Lecture 6. Poisson processes

Size: px
Start display at page:

Download "Lecture 6. Poisson processes"

Transcription

1 Lecture 6. Poisson processes Mathematical Statistics and Discrete Mathematics November 18th, / 15

2 Motivation We want to have a probabilistic model describing the number of calls arriving at a call center within a given time range, say, 15 minutes between 1pm and 1.15pm. We can represent the incoming calls as marks on the timeline: So that it is a realistic model, it should posses the following properties: The numbers of calls arriving in disjoint time intervals should be independent The distribution of the number of calls arriving in a certain time interval depends only on the length of the interval and not its placement in time We will define a stochastic process which satisfies these properties, namely the Poisson process. 2 / 15

3 Poisson distribution A discrete random variable X has Poisson distribution with parameter λ > 0 if f X (k) = P(X = k) = λk k! e λ, for k = 0, 1, 2,... We denote this by writing X Pois(λ). Properties: E[X] = Var[X] = λ. If X Pois(λ 1 ), Y Pois(λ 2 ), and X and Y are independent, then X + Y Pois(λ 1 + λ 2 ). Pois(λ) can be well approximated by Binom(n, p) with very large n and small p such that np = λ. Hence, it models well the number of successes in a large number of trials where the success probability is small. This is sometimes called the law of rare events. 3 / 15

4 Poisson distribution Poisson distribution can be used to model the number of people winning the lottery each week, people older than 100 years in some community, deaths in a given age group within a year, mutations in a piece of DNA after exposure to radiation, times a server is accessed per minute, telephone calls arriving at a call center within 15 minutes (the population covered by one call center is large and each person has a small probability of making a call within a particular 15 minutes period). 4 / 15

5 Exponential distribution A continous random variable X has exponential distribution with parameter λ > 0 if We denote this by writing X Exp(λ). f X (x) = λe λx for x > 0. Properties: E[X] = λ 1, Var[X] = λ 2. F X (x) = P(X x) = 1 e λx for x > 0. 5 / 15

6 Exponential distribution A continuous random variable X has exponential distribution, if and only if it is memoryless, that is P(X > s + t X > t) = P(X > s), for any s, t > 0. Proof. Suppose X has exponential distribution with parameter λ. Then, we have for any x > 0, and hence P(X > x) = 1 P(X x) = e λx, P(X > s + t) = P(X > s) P(X > t) by the property of the exponential function. The opposite implication follows since the exponential function is the only one satisfying this property, and hence the CDF function is uniquely identified. The only discrete memoryless distribution is the geometric distribution. 6 / 15

7 Exponential distribution Let X be the time until the arrival of the first call at the call center. Since we assume that the arrivals are independent in disjoint intervals, the knowledge that there was no call until time s (this is the event {X > t}, has no influence on the arrivals after time s). Moreover, since the arrivals after time s in an interval of length t should be distributed as the arrivals in the interval [0, t], we get P(X > s + t X > t) = P(X > s), for any s, t > 0, and hence X has exponential distribution. Time until a radioactive particle decays can be modelled with exponential distribution. Time between server requests can be modelled with exponential distribution. 7 / 15

8 Counting process A counting process is stochastic process {C t } t 0 that keeps count of events that have occurred up to time t. In particular, C t it takes values in {0, 1, 2,...}, C t it is non-decreasing in t, C t C s is the number of events in the interval (s, t] for s < t. Here, the word event has the traditional, and not probabilistic, meaning. Counting processes are also called jump processes. 8 / 15

9 Counting process The graph below shows an instance of a counting process together with the times when the events occurred: / 15

10 Poisson process A Poisson process {N t } t 0 with intensity parameter λ > 0 is a counting process with the following additional properties: (starting at 0) N 0 = 0. (independent increments) The random variables (N t2 N t1 ) and (N t4 N t3 ) are independent for all t 1 < t 2 < t 3 < t 4. (stationarity) Fix r > 0. The random variable (N t+r N t ) has the same distribution for all t. (no double jumps/events) P(N h = 1) h λ, and P(N h 2) h 0, as h 0. The last property says that the probability that two events counted by the Poisson process happen at the same time is / 15

