# Performing Unit Root Tests in EViews. Unit Root Testing

Size: px
Start display at page:

## Transcription

1 Página 1 de 12 Unit Root Testing The theory behind ARMA estimation is based on stationary time series. A series is said to be (weakly or covariance) stationary if the mean and autocovariances of the series do not depend on time. Any series that is not stationary is said to be nonstationary. A common example of a nonstationary series is the random walk: (30.1), where is a stationary random disturbance term. The series has a constant forecast value, conditional on, and the variance is increasing over time. The random walk is a difference stationary series since the first difference of is stationary: (30.2). A difference stationary series is said to be integrated and is denoted as I( ) where is the order of integration. The order of integration is the number of unit roots contained in the series, or the number of differencing operations it takes to make the series stationary. For the random walk above, there is one unit root, so it is an I(1) series. Similarly, a stationary series is I(0). Standard inference procedures do not apply to regressions which contain an integrated dependent variable or integrated regressors. Therefore, it is important to check whether a series is stationary or not before using it in a regression. The formal method to test the stationarity of a series is the unit root test. EViews provides you with a variety of powerful tools for testing a series (or the first or second difference of the series) for the presence of a unit root. In addition to Augmented Dickey-Fuller (1979) and Phillips-Perron (1988) tests, EViews allows you to compute the GLS-detrended Dickey- Fuller (Elliot, Rothenberg, and Stock, 1996), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992), Elliott, Rothenberg, and Stock Point Optimal (ERS, 1996), and Ng and Perron (NP, 2001) unit root tests. All of these tests are available as a view of a series. Performing Unit Root Tests in EViews

2 Página 2 de 12 The following discussion assumes that you are familiar with the basic forms of the unit root tests and the associated options. We provide theoretical background for these tests in "Basic Unit Root Theory", and document the settings used when performing these tests. To begin, double click on the series name to open the series window, and choose ViewUnit Root Test You must specify four sets of options to carry out a unit root test. The first three settings (on the left-hand side of the dialog) determine the basic form of the unit root test. The fourth set of options (on the right-hand side of the dialog) consist of test-specific advanced settings. You only need concern yourself with these settings if you wish to customize the calculation of your unit root test. First, you should use the topmost combo box to select the type of unit root test that you wish to perform. You may choose one of six tests: ADF, DFGLS, PP, KPSS, ERS, and NP. Next, specify whether you wish to test for a unit root in the level, first difference, or second difference of the series. Lastly, choose your exogenous regressors. You can choose to include a cons tant, a constant and linear trend, or neither (there are limitations on these choices for some of the tests). You can click on to compute the test using the specified settings, or you can customize your test using the advanced settings portion of the dialog. The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged difference terms are to be included in the ADF test equation. You may choose to let EViews automatically select, or you may specify a fixed positive integer value (if you choose automatic selection, you are given the additional option of selecting both the information criterion and maximum number of lags to be used in the selection procedure). In this case, we have chosen to estimate an ADF test that includes a constant in the test regression and employs automatic lag length selection using a Schwarz Information Criterion (BIC) and a maximum lag length of 14. Applying these settings to data on the U.S. one -month Treasury bill rate for the period from March 1953 to July 1971 ("Hayashi_92.WF1"), we can replicate Example 9.2 of Hayashi (2000, p. 596). The results are described below. The first part of the unit root output provides information about the form of the test (the type of test, the exogenous variables, and lag length used), and contains the test output, associated critical values, and in this case, the p-value:

3 Página 3 de 12 The ADF statistic value is and the associated one -sided p-value (for a test with 221 observations) is.573. In addition, EViews reports the critical values at the 1%, % 5 and 10% levels. Notice here that the statistic null at conventional test sizes. value is greater than the critical values so that we do not reject the The second part of the output shows the intermediate test equation that EViews used to calculate the ADF statistic: If you had chosen to perform any of the other unit root tests (PP, KPSS, ERS, NP), the right side of the dialog would show the different options associated with the specified test. The options are associated with the method used to estimate the zero frequency spectrum term,, that is used in constructing the particular test statistic. As before, you only need pay attention to these settings if you wish to change from the EViews defaults.

