure of fitting a Gaussian model t.hrough the primitive model is discussed in detail in [33]. It leads naturally to t,he concept of Gaussian estimate developed by 1Vhitt.le [31]. When the asympt.ot.ic distribution of t.he norma.lized correlation coefficient,s of yn is identical to that of a Gaussian process the asympt,otic dist,ribution of the stat.istics defined as funct.ions of these coefficie11t.s will a.lso be independent of the assumption of Gaussia.n process. This point and the asymptotic behavior of the related statist.ics n:hich is required for the justification of the present, definition of AIC is discussed in det<ail in the above paper by Whittle. For the fitt.ing of a univariat.e Gaussian AR model t,he MAICE defined with t,he present definit.ion of AIC is asympt.otically identical t.0 t,he est.imat.e obtainrd by the minimum FPE procedure. AIC and a primitive definition of AIA1C.E were first introduced by t,he present, author in 1971 [3]. Some early successful results of applications are reported in [3], 13.51, [361. VI. NUMERICAL EXAMPLES Before going into t,he discussion of t,he characteristics of MAICE it,s practical utilit,y is demonst,rated in this section. For the convenience of t,he readers who might wish to check the results by t,hemelves Gaussian AR models were fitted t,o t.he data given in Anderson s book on t.ime series analysis [37]. To t.he 1+ old s three series artificially generat.ed by the second-order AR schemes models up t,o t.he 50th order were fitted. In two cases t.he MAICE S mere the second-order models. In the case where the XAICE was the first-order model, the second-order coefficient of the generating equation had a very small absolute value compared with its sampling variability and the one-stepahead prediction error variance was smaller for the MAICE than for t.he second-order model defined tvith the MLE s of t,he coefficients. To t.he classical serirs of Wolfer s sunspot numbers with N = 176 AR models up to t,he 35th order were fitted and the MAICE was the eight.horder model. AIC att.ained a local minimum at. the second order. In the case of the series of Beveridge s wheat price index wit.h N = 370 the MAICE among t.he AR model up to the 50th order was again of the eight,h order. XIC