11 Poisson process Calls arriving at a call center can be modelled by a Poisson process. Request arriving at a server can be modelled by a Poisson process. Arrivals of students for this lecture cannot be modelled by a Poisson process. 11 / 15

12 Properties of Poisson processes If {N t } t 0 is a Poisson process with intensity λ, then: N t Pois(λt) for all t. In particular, E[N t ] = λt. N t N s Pois(λ(t s)) for all s < t. In particular, E[N t N s ] = λ(t s). Let T 0 = 0, T 1, T 2, T 3,... be the (random) times when the events counted by the process occur. Let τ i = T i T i 1, for i = 1, 2, 3,... Then τ i Exp(λ) for all i, and τ i, τ j are independent for i j. In particular, E[τ i ] = λ 1 for all i. The larger the intensity λ, the more events counted by the process. 12 / 15

13 It is a slow day at a call center of a taxi company. There is 1 call every 10 minutes on average. Bob is the only person present and he needs to use the restroom every hour for 5 minutes. How many calls on average will he miss if he works 8 hours? What is the probability that he will not miss any call? What is the probability that he will miss more than 2 calls? Use a Poisson process to answer the questions. Let X 1, X 2,..., X 8 be the numbers of calls that arrive when Bob is in the restroom each hour. By the properties of the Poisson process, they are all independent, and all have the same distribution Pois(1/2). Hence, by the property of the Poisson distribution X = X 1 + X X 8 Pois(8 1/2) = Pois(4). Therefore, Bob will miss E[X] = 4 calls on average, and P(X = 0) = 40 0! e 4 = e , and P(X > 2) = 1 P(X 2) = = ! e ! e ! e 4 = 1 ( )e / 15

14 Bob is waiting for the first call already 10 minutes. What is the probability that he will still wait more than 20 minutes? Let τ 1 be the time that Bob waits for the first call. By the property of the Poisson process τ 1 has exponential distribution with parameter 1 (here one unit is 10 minutes). We have P(τ 1 > τ 1 > 1) = P(τ 1 > 2) = 1 P(τ 1 2) = e / 15

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. 16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

More information

MAS108 Probability I

MAS108 Probability I 1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process

LECTURE 16. Readings: Section 5.1. Lecture outline. Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process LECTURE 16 Readings: Section 5.1 Lecture outline Random processes Definition of the Bernoulli process Basic properties of the Bernoulli process Number of successes Distribution of interarrival times The

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1

ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at

More information

How To Find Out How Much Money You Get From A Car Insurance Claim

How To Find Out How Much Money You Get From A Car Insurance Claim Chapter 11. Poisson processes. Section 11.4. Superposition and decomposition of a Poisson process. Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/18 Superposition

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations 56 Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations Florin-Cătălin ENACHE

More information

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1

ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Exponential Distribution

Exponential Distribution Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information

Poisson process. Etienne Pardoux. Aix Marseille Université. Etienne Pardoux (AMU) CIMPA, Ziguinchor 1 / 8

Poisson process. Etienne Pardoux. Aix Marseille Université. Etienne Pardoux (AMU) CIMPA, Ziguinchor 1 / 8 Poisson process Etienne Pardoux Aix Marseille Université Etienne Pardoux (AMU) CIMPA, Ziguinchor 1 / 8 The standard Poisson process Let λ > be given. A rate λ Poisson (counting) process is defined as P

More information

Tenth Problem Assignment

Tenth Problem Assignment EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiple-choice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious

More information

e.g. arrival of a customer to a service station or breakdown of a component in some system.

e.g. arrival of a customer to a service station or breakdown of a component in some system. Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Poisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0.

Poisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0. Chapter 5 Poisson Processes 5.1 Exponential Distribution The gamma function is defined by Γ(α) = t α 1 e t dt, α >. Theorem 5.1. The gamma function satisfies the following properties: (a) For each α >

More information

The Exponential Distribution

The Exponential Distribution 21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

More information

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:30-9:30 PM. SOLUTIONS 6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:3-9:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total

More information

Random variables, probability distributions, binomial random variable

Random variables, probability distributions, binomial random variable Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

More information

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

Sums of Independent Random Variables

Sums of Independent Random Variables Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

More information

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

2 Binomial, Poisson, Normal Distribution

2 Binomial, Poisson, Normal Distribution 2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability

More information

6.2. Discrete Probability Distributions

6.2. Discrete Probability Distributions 6.2. Discrete Probability Distributions Discrete Uniform distribution (diskreetti tasajakauma) A random variable X follows the dicrete uniform distribution on the interval [a, a+1,..., b], if it may attain

More information

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.)

Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) Name: Stat 515 Midterm Examination II April 6, 2010 (9:30 a.m. - 10:45 a.m.) The total score is 100 points. Instructions: There are six questions. Each one is worth 20 points. TA will grade the best five

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Modelling Patient Flow in an Emergency Department

Modelling Patient Flow in an Emergency Department Modelling Patient Flow in an Emergency Department Mark Fackrell Department of Mathematics and Statistics The University of Melbourne Motivation Eastern Health closes more beds Bed closures to cause ambulance

More information

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

More information

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100 Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Chapter 4. Probability Distributions

Chapter 4. Probability Distributions Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

More information

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS

CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

Jan Vecer Tomoyuki Ichiba Mladen Laudanovic. Harvard University, September 29, 2007

Jan Vecer Tomoyuki Ichiba Mladen Laudanovic. Harvard University, September 29, 2007 Sports Sports Tomoyuki Ichiba Mladen Laudanovic Department of Statistics, Columbia University, http://www.stat.columbia.edu/ vecer Harvard University, September 29, 2007 Abstract Sports In this talk we

More information

ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY

ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 4, Winter 2004 ANALYZING NETWORK TRAFFIC FOR MALICIOUS ACTIVITY SURREY KIM, 1 SONG LI, 2 HONGWEI LONG 3 AND RANDALL PYKE Based on work carried out

More information

uation of a Poisson Process for Emergency Care

uation of a Poisson Process for Emergency Care QUEUEING THEORY WITH APPLICATIONS AND SPECIAL CONSIDERATION TO EMERGENCY CARE JAMES KEESLING. Introduction Much that is essential in modern life would not be possible without queueing theory. All communication

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

More information

Practice Problems #4

Practice Problems #4 Practice Problems #4 PRACTICE PROBLEMS FOR HOMEWORK 4 (1) Read section 2.5 of the text. (2) Solve the practice problems below. (3) Open Homework Assignment #4, solve the problems, and submit multiple-choice

More information

Week 2: Exponential Functions

Week 2: Exponential Functions Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:

More information

Marshall-Olkin distributions and portfolio credit risk

Marshall-Olkin distributions and portfolio credit risk Marshall-Olkin distributions and portfolio credit risk Moderne Finanzmathematik und ihre Anwendungen für Banken und Versicherungen, Fraunhofer ITWM, Kaiserslautern, in Kooperation mit der TU München und

More information

Poisson processes (and mixture distributions)

Poisson processes (and mixture distributions) Poisson processes (and mixture distributions) James W. Daniel Austin Actuarial Seminars www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction in whole or in part without

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

Chapter 5 Discrete Probability Distribution. Learning objectives

Chapter 5 Discrete Probability Distribution. Learning objectives Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here. Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

More information

6.263/16.37: Lectures 5 & 6 Introduction to Queueing Theory

6.263/16.37: Lectures 5 & 6 Introduction to Queueing Theory 6.263/16.37: Lectures 5 & 6 Introduction to Queueing Theory Massachusetts Institute of Technology Slide 1 Packet Switched Networks Messages broken into Packets that are routed To their destination PS PS

More information

), 35% use extra unleaded gas ( A

), 35% use extra unleaded gas ( A . At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Queueing Systems. Ivo Adan and Jacques Resing