4 Página de 12 Here, we have selected the PP test in the combo box. Note that the right-hand side of the dialog has changed, and now features a combo box for selecting the spectral estimation method. You may use this combo box to choose between various kernel or AR regression based estimators for. The entry labeled "Default" will show you the default estimator for the specific unit root test-in this example, we see that the PP default uses a kernel sum-of-covariances estimator with Bartlett weights. Alternately, if you had selected a NP test, the default entry would be "AR spectral -GLS". Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you select one of the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dialog will give you a choice between using Newey-West or Andrews automatic bandwidth selection methods, or providing a user specified bandwidth. If you choose one of t he AR spectral density estimation methods (AR Spectral - OLS, AR Spectral - OLS detrended, AR Spectral - GLS detrended), the dialog will prompt you to choose from various automatic lag length selection methods (using information criteria) or to provide a user-specified lag length. See "Automatic Bandwidth and Lag Length Selection". Once you have chosen the appropriate settings for your test, click on the button. EViews reports the test statistic along with output from the corresponding test regression. For these tests, EViews reports the uncorrected estimate of the residual variance and the estimate of the frequency zero spectrum (labeled as the "HAC corrected variance") in addition to the basic output. Running a PP test using the TBILL series using the Andrews bandwidth yields: As with the ADF test, we fail to reject the null hypothesis of a unit root in the TBILL series at conventional significance levels. Note that your test output will differ somewhat for alternative test specifications. For example, the

5 Página de 12 KPSS output only provides the asymptotic critical values tabulated by KPSS: Similarly, the NP test output will contain results for all four test statistics, along with the NP tabulated critical values. A word of caution. You should note that the critical values reported by EViews are valid only for unit root tests of a data series, and will be invalid if the series is based on estimated values. For example, Engle and Granger (1987) proposed a two-step method of testing for cointegration which looks for a unit root in the residuals of a first-stage regression. Since these residuals are estimates of the disturbance term, the asymptotic distribution of the test statistic differs from the one for ordinary series. See "Cointegration Testing" for EViews routines to perform testing in this setting. si Unit Root Teor The following discussion outlines the basics features of unit root tests. By necessity, the discussion will be brief. Users who require detail should consult the original sources and standard references (see, for example, Davidson and MacKinnon, 1993, Chapter 20, Hamilton, 1994, Chapter 17, and Hayashi, 2000, Chapter 9). Consider a simple AR(1) process: (30.3), where are optional exogenous regressors which may consist of constant, or a constant and trend, and are parameters to be estimated, and the are assumed to be white noise. If, is a nonstationary series and the variance of increases with time and approaches infinity. If, is a (trend-)stationary series. Thus, the hypothesis of (trend-)stationarity can be evaluated by testing whether the absolute value of is strictly less than one. The unit root tests that EViews provides generally test the null hypothesis the one-sided alternative In contrast, the KPSS Lagrange Multiplier test evaluates the null of alternative. Te gmente ie er Test against. In some cases, the null is tested against a point alternative. against the The standard DF test is carried out by estimating Equation (30.3) after subtracting from both sides of the equation:

6 Página de 12 t

7 Página 7 de 12 GLS detrended data, :

8 Página de 12 p

9 Página de 12 Kernel Sum-of-Covariances Estimation

10 Página 10 de 12 j not applicable Autoregressive Spectral Density Estimator

11 Página 11 de 12 (30.23) EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS detrending, corresponding to difference choices for the data. The following table summarizes the auxiliary equation estimated by the various AR spectral density estimators: OLS OLS detrended GLS detrended, and,., and.. and. where are the coefficient estimates from the regression defined in (30.9). The AR spectral estimator of the frequency zero spectrum is defined as: (30.24) where is the residual variance, and are the estimates from (30.23). We note here that EViews uses the non-degree of freedom estimator of the residual variance. As a result, spectral estimates computed in EViews may differ slightly from those obtained from other sources. Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference terms in the auxiliary equation. You may either specify a fixed parameter or have EViews automatically select one based on an information criterion. Automatic lag length selection is examined in "Automatic Bandwidth and Lag Length Selection". Default Settings By default, EViews will choose the estimator of used by the authors of a given test specification. You may, of course, override the default settings and choose from either family of estimation methods. The default settings are listed below: ADF, DFGLS PP, KPSS ERS Point Optimal NP not appliale Kernel (Bartlett) sum -of-covariances AR spectral regression (OLS) AR spectral regression (GLS-detrended) There are three distinct situations in which EViews can automatically compute a bandwidth or a lag length parameter.

12 Página 12 de 12 The first situation occurs when you are selecting the bandwidth parameter for the kernel-based estimators of. For the kernel estimators, EViews provides you with the option of using the Newey-West (1994) or the Andrews (1991) data-based automatic bandwidth parameter methods. See the original sources for details. For those familiar with the Newey-West procedure, we note that EViews uses the lag selection parameter formulae given in the corresponding first lines of Table II-C. The Andrews method is based on an AR(1) specification. (See "Automatic Bandwidth Selection" for discussion.) The latter two situations occur when the unit root test requires estimation of a regression with a parametric correction for serial correlation as in the ADF and DFGLS test equation regressions, and in the AR spectral estimator for. In all of these cases, lagged difference terms are added to a regression equation. The automatic selection methods choose (less than the specified maximum) to minimize one of the following criteria: Akaike (AIC) Schwarz (SIC) Hannan -Quinn (HQ) Modified AIC (MAIC) Modified SIC (MSIC) Modified Hannan -Quinn (MHQ) where the modification factor is computed as: (30.25) for, when computing the ADF test equation, and for as defined in "Autoregressive Spectral Density Estimator", when estimating. Ng and Perron (2001) propose and examine the modified criteria, concluding with a recommendation of the MAIC. For the information criterion selection methods, you must also specify an upper bound to the lag length. By default, EViews chooses a maximum lag of: (30.26) See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound Campus Drive, 336, Irvine, CA Voice: (949) Fax: (949) support eviews.com , 10:58 AM

### Forecasting the US Dollar / Euro Exchange rate Using ARMA Models

Forecasting the US Dollar / Euro Exchange rate Using ARMA Models LIUWEI (9906360) - 1 - ABSTRACT...3 1. INTRODUCTION...4 2. DATA ANALYSIS...5 2.1 Stationary estimation...5 2.2 Dickey-Fuller Test...6 3.

### Time Series Analysis

Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos

### Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

### Vector Time Series Model Representations and Analysis with XploRe

0-1 Vector Time Series Model Representations and Analysis with plore Julius Mungo CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin mungo@wiwi.hu-berlin.de plore MulTi Motivation

### THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Homework Assignment #2

THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay Solutions to Homework Assignment #2 Assignment: 1. Consumer Sentiment of the University of Michigan.

### The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.

Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium

### Non-Stationary Time Series andunitroottests

Econometrics 2 Fall 2005 Non-Stationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:

### IS THERE A LONG-RUN RELATIONSHIP

7. IS THERE A LONG-RUN RELATIONSHIP BETWEEN TAXATION AND GROWTH: THE CASE OF TURKEY Salih Turan KATIRCIOGLU Abstract This paper empirically investigates long-run equilibrium relationship between economic

### Department of Economics

Department of Economics Working Paper Do Stock Market Risk Premium Respond to Consumer Confidence? By Abdur Chowdhury Working Paper 2011 06 College of Business Administration Do Stock Market Risk Premium

### Unit Root Tests. 4.1 Introduction. This is page 111 Printer: Opaque this

4 Unit Root Tests This is page 111 Printer: Opaque this 4.1 Introduction Many economic and financial time series exhibit trending behavior or nonstationarity in the mean. Leading examples are asset prices,

### Testing for Granger causality between stock prices and economic growth

MPRA Munich Personal RePEc Archive Testing for Granger causality between stock prices and economic growth Pasquale Foresti 2006 Online at http://mpra.ub.uni-muenchen.de/2962/ MPRA Paper No. 2962, posted

### Chapter 5: Bivariate Cointegration Analysis

Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...