5 720 IEEE TRAXSACTIONS ON AUM?+MTIC CONTROL, DECEYBER 1974 attained a local minimum at the second order which was adopted by Sargan [38]. In the light of the discussions of these series by Anderson, t,he choice of eight-order models for these two series looks reasonable. Two examples of applicat.ion of the minimum FPE procedure, which produces est.imates asymptotically equivalent, to I\IAICE a, are report.ed in [3]. In tjhe example taken from the book by Jenkins and Watts 139, sec.tion the estimate was identical to the one chosen by t,he authors of the book after a careful analysis. In t>he case of the seiche record treat.ed by Whit.t.le [40] t.he minimum FPE procedure clearly suggested t.he need of a very highorder AIR model. The difficu1t.y of fitting AR models to this set of data was discussed by Whittle [41, p The procedure was also applied to the series E and F given in the book by Box and Jenkins [E]. Second- or third-order AR model was suggested by the authors for the series E which is a part of the Wolfer s sunspot number series with A7 = 100. The MAICE among the AR models up to the 20th order was the second-order model. Among the AR models up to t.he 10th order fitt,ed to the series F with S = 70 the I\LUCE was the second-order model, m-hich agrees with the suggestion made by the authors of t,he book. To test the ability of discriminating between AR and MA models ten series of yn ( n = 1,...,1600) were generated by the relation y, = x, + O.~X,-~ - O.lx,-?, where x, was generated from a physica.1 noise source and was supposed to be a Gaussian white noise. AR models were fitted to the first W points of each series for N = 50, 100, 200, 400, 800: The sample averages of the JIAICE AR order were 3.1, 4.1, 6.5, 6.8, 8.2, and 9.3 for the SUCcessirely increasing values of N. An approximate JIAICE procedure which is designed to get. an initial est.imate of 1\IA41CE for the fitting of 3Iarkovian models, described in [33]. nas applied to the data. With only a few exceptions t.he approximate IIAICE s were of the second order. This corresponds to the AR-MA model with a second-order AR and a first-order MA. The second- and third-order AIA models xere then fitted to the dat.a with h: = Among the AR and MA models fitted to the dat,a the second-order XI model mas chosen nine times as the 3L4ICE and the t.hird-order J1A was chosen once. The average difference of the minimum of llic between AH. and JI-4 models was 7.7, which roughly mea.ns that the expected likelihood ratio of a pair of t,wo fitt.ed models will be about 47 for a set of data with N = 1600 in favor of MA model. Another test was made with the example discussed by Gersch and Sharp [%I. Eight series of length K = 800 were generated by an AR-MA scheme described in the paper. The average of the AIAICE AR orders was 17.9 which is in good agreement n-ith the value reported b?- Gersch and Sharp. The approximate JIAICE procedure was applied to determine the order or t.he dimension of the Markovian representation of the process. For the eight, cases the procedure identically picked the correct order four. AR-X4 models of various orders were fitted to one set of dah and t.he corresponding values of AIC(p,q) were computed, where AIC(p,q) is the value of.\$ic for the model with AR order p and IIA order p and was defined by AIC(p,q) = N log (3ILE of innovation variance) + X P + \$9. The results are AIC(3,2) = , AIC(1,3) = 66.54, AIC(4>4) = 67.44, AIC(5,3) = ;2IC(6,3) = 67.65, and AIC(5,4) = The minimum is attained at p = 4 and q = 3 which correspond to the true structure. Fig. 1 illustrates the estimates of the power spectral demit.y obtained by applying various procedures to this set of data. It should be mentioned that, in this example the Hessian of the mean log-likelihood function becomes singular at the true values of the parameters for the models with p and q simultaneously greater than 4 and 3, respectively. The detailed discussion of the difficulty connected with this singularity is beyond the scope of the present paper. Fig. 2 shows the results of application of the same type of procedure to a record of brain wave with N = In this case only one AR-JIA model with AR order 4 and ITA order 3 was fitted. The value of AIC of this model is and that of the 1IAICE AR model is This suggests that, the 13th order MAICE AR model is a better choice, a conclusion which seems in good agreement. with the impression obtained from the inspection of Fig. 2. VII. DISCCSSIOXS When f(al0) is very far from g(x), S(g;f(. je)) is only a subjective measure of deviation of f(.r(e) from g(r). Thus the general discussion of the characteristics of 3IAICE nil1 only be possible under the assumption that for at least one family f(&) is sufficiently closed to g(r) compared with the expected deviation of f(sj6) from f(ri0). The detailed analysis of thc statistical characteristics of XXICE is only necessary when there are several families which sa.tisfy this condition. As a single estimate of -2A7ES(g;f(.)8)), times the log-mitximum likelihood will be sufficient but for the present purpose of estimating the difference of -3XES(g;f(. 18)) the introduction of the term +2k into the definition of AIC is crucial. The dis- appointing results reported by Bhansali [%I were due to to using +X. his incorrect use of the statistic. equivalent in place of +?X- in AIC. When the models are specified by a successive increase of restrictions on the parameter e of f(rl0) the AIAICE procedure takes a form of repeated applications of conventional log-likelihood ratio test of goodness of fit with automatically adjusted lcvels of significance defined by the terms +4k. Nhen there are different families approximating the true likelihood equally well the situation will at least locally be approximated b?- the different parametrizations of one and the same family. For these cases the significance of the diffelence of AIC s bet\\-cen two models will be evaluated by comparing it u-ith the variabi1it.y of a chi-square variable with the degree of freedom

6 AKAIEE : STA"IS"IC.AL NODEL IDENTIFICATION 721 Fig. 1. Estimates of an AR-MA spectrum: theoretical spectrum (solid t.hin line with dots), AR-MA estimate (thick line), AR estimate (solid thin line), and Hanning windowed estimate with maximum lag 80 (crosses). 'iw Fig. 2. &timates of brain wave spectrum: =-MA est.imate (thickline), AR estimat,e (solid thin line), and Hanning windowed estimate with maximum lag 150 (crosses).