Queueing Systems. Ivo Adan and Jacques Resing Queueing Systems Ivo Adan and Jacques Resing Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands March 26, 2015 Contents

More information

LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM

LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM LECTURE - 1 INTRODUCTION TO QUEUING SYSTEM Learning objective To introduce features of queuing system 9.1 Queue or Waiting lines Customers waiting to get service from server are represented by queue and

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Military Reliability Modeling William P. Fox, Steven B. Horton

Military Reliability Modeling William P. Fox, Steven B. Horton Military Reliability Modeling William P. Fox, Steven B. Horton Introduction You are an infantry rifle platoon leader. Your platoon is occupying a battle position and has been ordered to establish an observation

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University

The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

How to Gamble If You Must

How to Gamble If You Must How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games

More information

STAT 3502. x 0 < x < 1

STAT 3502. x 0 < x < 1 Solution - Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous

More information

10 GEOMETRIC DISTRIBUTION EXAMPLES:

10 GEOMETRIC DISTRIBUTION EXAMPLES: 10 GEOMETRIC DISTRIBUTION EXAMPLES: 1. Terminals on an on-line computer system are attached to a communication line to the central computer system. The probability that any terminal is ready to transmit

More information

8.7 Exponential Growth and Decay

8.7 Exponential Growth and Decay Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 seema@iasri.res.in. Introduction The concept of probability

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

Random Variables. Chapter 2. Random Variables 1

Random Variables. Chapter 2. Random Variables 1 Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

6 POISSON DISTRIBUTIONS

6 POISSON DISTRIBUTIONS 6 POISSON DISTRIBUTIONS Chapter 6 Poisson Distributions Objectives After studying this chapter you should be able to recognise when to use the Poisson distribution; be able to apply the Poisson distribution

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Cornell University, Physics Department Fall 2013 PHYS-3341 Statistical Physics Prof. Itai Cohen Solutions to Problem Set 1 David C. Tsang, Woosong Choi, Philip Kidd, Igor Segota, Yariv Yanay 1.3 Birthday

More information

UNIT 2 QUEUING THEORY

UNIT 2 QUEUING THEORY UNIT 2 QUEUING THEORY LESSON 24 Learning Objective: Apply formulae to find solution that will predict the behaviour of the single server model II. Apply formulae to find solution that will predict the

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

More information

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions

Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the

More information

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003

ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 ECON1003: Analysis of Economic Data Fall 2003 Answers to Quiz #2 11:40a.m. 12:25p.m. (45 minutes) Tuesday, October 28, 2003 1. (4 points) The number of claims for missing baggage for a well-known airline

More information

Chapter 9 Monté Carlo Simulation

Chapter 9 Monté Carlo Simulation MGS 3100 Business Analysis Chapter 9 Monté Carlo What Is? A model/process used to duplicate or mimic the real system Types of Models Physical simulation Computer simulation When to Use (Computer) Models?

More information

TEST 2 STUDY GUIDE. 1. Consider the data shown below.

TEST 2 STUDY GUIDE. 1. Consider the data shown below. 2006 by The Arizona Board of Regents for The University of Arizona All rights reserved Business Mathematics I TEST 2 STUDY GUIDE 1 Consider the data shown below (a) Fill in the Frequency and Relative Frequency

More information

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 31 CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 3.1 INTRODUCTION In this chapter, construction of queuing model with non-exponential service time distribution, performance

More information

November 2000 Course 3

November 2000 Course 3 November Course 3 Society of Actuaries/Casualty Actuarial Society November - - GO ON TO NEXT PAGE Questions through 36 are each worth points; questions 37 through 44 are each worth point.. For independent

More information

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i. Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric

More information

Basic Queueing Theory

Basic Queueing Theory Basic Queueing Theory Dr. János Sztrik University of Debrecen, Faculty of Informatics Reviewers: Dr. József Bíró Doctor of the Hungarian Academy of Sciences, Full Professor Budapest University of Technology

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information