### Granger Causality between Government Revenues and Expenditures in Korea

Volume 23, Number 1, June 1998 Granger Causality between Government Revenues and Expenditures in Korea Wan Kyu Park ** 2 This paper investigates the Granger causal relationship between government revenues

### Unit Labor Costs and the Price Level

Unit Labor Costs and the Price Level Yash P. Mehra A popular theoretical model of the inflation process is the expectationsaugmented Phillips-curve model. According to this model, prices are set as markup

### How do oil prices affect stock returns in GCC markets? An asymmetric cointegration approach.

How do oil prices affect stock returns in GCC markets? An asymmetric cointegration approach. Mohamed El Hedi AROURI (LEO-Université d Orléans & EDHEC, mohamed.arouri@univ-orleans.fr) Julien FOUQUAU (ESC

### TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND

I J A B E R, Vol. 13, No. 4, (2015): 1525-1534 TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND Komain Jiranyakul * Abstract: This study

### THE IMPACT OF EXCHANGE RATE VOLATILITY ON BRAZILIAN MANUFACTURED EXPORTS

THE IMPACT OF EXCHANGE RATE VOLATILITY ON BRAZILIAN MANUFACTURED EXPORTS ANTONIO AGUIRRE UFMG / Department of Economics CEPE (Centre for Research in International Economics) Rua Curitiba, 832 Belo Horizonte

### A Century of PPP: Supportive Results from non-linear Unit Root Tests

Mohsen Bahmani-Oskooee a, Ali Kutan b and Su Zhou c A Century of PPP: Supportive Results from non-linear Unit Root Tests ABSTRACT Testing for stationarity of the real exchange rates is a common practice

### ITSM-R Reference Manual

ITSM-R Reference Manual George Weigt June 5, 2015 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................

### Relationship between Commodity Prices and Exchange Rate in Light of Global Financial Crisis: Evidence from Australia

Relationship between Commodity Prices and Exchange Rate in Light of Global Financial Crisis: Evidence from Australia Omar K. M. R. Bashar and Sarkar Humayun Kabir Abstract This study seeks to identify

### 3.1 Stationary Processes and Mean Reversion

3. Univariate Time Series Models 3.1 Stationary Processes and Mean Reversion Definition 3.1: A time series y t, t = 1,..., T is called (covariance) stationary if (1) E[y t ] = µ, for all t Cov[y t, y t

### Powerful new tools for time series analysis

Christopher F Baum Boston College & DIW August 2007 hristopher F Baum ( Boston College & DIW) NASUG2007 1 / 26 Introduction This presentation discusses two recent developments in time series analysis by

### Business Cycles and Natural Gas Prices

Department of Economics Discussion Paper 2004-19 Business Cycles and Natural Gas Prices Apostolos Serletis Department of Economics University of Calgary Canada and Asghar Shahmoradi Department of Economics

### FDI and Economic Growth Relationship: An Empirical Study on Malaysia

International Business Research April, 2008 FDI and Economic Growth Relationship: An Empirical Study on Malaysia Har Wai Mun Faculty of Accountancy and Management Universiti Tunku Abdul Rahman Bander Sungai

### Medical Net Discount Rates:

Medical Net Discount Rates: An Investigation into the Total Offset Approach Andrew G. Kraynak Fall 2011 COLLEGE OF THE HOLY CROSS ECONOMICS DEPARTMENT HONORS PROGRAM Motivation When estimating the cost

### A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500

A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500 FE8827 Quantitative Trading Strategies 2010/11 Mini-Term 5 Nanyang Technological University Submitted By:

### Business cycles and natural gas prices

Business cycles and natural gas prices Apostolos Serletis and Asghar Shahmoradi Abstract This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural

### Empirical Test of Okun s Law in Nigeria

Empirical Test of Okun s Law in Nigeria by Abiodun S. Bankole, Basiru Oyeniran Fatai Trade Policy Research and Training Programme Department of Economics, University of Ibadan, Ibadan, Nigeria bashal4me@yahoo.com,

### Time Series Analysis 1. Lecture 8: Time Series Analysis. Time Series Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013 MIT 18.S096

Lecture 8: Time Series Analysis MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis 1 Outline Time Series Analysis 1 Time Series Analysis MIT 18.S096 Time Series Analysis 2 A stochastic

### PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard

### The relationship between stock market parameters and interbank lending market: an empirical evidence

Magomet Yandiev Associate Professor, Department of Economics, Lomonosov Moscow State University mag2097@mail.ru Alexander Pakhalov, PG student, Department of Economics, Lomonosov Moscow State University

### Time Series Analysis

Time Series 1 April 9, 2013 Time Series Analysis This chapter presents an introduction to the branch of statistics known as time series analysis. Often the data we collect in environmental studies is collected

### Econometrics I: Econometric Methods

Econometrics I: Econometric Methods Jürgen Meinecke Research School of Economics, Australian National University 24 May, 2016 Housekeeping Assignment 2 is now history The ps tute this week will go through

### The Power of the KPSS Test for Cointegration when Residuals are Fractionally Integrated

The Power of the KPSS Test for Cointegration when Residuals are Fractionally Integrated Philipp Sibbertsen 1 Walter Krämer 2 Diskussionspapier 318 ISNN 0949-9962 Abstract: We show that the power of the

### Unit root properties of natural gas spot and futures prices: The relevance of heteroskedasticity in high frequency data

DEPARTMENT OF ECONOMICS ISSN 1441-5429 DISCUSSION PAPER 20/14 Unit root properties of natural gas spot and futures prices: The relevance of heteroskedasticity in high frequency data Vinod Mishra and Russell

### Cointegration and error correction

EVIEWS tutorial: Cointegration and error correction Professor Roy Batchelor City University Business School, London & ESCP, Paris EVIEWS Tutorial 1 EVIEWS On the City University system, EVIEWS 3.1 is in

### Forecasting Using Eviews 2.0: An Overview

Forecasting Using Eviews 2.0: An Overview Some Preliminaries In what follows it will be useful to distinguish between ex post and ex ante forecasting. In terms of time series modeling, both predict values

### Does Insurance Promote Economic Growth? Evidence from the UK

Does Insurance Promote Economic Growth? Evidence from the UK Maurice Kugler and Reza Ofoghi * July 2005 Abstract The first conference of UNCTAD in 1964 acknowledged the development of national insurance

### Implied volatility transmissions between Thai and selected advanced stock markets

MPRA Munich Personal RePEc Archive Implied volatility transmissions between Thai and selected advanced stock markets Supachok Thakolsri and Yuthana Sethapramote and Komain Jiranyakul Public Enterprise

### Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate?

Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Emily Polito, Trinity College In the past two decades, there have been many empirical studies both in support of and opposing

### UNIT ROOT TESTING TO HELP MODEL BUILDING. Lavan Mahadeva & Paul Robinson

Handbooks in Central Banking No. 22 UNIT ROOT TESTING TO HELP MODEL BUILDING Lavan Mahadeva & Paul Robinson Series editors: Andrew Blake & Gill Hammond Issued by the Centre for Central Banking Studies,

### Chapter 9: Univariate Time Series Analysis

Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of

### Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London)

Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London) 1 Forecasting: definition Forecasting is the process of making statements about events whose

### Promotional Forecast Demonstration

Exhibit 2: Promotional Forecast Demonstration Consider the problem of forecasting for a proposed promotion that will start in December 1997 and continues beyond the forecast horizon. Assume that the promotion

### Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions

Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions What will happen if we violate the assumption that the errors are not serially

### Forecasting Stock Market Series. with ARIMA Model

Journal of Statistical and Econometric Methods, vol.3, no.3, 2014, 65-77 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 Forecasting Stock Market Series with ARIMA Model Fatai Adewole

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### GRADO EN ECONOMÍA. Is the Forward Rate a True Unbiased Predictor of the Future Spot Exchange Rate?