7 722 IEEE TR-INSACTIONS ON AUTOMATIC DECEMBER COSTROL, 1974 equal to the difference of the k s of the two models. When the two models form separate families in t.he sense of Cos [ E ]! [43] the procedure developed by Cos and extended by Walker [a] to time series situation may be useful for the detailed evaluation of the difference of XIC. It must be clearly recognized that I\IXICE can not be compared with a. hypothesis testing procedure unless the latter is defined as a decision procedure with required levels of significance. The use of a Lxed level of Significance for the comparison of models with various number of parameters is wrong since this dors not takc into account the increase of the variability of the estimates \dm1 thc number of parameters is increased. As will be seen bp the work of Kennedy and Bancroft [45] the theory of model building based on a sequence of significance tests is not sufficient.ly developed to provide a practically useful procedure. Although the present author has no proof of optimalit>of MAICE it is at present. the only procedure applicable to every situation where the likelihood can be properly defined and it is actually producing very reasonable results n-ithout very muchamount of help of subjective judgement. The successful results of numerical experiments suggest almost unlimited applicabilitv of MAICE in the fields of modeling, prediction, signal detection, pattern recognition. and adaptation. Further improvements of definition and use of.aic and numerical comparisons of JLUCE with other procedures in various specific applications will be the subjects of further stud>-. REFERESCES [l] H. Aikaike, Stochastic theory of minimal rea.lization, this iswe, pp i4. [2] E. L. Lehntan, Tcstitrg Statistical Hypothesis. Ken- York: IViley, H..lkaike. Inforn~stion theory and an extension of the maxi- [4] 11. H. Qaenouille. A large-sample test for the goodness of fit of antoregressive schemes, J. Xo!y. Statist. Soc., vol. 110, pp. 12:3-120, H. JVold. -4 Inrae-snmole test for moving averages... J. Rou. Statist. soc., H, &I. I I, pp > I [6] 31. P. Barlert and P. 1. I)ianandn, I<stensionz of Quenouille s test for autoregressive scheme, J. f?oy. Sfatid. Soc., H, vol. 12, pp. 10S-115! [i) 31. S. Rnrtlett and I). X-. llajalabrhmsn. Goodness of fit test for sirnnltxneous autoregrewive series, J. Roy. Statist. Soc., B, vol. 15, pp , I9.X. [SI \Vnlker? Sote on a generalization of the large aanlple goodness of fit test for linear antoregresive scheme, J. Roy. Stafisf. Soc.. IZ, , pp , The existence of Bnrtlett-l(nialak~hnln~~ eoodnesa of fit VIII. COWLUSION The practical utility of the hypothesis testing procedure as a method of statistical model building or identification must be considered quite limited. To develop useful procedures of identification more direct approach to the control of the error or loss caused by the use of the identified model is necessary. From the success of thc classical maximum likelihood procedures t he mean log-likelihood seems to be a natural choice as the criterion of fit of a statistical model. The XUCE procedure based on -4IC which is an estimate of the mean log-likelihood proyides a versatile procedure for the statistical model identification. It also provides a mathematical formulation of the principle of parsimony in the field of model construction. Since a procedure based on AIAICE can be implemented without the aid of subjective judgement, thc successful numerical results of applications suggest that the implcmentations of many statistical identification proccdurcs for prediction, signal detection? pattern recognition, and adaptation will be made practical 11-ith AIBICE. ACKSOTTLEDGNEST The author is grateful to Prof. T. Kailath, Stanford University: for encouraging him to mite the present paper. Thanks are also duc to Prof. I<. Sato. Sagasaki University, for providing the brain wave data treated in Section V.

8 [33] H. Akaike, Markovian representation of stochastic processes and its application to t.he analysis of autoregressive moving average processes, Ann. Inst. Statist. Xath., t.o be published. [34] P. Whittle, Gawian est.imation in stationary time series, Bull. Int. Statist. I,&., vol. 39, pp , [33] H. Akaike, Use of an information theoretic quantity for st.at,istical model identification, in Proc. 5tji Ha.waii Ink. c072j. System Sciences, pp , [36] H. Akaike, Aut.omat.ic data structure search by the maximum likelihood, in Computer in Biomedicim? Suppl. to Proc. 5th Hawaii Int. Conf. on. SystCmz Scienas, pp , [37] T. W. Anderson, The Statistical Analysis of Time Series. New York: Wiley, [38] J. D. Sargan, An approximate treatment of t.he propert.ies of the correlomam and oeriodwam, -. J. Roy. Statist. SOC. B, vol. 15, pp ,1953: [39] G. h.1. Jenkins and D. G. Watts, Spectral Adysis and its San Francisco, Calif.: Holden-Day, [40] P. Whittle, The statistical analysis of a seiche record, J. Marine Res., vol. 13, pp , [41] P.. Whittle, Prediction. a.n.d Regulation. London, England: English Univ. Pres, [42] D. R. Cos, Tests of separate families of hypothses, in Proc. 4th Berkeley Symp. Mathernatical Statistics a.nd Probability, vol VD [43] ~. R. CGx, Further results on tests of separate families of hvpotheses, J. Eoy. Statist. SOC., I?, vol. 24, pp , [44] A. M. Walker, Some test.s of separate families of hypotheses in time series analysis, Biometriku, vol. 34, pp , [45] W. J. Kennedy and T. A. Bancroft, Model building for pre- diction in regraion based upon repeated significance tests, An.?%. Math. Statist., vol. 12, pp , Hiortugu Akaike (XI%), for a photograph and biography see page 674 of this issue. Some Recent Advances in Time Series Modeling EMANUEL PARZEN Absfract-The aim of this paper is to describe some of the important concepts and techniques which seem to help provide a solution of the stationary time series problem (prediction and model idenacation). Section 1 reviews models. Section Il reviews prediction theory and develops criteria of closeaess of a fitted model to a true model. The cential role of the infinite autoregressive transfer function g, is developed, and the time series modeling problem is defined to be the estimation of 9,. Section In reviews estimation theory. Section IV describes autoregressive estimators of 9,. It introduces a ciiterion for selecting the order of an autoregressive estimator which can be regarded as determining the order of an AR scheme when in fact the time series is generated by an AR scheme of hite order. T I. INTRODUCTION HE a.im of this paper is t.0 describe some of the important. concepts and techniques which seem to me to help provide realistic models for the processes generating observed time series. Section I1 reviexi-s t,he types of models (model concept>ions) which statisticians have developed for time series analysis and indicates the value of signal plus noise decompositions as compared x7it.h simply an autoregressivemoving average (ARMA) represent,ation. Section I11 reviem prediction theory and develops criteria. of closeness of a fitted model t.0 a %we model. The central role of the infinit.e autoregressive transfer function y, is developed, and the t>ime series modeling problem is defined to be t,he est.imat.ion of y,. Section I11 review the estimation theory of autore- Manuscript, received January 19, 1974; revised May 2, This work was supported in paft by the Office pf.naval Research. The author is wit.h the Dlvision of Statlstlcal Science, State Universit.y of Ke-s York, Buffalo, N.Y. gressive (AR) schemes and the basic role of Yule-Wa.lker equat,ions. It develops an anaiogous t,heory for moving average (ALA) schemes, based on the duality betu-eenf(w), the spect,ral density and inverse-spectral density, and R(v) and Ri(v)! the cova.riance and covarinverse. The estimation of Ri(v) is shown t.0 be a consequence of t.he estimation of y,. Section V describes autoregressive estimators of y,. It. introduccs a. criterion for selecting the order of an autoregressive estimator which can be regarded a.s determining t.he order of an AR scheme when in fact t.he time series is generat,ed by an AR scheme of finite order. 11. TINE SERIES MODELS Given observed data, st.atistics is concerned with inference from what zms observed to what might have beet1 observed; More precisely, one postulates a proba.bi1it.y model for the process genemting t.he data. in n-hich some parameters are unknown and are to be inferred from the data. Stat.istics is t,hen concerned v-it.h parameter inference or parameter identifica,tion (determinat,ion of parameter values by estimation and hypothesis test.ing procedures). A model for data is called structural if its paramekrs have a natural or structural interpretation; such models provide explanation and control of t,he process generating the da,ta. When no models are available for a. data set from theory or experience, it is st,ill possible to fit models u-hich suflice for simulation (from what has been observed, generate more data similar t.o that observed), predictio??. (from what. has been observed, forecast t.he data that will be observed), and pa.ttern recognition (from what has been observed, infer