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES GRADO EN ECONOMÍA Is the Forward Rate a True Unbiased Predictor of the Future Spot Exchange Rate? Autor: Elena Renedo Sánchez Tutor: Juan Ángel Jiménez Martín

### The Orthogonal Response of Stock Returns to Dividend Yield and Price-to-Earnings Innovations

The Orthogonal Response of Stock Returns to Dividend Yield and Price-to-Earnings Innovations Vichet Sum School of Business and Technology, University of Maryland, Eastern Shore Kiah Hall, Suite 2117-A

### Empirical Properties of the Indonesian Rupiah: Testing for Structural Breaks, Unit Roots, and White Noise

Volume 24, Number 2, December 1999 Empirical Properties of the Indonesian Rupiah: Testing for Structural Breaks, Unit Roots, and White Noise Reza Yamora Siregar * 1 This paper shows that the real exchange

### Minimum LM Unit Root Test with One Structural Break. Junsoo Lee Department of Economics University of Alabama

Minimum LM Unit Root Test with One Structural Break Junsoo Lee Department of Economics University of Alabama Mark C. Strazicich Department of Economics Appalachian State University December 16, 2004 Abstract

### Stock Returns and Equity Premium Evidence Using Dividend Price Ratios and Dividend Yields in Malaysia

Stock Returns and Equity Premium Evidence Using Dividend Price Ratios and Dividend Yields in Malaysia By David E. Allen 1 and Imbarine Bujang 1 1 School of Accounting, Finance and Economics, Edith Cowan

### Keywords: Baltic stock markets, unit root, Engle-Granger approach, Johansen cointegration test, causality, impulse response, variance decomposition.

Department of Economics Master thesis January 28 Dynamic linkages between Baltic and International stock markets Author: Julija Moroza Supervisor: Hossein Asgharian Abstract 1 The fact is that high integration

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Appendix 1: Time series analysis of peak-rate years and synchrony testing.

Appendix 1: Time series analysis of peak-rate years and synchrony testing. Overview The raw data are accessible at Figshare ( Time series of global resources, DOI 10.6084/m9.figshare.929619), sources are

### ANALYSIS OF EUROPEAN, AMERICAN AND JAPANESE GOVERNMENT BOND YIELDS

Applied Time Series Analysis ANALYSIS OF EUROPEAN, AMERICAN AND JAPANESE GOVERNMENT BOND YIELDS Stationarity, cointegration, Granger causality Aleksandra Falkowska and Piotr Lewicki TABLE OF CONTENTS 1.

### Energy consumption and GDP: causality relationship in G-7 countries and emerging markets

Ž. Energy Economics 25 2003 33 37 Energy consumption and GDP: causality relationship in G-7 countries and emerging markets Ugur Soytas a,, Ramazan Sari b a Middle East Technical Uni ersity, Department

### IBM SPSS Forecasting 22

IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification

### 1 Short Introduction to Time Series

ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

### Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480

1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500

### Examining the Long Run Effects of Export, Import and FDI Inflows on the FDI Outflows from India: A Causality Analysis

Examining the Long Run Effects of Export, Import and FDI Inflows on the FDI Outflows from India: A Causality Analysis Nandita Dasgupta, Ph.D. University of Maryland, Baltimore County, USA The objective

### Univariate and Multivariate Methods PEARSON. Addison Wesley

Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston

### Note 2 to Computer class: Standard mis-specification tests

Note 2 to Computer class: Standard mis-specification tests Ragnar Nymoen September 2, 2013 1 Why mis-specification testing of econometric models? As econometricians we must relate to the fact that the

### TIME SERIES ANALYSIS

TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-0 02 lmb@iasri.res.in. Introduction Time series (TS) data refers to observations

### Dynamics of Real Investment and Stock Prices in Listed Companies of Tehran Stock Exchange

Dynamics of Real Investment and Stock Prices in Listed Companies of Tehran Stock Exchange Farzad Karimi Assistant Professor Department of Management Mobarakeh Branch, Islamic Azad University, Mobarakeh,

### Sales forecasting # 2

Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univ-rennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting

### Examining the Relationship between ETFS and Their Underlying Assets in Indian Capital Market

2012 2nd International Conference on Computer and Software Modeling (ICCSM 2012) IPCSIT vol. 54 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V54.20 Examining the Relationship between

### TOURISM AS A LONG-RUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS. Nikolaos Dritsakis

TOURISM AS A LONG-RUN ECONOMIC GROWTH FACTOR: AN EMPIRICAL INVESTIGATION FOR GREECE USING CAUSALITY ANALYSIS Nikolaos Dritsakis Department of Applied Informatics University of Macedonia Economics and Social

### Testing for Unit Roots: What Should Students Be Taught?

Testing for Unit Roots: What Should Students Be Taught? John Elder and Peter E. Kennedy Abstract: Unit-root testing strategies are unnecessarily complicated because they do not exploit prior knowledge

### FULLY MODIFIED OLS FOR HETEROGENEOUS COINTEGRATED PANELS

FULLY MODIFIED OLS FOR HEEROGENEOUS COINEGRAED PANELS Peter Pedroni ABSRAC his chapter uses fully modified OLS principles to develop new methods for estimating and testing hypotheses for cointegrating

### Inflation as a function of labor force change rate: cointegration test for the USA

Inflation as a function of labor force change rate: cointegration test for the USA I.O. Kitov 1, O.I. Kitov 2, S.A. Dolinskaya 1 Introduction Inflation forecasting plays an important role in modern monetary

### Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

### Time Series Analysis: Basic Forecasting.

Time Series Analysis: Basic Forecasting. As published in Benchmarks RSS Matters, April 2015 http://web3.unt.edu/benchmarks/issues/2015/04/rss-matters Jon Starkweather, PhD 1 Jon Starkweather, PhD jonathan.starkweather@unt.edu

### The Relationship Between Crude Oil and Natural Gas Prices

The Relationship Between Crude Oil and Natural Gas Prices by Jose A. Villar Natural Gas Division Energy Information Administration and Frederick L. Joutz Department of Economics The George Washington University

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### The Causal Relationship between Producer Price Index and Consumer Price Index: Empirical Evidence from Selected European Countries

The Causal Relationship between Producer Price Index and Consumer Price Index: Empirical Evidence from Selected European Countries Selçuk AKÇAY Afyon Kocatepe University, Faculty of Economics and Administrative

### TIME SERIES ANALYSIS

TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi- 110 012 ram_stat@yahoo.co.in 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these

### An Econometric Measurement of the Impact of Marketing Communication on Sales in the Indian Cement Industry

An Econometric Measurement of the Impact of Marketing Communication on Sales in the Indian Cement Industry Somroop Siddhanta 1, Neelotpaul Banerjee 2 1 Department of Management Studies, NSHM College of

### Relationship among crude oil prices, share prices and exchange rates

Relationship among crude oil prices, share prices and exchange rates Do higher share prices and weaker dollar lead to higher crude oil prices? Akira YANAGISAWA Leader Energy Demand, Supply and Forecast

### Testing against a Change from Short to Long Memory

Testing against a Change from Short to Long Memory Uwe Hassler and Jan Scheithauer Goethe-University Frankfurt This version: January 2, 2008 Abstract This paper studies some well-known tests for the null

### Software Review: ITSM 2000 Professional Version 6.0.

Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455-459 (June 2002). Published by Elsevier (ISSN: 0169-2070). http://0-

### Import and Economic Growth in Turkey: Evidence from Multivariate VAR Analysis

Journal of Economics and Business Vol. XI 2008, No 1 & No 2 Import and Economic Growth in Turkey: Evidence from Multivariate VAR Analysis Ahmet Uğur, Inonu University Abstract This study made an attempt

### THE U.S. CURRENT ACCOUNT: THE IMPACT OF HOUSEHOLD WEALTH

THE U.S. CURRENT ACCOUNT: THE IMPACT OF HOUSEHOLD WEALTH Grant Keener, Sam Houston State University M.H. Tuttle, Sam Houston State University 21 ABSTRACT Household wealth is shown to have a substantial

### Hedge ratio estimation and hedging effectiveness: the case of the S&P 500 stock index futures contract

Int. J. Risk Assessment and Management, Vol. 9, Nos. 1/2, 2008 121 Hedge ratio estimation and hedging effectiveness: the case of the S&P 500 stock index futures contract Dimitris Kenourgios Department

### LONG-TERM DISABILITY CLAIMS RATES AND THE CONSUMPTION-TO-WEALTH RATIO

C The Journal of Risk and Insurance, 2009, Vol. 76, No. 1, 109-131 LONG-TERM DISABILITY CLAIMS RATES AND THE CONSUMPTION-TO-WEALTH RATIO H. J. Smoluk ABSTRACT Aframeworkforlinkinglong-termdisability(LTD)claimsratestothemacroeconomy

### Forecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model

Tropical Agricultural Research Vol. 24 (): 2-3 (22) Forecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model V. Sivapathasundaram * and C. Bogahawatte Postgraduate Institute

### 1. INTRODUCTION. In many structural economic or time-series models, the errors may have heterogeneity and temporal dependence of unknown form.

A PRACIIONER S GUIDE O ROBUS COVARIANCE MARIX ESIMAION Wouter J. den Haan Department of Economics, University of California at San Diego, and National Bureau of Economic Research and Andrew Levin International

### ijcrb.com INTERDISCIPLINARY JOURNAL OF CONTEMPORARY RESEARCH IN BUSINESS AUGUST 2014 VOL 6, NO 4

RELATIONSHIP AND CAUSALITY BETWEEN INTEREST RATE AND INFLATION RATE CASE OF JORDAN Dr. Mahmoud A. Jaradat Saleh A. AI-Hhosban Al al-bayt University, Jordan ABSTRACT This study attempts to examine and study

### Are the US current account deficits really sustainable? National University of Ireland, Galway

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Are the US current account deficits really sustainable? Author(s)

### ENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES

ENDOGENOUS GROWTH MODELS AND STOCK MARKET DEVELOPMENT: EVIDENCE FROM FOUR COUNTRIES Guglielmo Maria Caporale, South Bank University London Peter G. A Howells, University of East London Alaa M. Soliman,

### Air passenger departures forecast models A technical note

Ministry of Transport Air passenger departures forecast models A technical note By Haobo Wang Financial, Economic and Statistical Analysis Page 1 of 15 1. Introduction Sine 1999, the Ministry of Business,

### The following postestimation commands for time series are available for regress:

Title stata.com regress postestimation time series Postestimation tools for regress with time series Description Syntax for estat archlm Options for estat archlm Syntax for estat bgodfrey Options for estat

### The Relationship between Insurance Market Activity and Economic Growth

The Relationship between Insurance Market Activity and Economic Growth Yana Petrova 1 Abstract This research examines the short- and the long-run relationship between insurance market activity and economic

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Is the Basis of the Stock Index Futures Markets Nonlinear?

University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC) - Conference Papers Faculty of Engineering and Information Sciences 2011 Is the Basis of the Stock

### Electricity Demand for Sri Lanka: A Time Series Analysis

SEEDS Surrey Energy Economics Discussion paper Series SURREY ENERGY ECONOMICS CENTRE Electricity Demand for Sri Lanka: A Time Series Analysis Himanshu A. Amarawickrama and Lester C Hunt October 2007 SEEDS

### Outubro de 2009 ON THE PURCHASING POWER PARITY FOR LATIN-AMERICAN COUNTRIES JOSE ANGELO DIVINO VLADIMIR KUHL TELES JOAQUIM PINTO DE ANDRADE

Textos para Discussão 227 Outubro de 2009 ON THE PURCHASING POWER PARITY FOR LATIN-AMERICAN COUNTRIES JOSE ANGELO DIVINO VLADIMIR KUHL TELES JOAQUIM PINTO DE ANDRADE Os artigos dos Textos para Discussão