### Least Squares Estimation

Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

### Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

### 171:290 Model Selection Lecture II: The Akaike Information Criterion

171:290 Model Selection Lecture II: The Akaike Information Criterion Department of Biostatistics Department of Statistics and Actuarial Science August 28, 2012 Introduction AIC, the Akaike Information

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)}

C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)} 1. EES 800: Econometrics I Simple linear regression and correlation analysis. Specification and estimation of a regression model. Interpretation of regression

### Univariate and Multivariate Methods PEARSON. Addison Wesley

Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston

### Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

### Application of discriminant analysis to predict the class of degree for graduating students in a university system

International Journal of Physical Sciences Vol. 4 (), pp. 06-0, January, 009 Available online at http://www.academicjournals.org/ijps ISSN 99-950 009 Academic Journals Full Length Research Paper Application

### Estimation and Inference in Cointegration Models Economics 582

Estimation and Inference in Cointegration Models Economics 582 Eric Zivot May 17, 2012 Tests for Cointegration Let the ( 1) vector Y be (1). Recall, Y is cointegrated with 0 cointegrating vectors if there

### Chapter 4: Vector Autoregressive Models

Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...

### Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

### Appendix 1: Time series analysis of peak-rate years and synchrony testing.

Appendix 1: Time series analysis of peak-rate years and synchrony testing. Overview The raw data are accessible at Figshare ( Time series of global resources, DOI 10.6084/m9.figshare.929619), sources are

### Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement

Adaptive Demand-Forecasting Approach based on Principal Components Time-series an application of data-mining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Time Series Analysis

Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:

### Penalized regression: Introduction

Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood

### Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma

Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma Shinto Eguchi a, and John Copas b a Institute of Statistical Mathematics and Graduate University of Advanced Studies, Minami-azabu

### Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

### Maximum Likelihood Estimation of an ARMA(p,q) Model

Maximum Likelihood Estimation of an ARMA(p,q) Model Constantino Hevia The World Bank. DECRG. October 8 This note describes the Matlab function arma_mle.m that computes the maximum likelihood estimates

### A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

### Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

### Time Series Analysis

JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),

### Performing Unit Root Tests in EViews. Unit Root Testing

Página 1 de 12 Unit Root Testing The theory behind ARMA estimation is based on stationary time series. A series is said to be (weakly or covariance) stationary if the mean and autocovariances of the series

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### 3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

### A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500

A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500 FE8827 Quantitative Trading Strategies 2010/11 Mini-Term 5 Nanyang Technological University Submitted By:

### Study & Development of Short Term Load Forecasting Models Using Stochastic Time Series Analysis

International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 11 (February 2014), PP. 31-36 Study & Development of Short Term Load Forecasting

### Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network

Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)

### Software Review: ITSM 2000 Professional Version 6.0.

Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455-459 (June 2002). Published by Elsevier (ISSN: 0169-2070). http://0-

### State Space Time Series Analysis

State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State

### Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

### Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### Factor analysis. Angela Montanari

Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

### Durbin-Watson Significance Tables

Durbin-Watson Significance Tables Appendix A The Durbin-Watson test statistic tests the null hypothesis that the residuals from an ordinary least-squares regression are not autocorrelated against the alternative

### Ordinary Least Squares and Poisson Regression Models by Luc Anselin University of Illinois Champaign-Urbana, IL

Appendix C Ordinary Least Squares and Poisson Regression Models by Luc Anselin University of Illinois Champaign-Urbana, IL This note provides a brief description of the statistical background, estimators

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

### AUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree

### On Small Sample Properties of Permutation Tests: A Significance Test for Regression Models

On Small Sample Properties of Permutation Tests: A Significance Test for Regression Models Hisashi Tanizaki Graduate School of Economics Kobe University (tanizaki@kobe-u.ac.p) ABSTRACT In this paper we

### Linear Models for Continuous Data

Chapter 2 Linear Models for Continuous Data The starting point in our exploration of statistical models in social research will be the classical linear model. Stops along the way include multiple linear

### Introduction to time series analysis

Introduction to time series analysis Margherita Gerolimetto November 3, 2010 1 What is a time series? A time series is a collection of observations ordered following a parameter that for us is time. Examples

### THE SVM APPROACH FOR BOX JENKINS MODELS

REVSTAT Statistical Journal Volume 7, Number 1, April 2009, 23 36 THE SVM APPROACH FOR BOX JENKINS MODELS Authors: Saeid Amiri Dep. of Energy and Technology, Swedish Univ. of Agriculture Sciences, P.O.Box

### ELEC-E8104 Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems

Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems Minimum Mean Square Error (MMSE) MMSE estimation of Gaussian random vectors Linear MMSE estimator for arbitrarily distributed

### http://www.jstor.org This content downloaded on Tue, 19 Feb 2013 17:28:43 PM All use subject to JSTOR Terms and Conditions

A Significance Test for Time Series Analysis Author(s): W. Allen Wallis and Geoffrey H. Moore Reviewed work(s): Source: Journal of the American Statistical Association, Vol. 36, No. 215 (Sep., 1941), pp.

### The Delta Method and Applications

Chapter 5 The Delta Method and Applications 5.1 Linear approximations of functions In the simplest form of the central limit theorem, Theorem 4.18, we consider a sequence X 1, X,... of independent and

### Using the Singular Value Decomposition

Using the Singular Value Decomposition Emmett J. Ientilucci Chester F. Carlson Center for Imaging Science Rochester Institute of Technology emmett@cis.rit.edu May 9, 003 Abstract This report introduces

### The Method of Least Squares

The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

### MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

### CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

### Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Forecasting Geographic Data Michael Leonard and Renee Samy, SAS Institute Inc. Cary, NC, USA

Forecasting Geographic Data Michael Leonard and Renee Samy, SAS Institute Inc. Cary, NC, USA Abstract Virtually all businesses collect and use data that are associated with geographic locations, whether

### Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### Fitting Subject-specific Curves to Grouped Longitudinal Data

Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: vad5@hw.ac.uk Currie,

### Hypothesis Testing in the Classical Regression Model

LECTURE 5 Hypothesis Testing in the Classical Regression Model The Normal Distribution and the Sampling Distributions It is often appropriate to assume that the elements of the disturbance vector ε within

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Time Series Analysis

Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos

### Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

### DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

### GENERATING SIMULATION INPUT WITH APPROXIMATE COPULAS

GENERATING SIMULATION INPUT WITH APPROXIMATE COPULAS Feras Nassaj Johann Christoph Strelen Rheinische Friedrich-Wilhelms-Universitaet Bonn Institut fuer Informatik IV Roemerstr. 164, 53117 Bonn, Germany

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

### LONG TERM FOREIGN CURRENCY EXCHANGE RATE PREDICTIONS

LONG TERM FOREIGN CURRENCY EXCHANGE RATE PREDICTIONS The motivation of this work is to predict foreign currency exchange rates between countries using the long term economic performance of the respective

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### 1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### A Multiplicative Seasonal Box-Jenkins Model to Nigerian Stock Prices

A Multiplicative Seasonal Box-Jenkins Model to Nigerian Stock Prices Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University of Science and Technology, Nigeria Email: ettetuk@yahoo.com

### On Gauss s characterization of the normal distribution

Bernoulli 13(1), 2007, 169 174 DOI: 10.3150/07-BEJ5166 On Gauss s characterization of the normal distribution ADELCHI AZZALINI 1 and MARC G. GENTON 2 1 Department of Statistical Sciences, University of

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### Multivariate Analysis of Variance (MANOVA): I. Theory

Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

### The CUSUM algorithm a small review. Pierre Granjon

The CUSUM algorithm a small review Pierre Granjon June, 1 Contents 1 The CUSUM algorithm 1.1 Algorithm............................... 1.1.1 The problem......................... 1.1. The different steps......................

### Multivariate Statistical Inference and Applications

Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim

### Journal of Statistical Software

JSS Journal of Statistical Software August 26, Volume 16, Issue 8. http://www.jstatsoft.org/ Some Algorithms for the Conditional Mean Vector and Covariance Matrix John F. Monahan North Carolina State University

### CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Relations Between Time Domain and Frequency Domain Prediction Error Methods - Tomas McKelvey

COTROL SYSTEMS, ROBOTICS, AD AUTOMATIO - Vol. V - Relations Between Time Domain and Frequency Domain RELATIOS BETWEE TIME DOMAI AD FREQUECY DOMAI PREDICTIO ERROR METHODS Tomas McKelvey Signal Processing,

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

### Statistics in Geophysics: Linear Regression II

Statistics in Geophysics: Linear Regression II Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/28 Model definition Suppose we have the following

### 7 Time series analysis

7 Time series analysis In Chapters 16, 17, 33 36 in Zuur, Ieno and Smith (2007), various time series techniques are discussed. Applying these methods in Brodgar is straightforward, and most choices are

### Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

### Predictability of Non-Linear Trading Rules in the US Stock Market Chong & Lam 2010

Department of Mathematics QF505 Topics in quantitative finance Group Project Report Predictability of on-linear Trading Rules in the US Stock Market Chong & Lam 010 ame: Liu Min Qi Yichen Zhang Fengtian

### Factor Analysis. Chapter 420. Introduction

Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

### Threshold Autoregressive Models in Finance: A Comparative Approach

University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC) - Conference Papers Faculty of Informatics 2011 Threshold Autoregressive Models in Finance: A Comparative

### Detecting Stock Calendar Effects in U.S. Census Bureau Inventory Series

Detecting Stock Calendar Effects in U.S. Census Bureau Inventory Series Natalya Titova Brian Monsell Abstract U.S. Census Bureau retail, wholesale, and manufacturing inventory series are evaluated for

### Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

### TIME SERIES ANALYSIS

TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi- 110 012 ram_stat@yahoo.co.in 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these

### Poisson Models for Count Data

Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

### Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

### The Method of Least Squares

Hervé Abdi 1 1 Introduction The least square methods (LSM) is probably the most popular technique in statistics. This is due to several factors. First, most common estimators can be casted within this

### Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 2, FEBRUARY 2002 359 Communication on the Grassmann Manifold: A Geometric Approach to the Noncoherent Multiple-Antenna Channel Lizhong Zheng, Student

### Test of Hypotheses. Since the Neyman-Pearson approach involves two statistical hypotheses, one has to decide which one

Test of Hypotheses Hypothesis, Test Statistic, and Rejection Region Imagine that you play a repeated Bernoulli game: you win \$1 if head and lose \$1 if tail. After 10 plays, you lost \$2 in net (4 heads

### Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

### 1. The Classical Linear Regression Model: The Bivariate Case

Business School, Brunel University MSc. EC5501/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 018956584) Lecture Notes 3 1.

### Univariate Time Series Analysis; ARIMA Models

Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

### TIME SERIES ANALYSIS

TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-0 02 lmb@iasri.res.in. Introduction Time series (TS) data refers to observations

### Linear and Piecewise Linear Regressions

Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

### MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

### The Gravity Model: Derivation and Calibration

The Gravity Model: Derivation and Calibration Philip A. Viton October 28, 2014 Philip A. Viton CRP/CE 5700 () Gravity Model October 28, 2014 1 / 66 Introduction We turn now to the Gravity Model of trip

### PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard