Fieldcrest Pedestrian Bridge Fieldcrest Road Green Oak Township, Michigan

Size: px
Start display at page:

Download "Fieldcrest Pedestrian Bridge Fieldcrest Road Green Oak Township, Michigan"

Transcription

1 Report on Geotechnical Investigation Fieldcrest Pedestrian Bridge Fieldcrest Road Green Oak Township, Michigan Latitude N Longitude W Prepared for: Civil Engineering Solutions, Inc. P.O. Box # Grand River Avenue New Hudson, Michigan 815 September 2, 2015

2 September 2, 2015 Mr. Fadi Khalil, P.E. Civil Engineering Solutions, Inc. P.O. Box # Grand River Avenue New Hudson, Michigan 815 Re: Report on Geotechnical Investigation Fieldcrest Pedestrian Bridge Fieldcrest Road Green Oak Township, Michigan Dear Mr. Khalil: We have completed the geotechnical investigation for the proposed Fieldcrest Pedestrian Bridge located in Green Oak Township, Michigan. This report presents the results of our field investigation, observations, and analyses, and our recommendations for subgrade preparation, foundation design, and construction considerations as they relate to the geotechnical conditions at the site. We appreciate the opportunity to be of service to Civil Engineering Solutions, Inc. and look forward to discussing the recommendations presented herein. In the meantime, if you have any questions regarding this report or any other matter pertaining to the project, please call us. Sincerely, G2 Consulting Group, LLC Amy L. Schneider, P.E. Project Manager Noel J. Hargrave-Thomas, P.E. Principal ALS/NJHT/ljv Enclosures

3 September 2, 2015 Page 1 EXECUTIVE SUMMARY We understand current plans include construction of a new pedestrian bridge spanning the Huron River along the west side of Fieldcrest Road in Green Oak Township, Michigan. The bridge is prefabricated by Continental Bridge and will be 8 feet wide by 175 feet in length. Approximately inches of sand fill are present at the boring locations. An approximately 12 inch layer of topsoil is present in boring B-1 below the sand fill. Loose to medium compact gravelly sand fill and silty sand fill underlie the topsoil in boring B-1 extending to an approximate depth of feet and the upper sand fill in boring B-2 extending to an approximate depth of 12 feet. Native very loose silty sand underlies the fill in boring B-2 and extends to an approximate depth of 1 feet. In general, native loose to medium compact silty sand and sand are present below the fill in boring B-1 and the loose silty sand in boring B-2 and extend to the explored depth of 0 feet with the exception of a layer of medium silty clay in boring B-1 extending from an approximate depth of 8 to 11 feet and medium clayey silt in boring B-2 from an approximate depth of 22 to 2 feet. Groundwater was encountered during drilling operations at an approximate depth of 12 feet in boring B-1 and -1/2 feet in boring B-2. Upon completion of drilling and following removal of the augers, a wet cave of the boreholes was measured at approximate depths of 10 and 7-1/2 feet in borings B-1 and B-2, respectively. We understand the proposed pedestrian bridge was designed to be supported on concrete abutment foundations bearing at an approximate elevation of 81-1/2 feet with a design bearing capacity of 2,900 pounds per square foot (psf); however, this bearing capacity is not achievable on the existing soils. Therefore, based on the encountered soil conditions, we recommend the bridge be designed to be supported on straight shaft drilled piers or helical anchors. Drilled pier foundations should be designed per the recommended parameters in the Foundation Recommendations section of this report. Based on the bridge loading and subsurface conditions, we anticipate the drilled piers will be on the order of - 1/2 to foot in diameter and bear at an approximate depths ranging from 17 to 2 feet below abutment bearing elevation of approximately 81-1/2 feet. Following construction of the drilled piers, the concrete abutment can be constructed, with the piers embedded, for support of the bridge structure. Alternatively, the bridge can be supported on helical piers. Helical piers consist of metal plates formed into the shape of a helix attached to a long metal shaft. Installation is completed by applying a torque to the anchor until it is screwed into the underlying bearing soils. The concrete abutment will then be constructed to support the bridge structure and provide any lateral or uplift loads, as designed. The helical piers, once embedded in the concrete abutment, will transfer the structure loads into the deeper underlying soils. The helical piers can be designed utilizing the bearing capacities presented in the Foundation Recommendation section of this report. The helixes should be placed in descending diameter order. The nominal vertical spacing between the helix plates should be three times the diameter of the next lower helix. The tops of the helical piers should be embedded a minimum of inches into the bottoms of the concrete grade beams. Abutments should extend a minimum of -1/2 feet below finished grade for protection against frost heave. Caving and sloughing of the granular soils will occur during drilled pier excavation operations. In addition, groundwater will be encountered at approximate elevations ranging from 85 to 80-1/2 feet. Therefore, the contractor should come to the site prepared to use temporary steel casing, drilling mud, and water, as necessary, to maintain a stable excavation during construction operations. A minimum drilling mud head of feet above the static groundwater level should be maintained to insure a stable excavation. Caving and sloughing of the native and fill granular soils should be anticipated during excavation for bridge abutments. The contractor should be prepared to over excavate and form the abutments. The sides of the foundations should be constructed straight and vertical to reduce the risk of frozen soil adhering to the concrete and raising the foundation. Do not consider this summary separate from the entire text of this report, with all the conclusions and qualifications mentioned herein. Details of our analysis and recommendations are discussed in the following sections and in the Appendix of this report.

4 September 2, 2015 Page 2 PROJECT DESCRIPTION We understand current plans include construction of a new pedestrian bridge spanning the Huron River along the west side of Fieldcrest Road in Green Oak Township, Michigan. The bridge is prefabricated by Continental Bridge and will be 8 feet wide by 175 feet in length. The bridge is currently designed to bear on concrete abutments designed for a bearing capacity of 2,900 psf. In addition, a pedestrian asphalt path will be constructed leading to the bridge. No design information regarding the path is discussed in this report. The proposed bottom of bridge elevation at the abutment location is feet. The existing elevation at the abutment location is approximately 8-1/2 feet on the south side and 85 feet on the north side. Based on the Continental Bridge drawings, Sheet C., dated July 2, 2015 (Revision 2), the bridge has the following vertical loads at each base plate - a dead load of kips, a uniform live load of kips, and a vehicle load of kips. If proposed grades are different from our assumptions, G2 must be notified so we can review the recommendations presented in this report. SCOPE OF SERVICES Field operations, laboratory testing, and engineering report preparation were performed under the direction and supervision of a licensed professional engineer. Our services were performed according to generally accepted standards and procedures in the practice of geotechnical engineering in this area. Our scope of services for this project is as follows: 1. We drilled two soil borings for the proposed bridge extending to a depth of 0 feet each. 2. We performed laboratory testing on representative samples obtained from the soil borings. Laboratory testing included visual engineering classification, natural moisture content, organicmatter content (loss-on-ignition/loi), dry density, and unconfined compressive strength determinations.. We prepared this engineering report. Our report includes recommendations regarding the allowable soil bearing capacity, foundation design parameters, estimated settlement, and construction considerations related to the foundation construction. FIELD OPERATIONS G2, in conjunction with Civil Engineering Solutions, Inc. (CEC), selected the number, depth, and location of the soil borings. The soil borings were staked in the field by the drillers prior to our drilling operations. The borings were offset from the proposed abutment locations due to access issues associated with the steep grades to the river and vegetation limiting access. The approximate soil boring locations are shown on the Soil Boring Location Plan, Plate No. 1. Ground surface elevations at the soil boring locations were interpolated from the Fieldcrest Pedestrian Bridge Profile prepare by CES, dated July 1, 2015 (Revision 2). The soil borings were drilled using a truck-mounted rotary drilling rig. Continuous-flight, 2-1/ inch inside diameter hollow-stem augers were used to advance the boreholes. Soil samples were obtained at intervals of 2-1/2 feet within the upper 10 feet and at 5 foot intervals below that depth. These samples were obtained by the Standard Penetration Test Method (ASTM D 158), which involves driving a 2-inch diameter split-spoon sampler into the soil with a 10-pound weight falling 0 inches. The sampler is generally driven three successive -inch increments, with the number of blows for each increment recorded. The number of blows required to advance the sampler the last 12 inches is termed the Standard Penetration Resistance (N). Blow counts for each six-inch increment and resulting N-values are presented on the individual soil boring logs.

5 September 2, 2015 Page The soil samples were placed in sealed containers in the field and brought to our laboratory for testing and classification. During field operations, drilling representatives maintained soil boring logs of the subsurface conditions, including changes in stratigraphy and observed groundwater levels. The final boring logs are based on the field logs supplemented by laboratory soil classification and test results. The soil borings were backfilled with auger cuttings upon completion of drilling operations. LABORATORY TESTING Representative soil samples were subjected to laboratory testing to determine soil parameters pertinent to foundation design and site preparation. An experienced geotechnical engineer classified the samples in general conformance with the Unified Soil Classification System. Laboratory testing included natural moisture content, dry density, organic matter content, and unconfined compressive strength determinations. The organic matter content (loss-on-ignition/loi) of representative samples was determined in accordance with ASTM Test Method D 297, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. The unconfined compressive strengths were determined by ASTM Test Method D 21 and a spring loaded hand penetrometer. Per ASTM Test Method D 21 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, the unconfined compressive strength of cohesive soils is determined by axially loading a small cylindrical soil sample under a slow rate of strain. The unconfined compressive strength is defined as the maximum stress applied to the soil sample before shear failure. If shear failure does not occur prior to a total strain of 15 percent, the unconfined compressive strength is defined as the stress at a total strain of 15 percent. The hand penetrometer estimates the unconfined compressive strength to a maximum of -1/2 tons per square foot (tsf) by measuring the resistance of the soil sample to the penetration of a calibrated spring loaded cylinder. The results of the laboratory tests are indicated on the boring logs at the depths the samples were obtained. The unconfined compressive strengths are also presented on the Unconfined Compressive Strength Test Sheet, Figure No.. We will hold the soil samples for 0 days from the date of this report, after which time they will be discarded. If you would like to retain the samples beyond that date, please let us know. SITE CONDITIONS The proposed bridge will be constructed over the Huron River between U-2 and Fieldcrest Road in Green Oak Township, Michigan. The area is currently covered with grass and small trees. A metal guardrail and chain link fence extends along the west side of Fieldcrest Road. The grades slope downward from the ends of the guardrail to the river, with elevations ranging from approximately 88 feet at the top to 81 feet at the waters edge. SOIL CONDITIONS Approximately inches of sand fill are present at the boring locations. An approximately 12 inch layer of topsoil is present in boring B-1 below the sand fill. Gravelly sand fill and silty sand fill underlie the topsoil in boring B-1 extending to an approximate depth of feet and the upper sand fill in boring B-2 extending to an approximate depth of 12 feet. In general, native silty sand and sand are present below the fill and extend to the explored depth of 0 feet with the exception of a layer of silty clay in boring B-1 extending from an approximate depth of 8 to 11 feet and clayey silt in boring B-2 from an approximate depth of 22 to 2 feet. The gravelly sand fill and silty sand fill are loose to medium compact with Standard Penetration Test N- values ranging between 8 to 15 blows per foot. The native silty sand in boring B-2 is very loose in compactness from an approximate depth of 12 to 1 feet with an N-value of blows per foot. The remainder of the native granular soils are loose to medium compact with N-values ranging from to 28

6 September 2, 2015 Page blows per foot. The silty clay and clayey silt are medium in consistency with natural moisture contents of 21 and 2 percent, a dry density of 102 pcf, and unconfined compressive strengths of 1,000 and 1,10 psf. The stratification depths shown on the soil boring logs represent the soil conditions at the boring locations. Variations may occur away from the boring locations. Additionally, the stratigraphic lines represent the approximate boundary between soil types. The transition may be more gradual than what is shown. We have prepared the boring logs on the basis of the field logs of soils encountered supplemented by laboratory classification and testing. The Soil Boring Location Plan, Plate No. 1, Soil Boring Logs, Figure Nos. 1 and 2, and Unconfined Compressive Strength Test, Figure No., are presented in the Appendix. The soil profiles described above are generalized descriptions of the conditions encountered at the boring locations. General Notes Terminology defining the nomenclature used on the soil boring logs and elsewhere in this report is presented on Figure No.. GROUNDWATER CONDITIONS Groundwater was encountered during drilling operations at an approximate depth of 12 feet in boring B-1 and -1/2 feet in boring B-2. Upon completion of drilling and following removal of the augers, a wet cave of the boreholes was measured at approximate depths of 10 and 7-1/2 feet in borings B-1 and B-2, respectively. Fluctuations in perched and long term groundwater levels should be anticipated due to seasonal variations and following periods of prolonged precipitation. SITE PREPARATION On the basis of available data, it appears a moderate amount of earthwork will be required to achieve final design grades and construct the bridge. Earthwork operations are anticipated to consist of removing vegetation, topsoil, and trees, excavating for the structure foundations, and preparing the subgrade soils for pavement slab support. We recommend all earthwork operations be performed under adequate specifications and properly monitored in the field. At the start of earthwork operations, the existing vegetation, topsoil, and trees should be removed in their entirety from the proposed structure and pavement areas. We recommend the subgrade soil be thoroughly proof compacted for support of the proposed pathway with a 10-ton vibratory roller making a minimum of 10 passes in each of two perpendicular directions. Any unstable or unsuitable areas noted during proof compacting operations should be undercut and replaced with engineered fill. Engineered fill should be free of organic matter, frozen soil, clods, or other harmful material. The fill should be placed in uniform horizontal layers that are not more than 9 inches in loose thickness. The engineered fill should be compacted to achieve a density of at least 95 percent of the maximum dry density as determined by the Modified Proctor compaction test (ASTM D 1557). All engineered fill material should be placed and compacted at approximately the optimum moisture content. Frozen material should not be used as fill, nor should fill be placed on a frozen subgrade. We recommend using granular engineered fill within confined areas such as adjacent to foundation walls. Granular engineered fill is generally more easily compacted than cohesive soils within these confined areas. Additionally, the proper placement and compaction of backfill within these areas is imperative to provide adequate support for overlying pavements. FOUNDATION RECOMMENDATIONS We understand the proposed pedestrian bridge was designed to be supported on concrete abutment foundations bearing at an approximate elevation of 81-1/2 feet with a design bearing capacity of 2,900

7 September 2, 2015 Page 5 psf; however, this bearing capacity is not achievable on the existing soils. Therefore, based on the encountered soil conditions, we recommend the bridge be designed to be supported on straight shaft drilled piers or helical anchors. Following completion of the drilled pier foundations for bearing support, the abutment can be constructed for support of the bridge structure. Drilled pier foundations should be designed per the recommended parameters in the Foundation Recommendations section of this report. Based on the bridge loading and subsurface conditions, we anticipate the drilled piers will be on the order of -1/2 to foot in diameter and bear at an approximate depths ranging from 17 to 2 feet below abutment bearing elevation of approximately 81-1/2 feet. We recommend the following design parameters be utilized. The allowable skin friction and bearing capacity parameters are based on a factor of safety of. Soil Boring B-1 (South Drilled Piers) Depth (Elevation) Allowable Skin Friction (psf) Allowable Bearing Pressure (psf) 88 to to to , to ,500 *Neglect top feet below finished grade for frost penetration Soil Boring B-2 (North Drilled Piers) Depth (Elevation) Allowable Skin Friction (psf) Allowable Bearing Pressure (psf) 87 to to to to to , to ,500 *Neglect top feet below finished grade for frost penetration Alternatively, the bridge can be supported on helical piers. Helical piers consist of metal plates formed into the shape of a helix attached to a long metal shaft. Installation is completed by applying a torque to the anchor until it is screwed into the underlying bearing soils. The concrete abutment will then be constructed to support the bridge structure and provide any lateral or uplift loads, as designed. The helical piers, once embedded in the concrete abutment, will transfer the structure loads into the deeper underlying soils. The helical piers can be designed utilizing the above stated bearing capacities. The helixes should be placed in descending diameter order. The nominal vertical spacing between the helix plates should be three times the diameter of the next lower helix. The tops of the helical piers should be embedded a minimum of inches into the bottoms of the concrete grade beams. Abutments should extend a minimum of -1/2 feet below finished grade for protection against frost heave. If requested, helix sizes and capacities can be provided for an additional fee. G2 can provide a list of vendors that specialize in helical anchor pier installation upon request. If the recommendations outlined in this report are adhered to, total and differential settlements for the completed structure should be within 1 inch and 1/2 inch, respectively. We expect settlements of these magnitudes are within tolerable limits for the type of structure proposed.

8 September 2, 2015 Page CONSTRUCTION CONSIDERATIONS Drilled Piers Caving and sloughing of the granular soils will occur during drilled pier excavation operations. In addition, groundwater was encountered at approximate elevations ranging from 85-1/2 to 80 feet; however, it should be noted the borings were performed approximately 1-1/2 feet higher in elevation than the grade at the proposed abutment. Therefore, groundwater may be encountered at shallower depths. Due to the groundwater and granular soil, the contractor should come to the site prepared to use temporary telescoped casing, drilling mud, and water, as necessary, to maintain a stable excavation. A minimum drilling mud head of feet should be maintained above the static groundwater level to maintain a stable excavation during construction operations. When drilling is completed to the design depth, reinforcing steel should be set and concrete placed by tremie method until a positive head of concrete has been established within the casing. This positive concrete head must be maintained while pulling the casing to prevent the infiltration of loose soil and groundwater into the fresh concrete. After concrete has been placed to an appropriate grade, the casing may be removed and concrete placement operations completed. To reduce lateral movement of the drilled piers, the contractor must place the concrete for the piers in intimate contact with undisturbed soil. Fill any voids or enlargements in the drilled pier shaft excavations with concrete at the time of drilled pier concrete placement. We recommend using a concrete mix design with a slump of 7 to 9 inches for tremie placement to reduce the potential for concrete arching and provide a workable material. We recommend using temporary form, such as Sonotube, to form the top portion of the drilled piers. The use of these top forms is a very beneficial aid to current placement and orientation of the anchor bolts. Concrete Abutments Caving and sloughing of the native and fill granular soils should be anticipated during excavation for bridge abutments. The contractor should be prepared to over excavate and form the abutments. The sides of the foundations should be constructed straight and vertical to reduce the risk of frozen soil adhering to the concrete and raising the foundation. Groundwater may be encountered at the base of the north abutment excavation while we anticipate the southern excavation to be dry. We anticipate groundwater accumulation may be controlled by properly constructed sumps and pumps installed and pumped dry prior to excavating the proposed abutment. The sumps should remain in use during the remainder of excavation operations. All excavations should be safely sheeted, shored, sloped, or braced in accordance with MI-OSHA requirements. If material is stored or equipment is operated near an excavation, stronger shoring must be used to resist the extra pressure due to the superimposed loads. Care should always be exercised when excavating near existing roadways or utilities to avoid undermining. GENERAL COMMENTS We have formulated the evaluations and recommendations presented in this report relative to site preparation and foundations on the basis of data provided to us relating to the location, type, and grade for the proposed site. Any significant change in this data should be brought to our attention for review and evaluation with respect to the prevailing subsurface conditions. Furthermore, if changes occur in the design, location, or concept of the project, the conclusions and recommendations contained in this report

9 September 2, 2015 Page 7 are not valid unless G2 Consulting Group, LLC reviews the changes. G2 Consulting Group, LLC will then confirm the recommendations presented herein or make changes in writing. The scope of the present investigation was limited to evaluation of subsurface conditions for the support of proposed bridge structure and other related aspects of the development. No chemical, environmental or hydrogeological testing or analyses were included in the scope of this investigation. We base the analyses and recommendations submitted in this report upon the data from the soil borings performed at the approximate locations shown on the Soil Boring Location Plan, Plate No. 1. This report does not reflect variations that may occur away from the actual boring locations. The nature and extent of any such variations may not become clear until the time of construction. If significant variations then become evident, it may be necessary for us to re-evaluate our report recommendations. Accordingly, we recommend G2 Consulting Group, LLC observe all geotechnical related work, including foundation construction, subgrade preparation, and engineered fill placement. G2 Consulting Group, LLC will perform the appropriate testing to confirm the geotechnical conditions given in the report are found during construction.

10 APPENDIX Soil Boring Location Plan Plate No. 1 Soil Boring Logs Figure Nos. 1 and 2 Unconfined Compressive Strength Test Figure No. General Notes Terminology Figure No.

11 Soil Borings Drilled by Strata Drilling, Inc. on September 8, 2015 Fieldcrest Pedestrian Bridge Fieldcrest Road Green Oak Township, Michigan Project No Drawn By: ALS Date: 9/21/15 Scale: NTS Plate No. 1

12 Project Name: Fieldcrest Pedestrian Bridge Soil Boring No. B-1 Project Location: Fieldcrest Road Green Oak Township, Michigan Latitude: Longitude: SUBSURFACE PROFILE SOIL SAMPLE DATA ELEV. ( ft) 8.0 PRO- FILE GROUND SURFACE ELEVATION: 88.0 ft ± Fill: Brown Sand Topsoil: Dark Brown Silty Sand Fill: Medium Compact Brown Gravelly Sand with trace silt and concrete pieces Medium Compact Brown Silty Sand with trace gravel DEPTH ( ft) 5 SAMPLE TYPE-NO. S-1 S-2 BLOWS/ -INCHES STD. PEN. RESISTANCE (N) 1 28 MOISTURE CONTENT (%) DRY DENSITY (PCF) UNCONF. COMP. STR. (PSF) Medium Compact Brown Sand with trace silt and gravel Medium Gray Silty Clay with trace sand and gravel S- S Loose Brown Silty Sand with trace gravel 15 S Medium Compact Brown Silty Sand with trace gravel S SOIL / PAVEMENT BORING GPJ G2 CONSULTING DATA TEMPLATE.GDT 9/2/ Total Depth: Drilling Date: Inspector: Contractor: Driller: Medium Compact Gray Silty Sand with trace gravel Medium Compact Gray Silty Sand with trace gravel, occasional medium clayey silt layers End of 0 ft 0 ft September 8, 2015 Strata Drilling, Inc. B. Sienkiewicz Drilling Method: 2-1/ inch inside diameter hollow stem augers S-7 S Water Level Observation: 12 feet during drilling; wet cave at 10 feet following auger refusal 1 1 Notes: * Calibrated Hand Penetrometer Excavation Backfilling Procedure: Borehole backfilled with auger cuttings Figure No. 1

13 Project Name: Fieldcrest Pedestrian Bridge Soil Boring No. B-2 Project Location: Fieldcrest Road Green Oak Township, Michigan Latitude: N/A Longitude: N/A SUBSURFACE PROFILE SOIL SAMPLE DATA ELEV. ( ft) 82.0 PRO- FILE GROUND SURFACE ELEVATION: 87.0 ft ± Fill: Brown Sand Fill: Loose Brown Silty Sand with trace gravel 0. DEPTH ( ft) 5 SAMPLE TYPE-NO. S-1 S-2 BLOWS/ -INCHES 5 STD. PEN. RESISTANCE (N) 9 8 MOISTURE CONTENT (%) DRY DENSITY (PCF) UNCONF. COMP. STR. (PSF) Fill: Medium Compact Brown Gravelly Sand with trace silt Fill: Medium Compact Grayish Brown Silty Sand with little gravel and trace organic matter S- S Very Loose Dark Gray Silty Sand with trace gravel and organic matter (Organic Content = 1.1%) 15 S Loose Brown Sand with trace silt and gravel 20 S SOIL / PAVEMENT BORING GPJ G2 CONSULTING DATA TEMPLATE.GDT 9/2/ Total Depth: Drilling Date: Inspector: Contractor: Driller: Medium Gray Clayey Silt with trace sand Medium Compact Gray Silty Sand with trace gravel End of 0 ft 0 ft September 8, 2015 Strata Drilling, Inc. B. Sienkiewicz Drilling Method: 2-1/ inch inside diameter hollow stem augers S-7 S * Water Level Observation: -1/2 feet during drilling; wet cave at 7-1/2 feet following auger refusal Notes: * Calibrated Hand Penetrometer Excavation Backfilling Procedure: Borehole backfilled with auger cuttings Figure No. 2

14 1,800 1,00 1,00 1,200 STRESS, psf 1, US_UNCONFINED GPJ G2 CONSULTING DATA TEMPLATE.GDT 9/2/ Specimen STRAIN, % B-1 S- Gray Silty Clay Classification MC% UC UNCONFINED COMPRESSIVE STRENGTH TEST Project Name: Project Location: G2 Project No.: Fieldcrest Pedestrian Bridge Fieldcrest Road Green Oak Township, Michigan Figure No.

15 GENERAL NOTES TERMINOLOGY Unless otherwise noted, all terms herein refer to the Standard Definitions presented in ASTM 5. PARTICLE SIZE Boulders - greater than 12 inches Cobbles - inches to 12 inches Gravel - Coarse - / inches to inches - Fine - No. to / inches Sand - Coarse - No. 10 to No. - Medium - No. 0 to No Fine - No. 200 to No. 0 Silt mm to 0.07mm Clay - Less than 0.005mm CLASSIFICATION The major soil constituent is the principal noun, i.e. clay, silt, sand, gravel. The second major soil constituent and other minor constituents are reported as follows: Second Major Constituent (percent by weight) Minor Constituent (percent by weight) Trace - 1 to 12% Trace - 1 to 12% Adjective - 12 to 5% Little - 12 to 2% And - over 5% Some - 2 to % COHESIVE SOILS If clay content is sufficient so that clay dominates soil properties, clay becomes the principal noun with the other major soil constituent as modifier, i.e. sandy clay. Other minor soil constituents may be included in accordance with the classification breakdown for cohesionless soils, i.e. silty clay, trace sand, little gravel. Consistency Unconfined Compressive Strength (psf) Approximate Range of (N) Very Soft Below Soft 500-1,000 - Medium 1,000-2, Stiff 2,000 -, Very Stiff,000-8, Hard 8,000-1, Very Hard Over 1,000 Over 50 Consistency of cohesive soils is based upon an evaluation of the observed resistance to deformation under load and not upon the Standard Penetration Resistance (N). COHESIONLESS SOILS Density Classification Relative Density % Approximate Range of (N) Very Loose Loose Medium Compact Compact Very Compact Over 50 Relative Density of cohesionless soils is based upon the evaluation of the Standard Penetration Resistance (N), modified as required for depth effects, sampling effects, etc. SAMPLE DESIGNATIONS AS - Auger Sample Cuttings directly from auger flight BS - Bottle or Bag Samples S - Split Spoon Sample - ASTM D 158 LS - Liner Sample with liner insert inches in length ST - Shelby Tube sample - inch diameter unless otherwise noted PS - Piston Sample - inch diameter unless otherwise noted RC - Rock Core - NX core unless otherwise noted STANDARD PENETRATION TEST (ASTM D 158) - A 2.0 inch outside-diameter, 1-/8 inch inside-diameter split barrel sampler is driven into undisturbed soil by means of a 10-pound weight falling freely through a vertical distance of 0 inches. The sampler is normally driven three successive -inch increments. The total number of blows required for the final 12 inches of penetration is the Standard Penetration Resistance (N). Figure No.

GEOTECHNICAL ENGINEERING SERVICES REPORT

GEOTECHNICAL ENGINEERING SERVICES REPORT GEOTECHNICAL ENGINEERING SERVICES REPORT For the PROPOSED PUMP STATION NORTHEAST CORNER (NEC) OF MELROSE AVENUE AND OCCIDENT STREET TAMPA, FLORIDA Prepared for City of Tampa - Wastewater Department 306

More information

Report of Geotechnical Exploration IMMOKALEE ROAD AND COLLIER BLVD FORCE MAIN IMPROVEMENTS

Report of Geotechnical Exploration IMMOKALEE ROAD AND COLLIER BLVD FORCE MAIN IMPROVEMENTS Report of Geotechnical Exploration IMMOKALEE ROAD AND COLLIER BLVD FORCE MAIN IMPROVEMENTS Naples, Collier County, Florida Forge Engineering Project Number 564-021.01 May 2014 May 31, 2014 Mr. Bill Gramer,

More information

SECTION 4 EXCAVATION, TRENCHING AND BACKFILLING 4.01 SCOPE OF WORK

SECTION 4 EXCAVATION, TRENCHING AND BACKFILLING 4.01 SCOPE OF WORK 4.01 SCOPE OF WORK The work covered by this section shall consist of furnishing all materials, equipment and labor for the excavating, trenching, backfilling, and bore and jack required to install or repair

More information

NOBLE ENGINEERING CONSULTANTS ENGINEERS DRILLERS

NOBLE ENGINEERING CONSULTANTS ENGINEERS DRILLERS NOBLE ENGINEERING CONSULTANTS ENGINEERS DRILLERS GEOTECHNICAL STUDY PROJECT NAME: COOKEVILLE PROJECT ADDRESS: 320 NORTH WILLOW AVENUE COOKEVILLE, TN 38501 PREPARED FOR: SAGA R & D 12800 SHAKER BOULEVARD

More information

FINAL REPORT GEOTECHNICAL INVESTIGATION AND FOUNDATION ENGINEERING FOR STURGEON CREEK BRIDGE REPLACEMENT

FINAL REPORT GEOTECHNICAL INVESTIGATION AND FOUNDATION ENGINEERING FOR STURGEON CREEK BRIDGE REPLACEMENT FINAL REPORT GEOTECHNICAL INVESTIGATION AND FOUNDATION ENGINEERING FOR STURGEON CREEK BRIDGE REPLACEMENT Prepared for STANTEC 905 WAVERLEY STREET WINNIPEG, MANITOBA R3T 5P4 Prepared by THE NATIONAL TESTING

More information

INSTALLATION OF DRILLED PIERS

INSTALLATION OF DRILLED PIERS INSTALLATION OF DRILLED PIERS By Dawn C. Tattle, Anchor Shoring & Caissons Ltd., Toronto 1 INTRODUCTION A drilled pier is commonly referred to as a caisson or drilled shaft. Shafts typically range in diameter

More information

Geotechnical Engineering Report

Geotechnical Engineering Report Proposed Lift Station South Maple Street, SE of South 4 th Street West Branch, Iowa November 15, 2012 Terracon Project No. 06125641.01 Prepared for: City of West Branch West Branch, Iowa Prepared by: Terracon

More information

SECTION XXIII EXCAVATION AND BACKFILLING

SECTION XXIII EXCAVATION AND BACKFILLING SECTION XXIII EXCAVATION AND BACKFILLING This section includes guidelines for excavation and backfilling of utilities and structures. A. DEFINITIONS 1. Open areas: Those areas that do not include building

More information

SECTION XXXXX STONE COLUMNS PART 1 - GENERAL

SECTION XXXXX STONE COLUMNS PART 1 - GENERAL SECTION XXXXX STONE COLUMNS PART 1 - GENERAL 1.1 RELATED DOCUMENTS: Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 00 and Division 01

More information

Cone Penetration Test (CPT)

Cone Penetration Test (CPT) Implementation Testing : In-situ tests Cone Penetration Test (CPT) Definition called also "Dutch cone test or Static Penetration test. The test method consists of pushing an instrumented cone, with the

More information

Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical).

Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical). SOIL & FOUNDATION TYPES: Subsurface investigations: Subsoil conditions are examined using test borings, provided by soil engineer (geotechnical). Number of borings and location of borings depends on building

More information

4.2. Backfill Soil. Figure 4.4a Vibratory Drum Roller Compacting a Lift for T8.0-1

4.2. Backfill Soil. Figure 4.4a Vibratory Drum Roller Compacting a Lift for T8.0-1 4.2. Backfill Soil The abutment wall backfill for tests T8.0-1 and T8.0-2 was composed of a sandy material referred to in the construction industry as sand-equivalent 30 (SE-30). The height of the fill

More information

Additions to Saint Joseph Seminary South Main Street and East Tennessee Avenue Denver, Colorado Job No

Additions to Saint Joseph Seminary South Main Street and East Tennessee Avenue Denver, Colorado Job No Example Soils Report December 11, 1996 Archdiocese of Colorado 200 Vine Street Denver, Colorado 80206 Subject: Additions to Saint Joseph Seminary South Main Street and East Tennessee Avenue Denver, Colorado

More information

3.0 Site Information

3.0 Site Information 3.0 Site Information 3.0 SITE INFORMATION 3.1 Local Conditions Market Conditions: In Washington D.C. there is a constant flood of construction making the market for building exceptional. The Concrete International

More information

SKIN FRICTION IN SHALE: RESULTS OF THE HWY. 81 BRIDGE, YANKTON, SD DRILLED SHAFT LOAD TEST

SKIN FRICTION IN SHALE: RESULTS OF THE HWY. 81 BRIDGE, YANKTON, SD DRILLED SHAFT LOAD TEST SKIN FRICTION IN SHALE: RESULTS OF THE HWY. 81 BRIDGE, YANKTON, SD DRILLED SHAFT LOAD TEST Scott M. Mackiewicz, PhD, PE, Kleinfelder, 7802 Barton, Lenexa, Kansas, USA Omar Qudus, PE, Nebraska Department

More information

CHAPTER 2 - TRENCH EXCAVATION AND BACKFILL

CHAPTER 2 - TRENCH EXCAVATION AND BACKFILL CHAPTER 2 - TRENCH EXCAVATION AND BACKFILL 2.1 GENERAL This section covers the requirements for trenching and backfilling for underground pipelines. Unless otherwise shown or ordered, pipe shall be laid

More information

SECTION 31 20 00 EARTH MOVING

SECTION 31 20 00 EARTH MOVING SECTION 31 20 00 PART 1 - GENERAL 1.01 DESCRIPTION A. This Section describes the requirements for excavating, filling, and grading for earthwork at Parking Structure, new exit stair and as required to

More information

SECTION SITE EXCAVATING, FILLING AND GRADING. A. Description of work: Excavation, filling and grading includes but is not limited to:

SECTION SITE EXCAVATING, FILLING AND GRADING. A. Description of work: Excavation, filling and grading includes but is not limited to: SECTION 02315 SITE EXCAVATING, FILLING AND GRADING PART 1 - DESCRIPTION A. Description of work: Excavation, filling and grading includes but is not limited to: 1. Excavating, filling and backfilling to

More information

Subsurface Exploration and Foundation Recommendations IMEA Solar Photovoltaic Project Heritage Lake Area Rantoul, Illinois MET Project No.

Subsurface Exploration and Foundation Recommendations IMEA Solar Photovoltaic Project Heritage Lake Area Rantoul, Illinois MET Project No. MET December 21, 2015 Midwest Engineering and Testing, Inc. geotechnical - environmental - materials engineers 501 Mercury Drive Champaign, IL 61822-9649 217-359-2128 FAX 217-359-8446 www.metgeotech.com

More information

SECTION EXCAVATION, FILLING & GRADING

SECTION EXCAVATION, FILLING & GRADING SECTION 200 - EXCAVATION, FILLING & GRADING 200.01 DESCRIPTION A. Work consists of all labor, materials, equipment and services necessary for and incidental to the execution and completion of earthwork

More information

SECTION 206 EXCAVATION FOR STRUCTURES

SECTION 206 EXCAVATION FOR STRUCTURES SECTION 206 EXCAVATION FOR STRUCTURES 206.1 Description. This work shall consist of the necessary excavation for the foundations of all structures, removal and disposal of all excavated material, backfilling

More information

MN/DOT s gint template data entry procedures Updated July 2004

MN/DOT s gint template data entry procedures Updated July 2004 MN/DOT s gint template data entry procedures Updated July 2004 *Before starting to input data, check File-System Properties and make sure you are using the most current library and data template files

More information

GEOTECHNICAL ENGINEERING II

GEOTECHNICAL ENGINEERING II GEOTECHNICAL ENGINEERING II MODULE I CHAPTER 2 Site investigation and soil exploration SYLLABUS - Module I 2. Site investigation and soil exploration: objectives - planning - reconnaissance - depth and

More information

Re: Geotechnical Investigation Report District of 100 Mile House Water Treatment Plant and Reservoir Highway 97, 100 Mile House, BC

Re: Geotechnical Investigation Report District of 100 Mile House Water Treatment Plant and Reservoir Highway 97, 100 Mile House, BC TRUE Consulting July 20, 2016 2079 Falcon Road File: 389 Kamloops, BC V2C 4J2 Attention: Mr. Dave Underwood, P.Eng. 1.0 INTRODUCTION Re: Geotechnical Investigation Report District of 100 Mile House Water

More information

EXCAVATION AND BACKFILL

EXCAVATION AND BACKFILL EXCAVATION AND BACKFILL 1. General. Excavation and backfill in the critical area of a flood control project could have a direct impact on the stability of the flood control project. Improper excavation

More information

HIGH CAPACITY HELICAL PILES A NEW DIMENSION FOR BRIDGE FOUNDATIONS

HIGH CAPACITY HELICAL PILES A NEW DIMENSION FOR BRIDGE FOUNDATIONS Proceedings of 8 th International Conference on Short and Medium Span Bridges Niagara Falls, Canada 2010 HIGH CAPACITY HELICAL PILES A NEW DIMENSION FOR BRIDGE FOUNDATIONS Mohammed Sakr Almita Manufacturing

More information

VERTI-BLOCK - DESIGN MANUAL

VERTI-BLOCK - DESIGN MANUAL Company Information General Information Verti-Block is the latest innovative forming system from Verti-Crete, LLC. Recognized worldwide for outstanding aesthetics and performance, Verti-Crete s proprietary

More information

Professional Engineers Providing Geotechnical Engineering Services

Professional Engineers Providing Geotechnical Engineering Services GUIDELINE Professional Engineers Providing Geotechnical Engineering Services 1993 Published by Association of Professional Engineers of Ontario Revised 11/15/98 CONTENTS General...5 Phases of Service...5

More information

VERTI-BLOCK - INSTALLATION

VERTI-BLOCK - INSTALLATION INSTALLATION MANUAL This installation manual is designed to provide general information and assist in the proper techniques required to build Verti-Block walls. The manual covers the basics of wall construction

More information

This section includes materials, installation and testing of earthwork for excavations, fills and embankments for structures and sites.

This section includes materials, installation and testing of earthwork for excavations, fills and embankments for structures and sites. STANDARD SPECIFICATION SECTION 02200 EARTHWORK PART 1 - GENERAL 1.01 DESCRIPTION This section includes materials, installation and testing of earthwork for excavations, fills and embankments for structures

More information

Cofferdam Design and Construction Overview MDOT Perspective

Cofferdam Design and Construction Overview MDOT Perspective Cofferdam Design and Construction Overview MDOT Perspective By Anthony Pietrangelo, P.E. MDOT Geotechnical Construction Support Engineer March 17 th, 2015 Presentation Overview Cofferdam Overview MDOT

More information

ITEM 400 EXCAVATION AND BACKFILL FOR STRUCTURES

ITEM 400 EXCAVATION AND BACKFILL FOR STRUCTURES ITEM 400 EXCAVATION AND BACKFILL FOR STRUCTURES 400.1. Description. Excavate for placement and construction of structures and backfill structures. Cut and restore pavement. 400.2. Materials. Use materials

More information

05-455B TRENCH EXCAVATION, BEDDING AND BACKFILL SECTION

05-455B TRENCH EXCAVATION, BEDDING AND BACKFILL SECTION SECTION 2225-1 1.0 GENERAL 1.1 SCOPE: A. This work consists of trench excavation, trench foundation, pipe bedding, pipe zone material, trench backfill and removal or disposal of material in the installation

More information

SECTION TRENCHING AND BACKFILLING. 1. Section , Temporary Environmental Controls. 2. Section , Excavation and Fill.

SECTION TRENCHING AND BACKFILLING. 1. Section , Temporary Environmental Controls. 2. Section , Excavation and Fill. SECTION 31 23 33 TRENCHING AND BACKFILLING PART 1 GENERAL 1.01 SECTION INCLUDES A. This WORK shall consist of all labor, equipment, and materials necessary for excavation, trenching, and backfilling for

More information

SECTION CRUSHER FINES SURFACING. 1. Section , Temporary Environmental Controls. 2. Section , Excavation and Fill.

SECTION CRUSHER FINES SURFACING. 1. Section , Temporary Environmental Controls. 2. Section , Excavation and Fill. SECTION 32 15 40 CRUSHER FINES SURFACING PART 1 GENERAL 1.01 SECTION INCLUDES A. The WORK to be performed includes the preparation, stockpiling, hauling, placing, and compacting of crusher fines as indicated

More information

SECTION EXCAVATION AND FILL

SECTION EXCAVATION AND FILL SECTION 31 23 00 EXCAVATION AND FILL PART 1 GENERAL 1.01 SECTION INCLUDES A. This WORK shall consist of excavation, embankment fill, disposal of excess material, shaping, and compaction of all material

More information

Soil and Rock Parameters for Estimating Deflections of Soldier Pile and Lagging Walls

Soil and Rock Parameters for Estimating Deflections of Soldier Pile and Lagging Walls Soil and Rock Parameters for Estimating Deflections of Soldier Pile and Lagging Walls Todd W. Swackhamer, P.E. 1, Michael J. Mann, P.E. 2, and Donald R. McMahon, P.E. 2 Abstract This paper presents four

More information

Division II Section 2100 Grading and Site Prep PUBLIC WORKS DEPARTMENT

Division II Section 2100 Grading and Site Prep PUBLIC WORKS DEPARTMENT Division II Section 2100 Grading and Site Prep PUBLIC WORKS DEPARTMENT DIVISION II CONSTRUCTION AND MATERIAL SPECIFICATIONS SECTION 2100 SANITARY SEWERS GRADING AND SITE PREP 2101 SCOPE... 2 2101 MATERIALS...

More information

DRILLED SHAFTS. Section 465 of Standard Specifications

DRILLED SHAFTS. Section 465 of Standard Specifications DRILLED SHAFTS Section 465 of Standard Specifications What is a Drilled Shaft? Type of substructure foundation. A cylindrical shaft excavated into the ground and then filled with resteel & concrete. Supports

More information

CIGMAT-2011 Conference & Exhibition EFFECTS OF TREES ON THE DEPTH OF THE ACTIVE ZONE

CIGMAT-2011 Conference & Exhibition EFFECTS OF TREES ON THE DEPTH OF THE ACTIVE ZONE EFFECTS OF TREES ON THE DEPTH OF THE ACTIVE ZONE Kenneth E. Tand, P.E. Kenneth E. Tand & Associates 2817 Aldine Bender Road Houston, TX 77032 Phone: 281-590-171; Fax: 281-590-1430; E-mail: ktand@ketand.com

More information

Gotechnical Investigations and Sampling

Gotechnical Investigations and Sampling Gotechnical Investigations and Sampling Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Investigations for Structural Engineering 13 15 November, 2014 1 Purpose of

More information

CHOICE OF METHODS AND EQUIPMENT FOR EARTH RETENTION SYSTEMS

CHOICE OF METHODS AND EQUIPMENT FOR EARTH RETENTION SYSTEMS CHOICE OF METHODS AND EQUIPMENT FOR EARTH RETENTION SYSTEMS By Dawn C. Tattle, P. Eng. Anchor Shoring & Caissons Ltd., Toronto 1 INTRODUCTION This paper provides information regarding selection, installation

More information

TECHNICAL SERVICES DIGEST APRIL 2014

TECHNICAL SERVICES DIGEST APRIL 2014 210 TECHNICAL SERVICES DIGEST APRIL 2014 SINGLE-WYTHE BRICK FENCES This digest contains information and suggested details on single-wythe brick fences, including details that we recommend be included.

More information

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL.

STRUCTURES. 1.1. Excavation and backfill for structures should conform to the topic EXCAVATION AND BACKFILL. STRUCTURES 1. General. Critical structures may impact the integrity of a flood control project in several manners such as the excavation for construction of the structure, the type of foundation, backfill

More information

KWANG SING ENGINEERING PTE LTD

KWANG SING ENGINEERING PTE LTD KS07/URA-017 KWANG SING ENGINEERING PTE LTD 1. INTRODUCTION This report represents the soil investigation works at Choa Chu Kang Drive. The objective of the soil investigation is to obtain soil parameters

More information

ITEM 404 DRIVING PILING. Table 1 Size of Driving Equipment Minimum Maximum Ram Weight

ITEM 404 DRIVING PILING. Table 1 Size of Driving Equipment Minimum Maximum Ram Weight ITEM 404 DRIVING PILING 404.1. Description. Drive piling. 404.2. Equipment. A. Driving Equipment. Use power hammers for driving piling with specified bearing resistance. Use power hammers that comply with

More information

Remedial Piling and Settlement Twin Residential Towers. Scenario Overview and Data Compilation

Remedial Piling and Settlement Twin Residential Towers. Scenario Overview and Data Compilation Remedial Piling and Settlement Twin Residential Towers Scenario Overview and Data Compilation Introduction The redevelopment of a major inner city riverbank included the construction of several residential

More information

BASIC CONSIDERATIONS. Section I. DEFINITIONS AND CLASSIFICATIONS FM 5-134

BASIC CONSIDERATIONS. Section I. DEFINITIONS AND CLASSIFICATIONS FM 5-134 C H A P T E R 1 BASIC CONSIDERATIONS Section I. DEFINITIONS AND CLASSIFICATIONS 1-1. Definitions. a. Piles. A pile is a long, columnar element made of timber, steel, concrete, or a combination of these

More information

Auger Grouted Steel Core Displacement Piles. A vast and growing network.

Auger Grouted Steel Core Displacement Piles. A vast and growing network. A vast and growing network. IDEAL is a C.S. Stroyer & Sons company. Est. 1956 and began manufacturing in 2004. Headquarters in Greater Rochester, NY 15 acres 13,500 Sq Ft Corporate office and Training

More information

CLASSIFICATION AND PROPERTIES

CLASSIFICATION AND PROPERTIES CLASSIFICATION AND PROPERTIES SOIL CLASSIFICATION AND PROPERTIES SOIL CLASSIFICATION AND PROPERTIES To engineer an adequate earth retaining system for a trench or excavation it is first necessary to identify

More information

SECTION 7 EXCAVATION AND BACKFILL FOR PIPELINES 7.1 GENERAL

SECTION 7 EXCAVATION AND BACKFILL FOR PIPELINES 7.1 GENERAL SECTION 7 EXCAVATION AND BACKFILL FOR PIPELINES 7.1 GENERAL The work covered by this specification consists of furnishing all labor, tools, materials, equipment, and performance of all operations in connection

More information

GEOTECHNICAL SERVICES NEW PARKING LOTS HARRIS DRIVE AND CHESTNUT STREET MIAMI UNIVERSITY OXFORD, OHIO

GEOTECHNICAL SERVICES NEW PARKING LOTS HARRIS DRIVE AND CHESTNUT STREET MIAMI UNIVERSITY OXFORD, OHIO GEOTECHNICAL SERVICES NEW PARKING LOTS HARRIS DRIVE AND CHESTNUT STREET MIAMI UNIVERSITY OXFORD, OHIO Prepared for: Bayer Becker Thelen Project No.: 150041NE 2014 Thelen Associates, Inc. February 13, 2015

More information

Minnesota Department of Transportation Consultant Specifications for Soils Surveys, Engineering Analysis, Laboratory and Field Soils Tests

Minnesota Department of Transportation Consultant Specifications for Soils Surveys, Engineering Analysis, Laboratory and Field Soils Tests Minnesota Department of Transportation Consultant Specifications for Soils Surveys, Engineering Analysis, Laboratory and Field Soils Tests Section 1.0 Character of Work 1.10 General The services to be

More information

GEOTECHNICAL ENGINEERING REPORT

GEOTECHNICAL ENGINEERING REPORT ATTACHMENT A GEOTECHNICAL ENGINEERING REPORT Sewer Aerial Crossing 1781 Leicester Road Richmond, Virginia Schnabel Reference 15613100 August 28, 2015 Prepared For: Greeley and Hansen August 28, 2015 Ms.

More information

SECTION TRENCHING, BACKFILLING AND COMPACTING

SECTION TRENCHING, BACKFILLING AND COMPACTING SECTION 02221 TRENCHING, BACKFILLING AND COMPACTING PART 1 GENERAL 1.01 SUMMARY A. This section addresses excavation and trenching; including subsurface drainage, dewatering, preparation of subgrade, pipe

More information

PILE FOUNDATIONS FM 5-134

PILE FOUNDATIONS FM 5-134 C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

More information

STUDY GUIDE WACEL FOUNDATION INSPECTOR LEVEL I

STUDY GUIDE WACEL FOUNDATION INSPECTOR LEVEL I STUDY GUIDE WACEL FOUNDATION INSPECTOR LEVEL I February 2016 Foundation Inspector Study Guide Scope: WACEL Foundation Inspector is an intermediate certification that builds on both WACEL Soils I and WACEL

More information

Types of foundation. Shallow foundations. Pad foundations. Shallow foundations Deep foundations

Types of foundation. Shallow foundations. Pad foundations. Shallow foundations Deep foundations Types of foundation Shallow foundations Deep foundations Shallow foundations (sometimes called 'spread footings') include pads ('isolated footings'), strip footings and rafts. Deep foundations include

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION. Instructor : Dr.

The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION. Instructor : Dr. The Islamic university - Gaza Faculty of Engineering Civil Engineering Department CHAPTER (2) SITE INVESTIGATION Instructor : Dr. Jehad Hamad Definition The process of determining the layers of natural

More information

GIPPSLAND PORTS GEOTECHNICAL INVESTIGATION LONG JETTY REHABILITATION PORT WELSHPOOL. Report No: Date: 29 June 2011 GEOTECHNICAL INVESTIGATION

GIPPSLAND PORTS GEOTECHNICAL INVESTIGATION LONG JETTY REHABILITATION PORT WELSHPOOL. Report No: Date: 29 June 2011 GEOTECHNICAL INVESTIGATION GIPPSLAND PORTS GEOTECHNICAL INVESTIGATION LONG JETTY REHABILITATION PORT WELSHPOOL Report No: 113173 Date: 29 June 2011 GEOTECHNICAL INVESTIGATION By A.S. JAMES PTY LIMITED 15 Libbett Avenue, Clayton

More information

The Manitoba Water Services Board SECTION

The Manitoba Water Services Board SECTION Page 1 of 10 Part 1 General 1.1 DESCRIPTION OF WORK.1 This work shall consist of the removal of all materials of whatever nature, necessary for the proper placement of structure foundations, the supply

More information

APPENDIX F GEOTECHNICAL REPORT

APPENDIX F GEOTECHNICAL REPORT The City of Winnipeg Bid Opportunity No. 101-2016 Template Version: C420150806 - RW APPENDIX F GEOTECHNICAL REPORT AECOM 99 Commerce Drive 204 477 5381 tel Winnipeg, MB, Canada R3P 0Y7 204 284 2040 fax

More information

TRENCH EXCAVATION AND BACKFILL

TRENCH EXCAVATION AND BACKFILL TRENCH EXCAVATION AND BACKFILL PART 1 - GENERAL 1.01 SECTION INCLUDES A. Trench Excavation for Pipe Systems B. Trench Foundation Stabilization C. Pipe Bedding and Backfill 1.02 DESCRIPTION OF WORK A. Excavate

More information

Field Construction Manual

Field Construction Manual STONE STRONG SYSTEMS Field Construction Manual Field construction manual for Stone Strong Systems precast modular unit retaining wall system. S t o n e S t r o n g, L L C Table of Contents TOC INTRODUCTION........................................................1

More information

Geotechnical Section Foundation Investigation for Structure Design No. FI2169-Pole Barn Building Job No. R35G Route 67, Butler County

Geotechnical Section Foundation Investigation for Structure Design No. FI2169-Pole Barn Building Job No. R35G Route 67, Butler County MEMORANDUM Construction - Materials Central Laboratory TO: CC/ATT: FROM: Paul Huskey-se/gs Joe Crader-se/ma Sr. Geotechnical Specialist DATE: April 22, 214 SUBJECT: Materials Geotechnical Section Foundation

More information

GUIDELINES FOR CONSULTANTS PERFORMING GEOTECHNICAL INVESTIGATIONS FOR PROJECTS MAINTAINED BY HARRIS COUNTY, TEXAS

GUIDELINES FOR CONSULTANTS PERFORMING GEOTECHNICAL INVESTIGATIONS FOR PROJECTS MAINTAINED BY HARRIS COUNTY, TEXAS GUIDELINES FOR CONSULTANTS PERFORMING GEOTECHNICAL INVESTIGATIONS FOR PROJECTS MAINTAINED BY HARRIS COUNTY, TEXAS EFFECTIVE DATE JANUARY 1, 2011 Contents Section I. Introduction Section II. Applicability

More information

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin PLAN SUBGRADES Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering Geotechnical Bulletin GB 1 PLAN SUBGRADES Geotechnical Bulletin GB1 was jointly developed by the Offices

More information

CHAPTER 5 IMPROPER METHODS OF COMPACTION AND MATERIAL HANDLING

CHAPTER 5 IMPROPER METHODS OF COMPACTION AND MATERIAL HANDLING CHAPTER 5 IMPROPER METHODS OF COMPACTION AND MATERIAL HANDLING Figure 5.1 This material would NOT be acceptable. It appears as if the voids between the rocks are not being filled with soil. 5-1 Figure

More information

Soil and Building Support/Stresses

Soil and Building Support/Stresses Foundations Soil and Building Support/Stresses Bearing : Settlement : Uniform or Differential Shear: Sloped Conditions Non-Uniform Bearing Earth Movement Overturning Shifting Ground Hydrostatic Pressure

More information

Causes of Cave-ins. Lesson #2. What is in this lesson? Key Words. Causes of Cave-ins

Causes of Cave-ins. Lesson #2. What is in this lesson? Key Words. Causes of Cave-ins Causes of Cave-ins Lesson #2 Causes of Cave-ins What is in this lesson? 1. The four things that impact soil strength 2. The five things that create downward forces that impact soil stability 3. The terminology

More information

SECTION EXCAVATING, GRADING, TRENCHING, & BACKFILLING

SECTION EXCAVATING, GRADING, TRENCHING, & BACKFILLING 1.01 General: SECTION 02220 EXCAVATING, GRADING, TRENCHING, & BACKFILLING The contractor shall furnish all labor, equipment, supplies and materials, and perform all operation in connection with the excavations,

More information

CIVL451. Soil Exploration and Characterization

CIVL451. Soil Exploration and Characterization CIVL451 Soil Exploration and Characterization 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

More information

SECTION ENGINEERED FILL. Part 1 - General Measurement And Payment Part 2 - Products... 3

SECTION ENGINEERED FILL. Part 1 - General Measurement And Payment Part 2 - Products... 3 SECTION 02200 - ENGINEERED FILL CONTENTS: Part 1 - General... 1 1.01 Work Included... 1 1.02 Related Requirements... 1 1.03 Reference Standards... 1 1.04 Quality Assurance... 1 1.05 Measurement And Payment...

More information

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

GEOTECHNICAL INVESTIGATION EDWIGHT TRUSS BRIDGE RALEIGH COUNTY, WEST VIRGINIA

GEOTECHNICAL INVESTIGATION EDWIGHT TRUSS BRIDGE RALEIGH COUNTY, WEST VIRGINIA GEOTECHNICAL INVESTIGATION EDWIGHT TRUSS BRIDGE RALEIGH COUNTY, WEST VIRGINIA STATE PROJECT NO. S341-3/2-0.03 00 FEDERAL PROJECT NO. BR-0032(019)D March 2010 NGE, LLC 806 B Street St. Albans, WV 25177

More information

Site Investigation Report

Site Investigation Report Site Investigation Report PROPOSED BAIT DAJAN SCHOOL BUILDING Basin No.??? Plot No.??? Bait Dajan Nablus District Palestine Requested by:????? Engineering Company Ramallah - Palestine November 2009 1 Contents

More information

Helical Torque Anchors Design Examples

Helical Torque Anchors Design Examples Chapter 3 Helical Torque Anchors Heavy Weight New Construction Light Weight New Construction Basement Wall Tieback Anchors Retaining Wall Tieback Anchors Foundation Restoration Motor Output Torque Ultimate

More information

Geotechnical Engineering Report

Geotechnical Engineering Report Geotechnical Engineering Report Colorado School for the Deaf and Blind Parking Lot Pavement Thickness Design Northwest Corner of Hancock Avenue and Pikes Peak Avenue Colorado Springs, Colorado March 4,

More information

Objectives. To provide students with:

Objectives. To provide students with: Excavation Safety 1 Objectives To provide students with: An introduction to 29 CFR 1926, Subpart P-Excavation Standard An overview of soil mechanics An introduction to trenching and excavation hazard recognition

More information

SECTION AGGREGATE BASE COURSE. A. The following is a list of SPECIFICATIONS which may be related to this section:

SECTION AGGREGATE BASE COURSE. A. The following is a list of SPECIFICATIONS which may be related to this section: SECTION 32 11 23 AGGREGATE BASE COURSE PART 1 GENERAL 1.01 SECTION INCLUDES A. The WORK to be performed includes the preparation of the aggregate base course foundation; and the production, stockpiling,

More information

DRILLED SHAFT CONSTRUCTION

DRILLED SHAFT CONSTRUCTION DRILLED SHAFT CONSTRUCTION West Tower Arthur Ravenel Jr. Bridge Photograph courtesy of Marvin Tallent, Palmetto Bridge Constructors Concrete Mix Design Considerations Dry Construction Method Wet Construction

More information

LANDSCAPE RETAINING WALLS

LANDSCAPE RETAINING WALLS LANDSCAPE RETAINING WALLS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Modular Block Retaining Walls B. Limestone Retaining Walls C. Landscape Timber Retaining Walls 1.02 DESCRIPTION OF WORK A. Construction

More information

CW EXCAVATION BEDDING AND BACKFILL TABLE OF CONTENTS

CW EXCAVATION BEDDING AND BACKFILL TABLE OF CONTENTS February 2005 DIVISION 3 - CW 2030 R7 CW 2030 - EXCAVATION BEDDING AND BACKFILL TABLE OF CONTENTS 1. DESCRIPTION...1 1.1 General...1 1.2 Definitions...1 1.3 Referenced Standard Construction Specifications...1

More information

Work Type Definition and Submittal Requirements

Work Type Definition and Submittal Requirements Work Type: Highway Materials Testing Geotechnical Laboratory Testing, Geotechnical Laboratory Testing, Standard Penetration (SPT) & Rock Coring, Cone Penetration Test, Solid Stem Auger Drilling, and Materials

More information

Report Geotechnical Engineering Services Lift Station No. 3 Rehabilitation Whitecaps Circle Maitland, Orange County, Florida PSI Project No.

Report Geotechnical Engineering Services Lift Station No. 3 Rehabilitation Whitecaps Circle Maitland, Orange County, Florida PSI Project No. Report Geotechnical Engineering Services Lift Station No. 3 Rehabilitation Whitecaps Circle Maitland, Orange County, Florida PSI Project No. 07571345 June 10, 2015 Burgess & Niple, Inc. 1800 Pembrook Drive

More information

Chemical Stabilization. Western Stabilization. Solving Construction Problems Associated with Expansive Soils. Presented by:

Chemical Stabilization. Western Stabilization. Solving Construction Problems Associated with Expansive Soils. Presented by: Chemical Stabilization Solving Construction Problems Associated with Expansive Soils Presented by: Western Stabilization Expansive Soils: $2-6 Billion Damage per year (Engineering News Record) EXPANSIVE

More information

DIVISION 4100 SITEWORK

DIVISION 4100 SITEWORK DIVISION 4100 SITEWORK SECTION 4120 STABILIZED SUBGRADE PART 1 - GENERAL 1.01 SCOPE This section covers the preparation of subgrade for pavement, sidewalks, recreational trails, and drive approaches. 1.02

More information

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation

Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 JRHill@HaywardBaker.com

More information

Excavation consists of removal of material encountered to subgrade elevations indicated and subsequent disposal of materials removed.

Excavation consists of removal of material encountered to subgrade elevations indicated and subsequent disposal of materials removed. DIVISION 2 SITEWORK SECTION 02200 - EARTHWORK PART 1 - GENERAL SUMMARY This Section includes the following: Preparing of subgrade for building slabs, walks, and pavements. Drainage fill course for support

More information

CHANCE HELICAL ANCHOR/PILE BEARING CAPACITY

CHANCE HELICAL ANCHOR/PILE BEARING CAPACITY 1 Experience has shown that in most cases the footing and stem wall foundation system that will withstand a given long term working load will withstand a pier installation force of up to 1.5 times that

More information

The Leading Edge In Helical Foundations. Engineering Roadmap. MacLean Dixie HFS. Building Solid Foundations

The Leading Edge In Helical Foundations. Engineering Roadmap. MacLean Dixie HFS. Building Solid Foundations Engineering Roadmap For New Construction Helical Pile Design The Leading Edge In Helical Foundations MacLean Dixie HFS Building Solid Foundations Before You Begin For the preliminary design of a new helical

More information

SPECIFICATIONS FOR STRUCTURAL EXCAVATION

SPECIFICATIONS FOR STRUCTURAL EXCAVATION SPECIFICATIONS FOR STRUCTURAL EXCAVATION 1.0 DESCRIPTION The Work shall consist of:.1 Removing material for the placement of foundations, substructure units, approach slabs, transition slabs and culverts,

More information

Prestressed Concrete Piles

Prestressed Concrete Piles FOUNDATION ALTERNATIVES TO MITIGATE EARTHQUAKE EFFECTS 13.17 FIGURE 13.11 Excavation for the grade beam that will span between the two piers. Usually this foundation system is designed by the structural

More information

CH. 6 SOILS & FOUNDATIONS

CH. 6 SOILS & FOUNDATIONS CH. 6 SOILS & FOUNDATIONS SOIL PROPERTIES Classified into four groups - Sands & gravels - Clays - Silts - Organics Subsurface Exploration Core borings: undisturbed samples of soil - Recovered bore samples

More information

Subgrade Construction and Stabilization Office of Construction 04/18/02

Subgrade Construction and Stabilization Office of Construction 04/18/02 Subgrade Construction and Stabilization Office of Construction 04/18/02 1.0 General These guidelines are to be used for all construction projects that require subgrade compaction and proof rolling. Over

More information

Foundation Design Recommendation Technical Memorandum. Frick Springs Bridge Lompoc, California

Foundation Design Recommendation Technical Memorandum. Frick Springs Bridge Lompoc, California Foundation Design Recommendation Technical Memorandum For Frick Springs Bridge Lompoc, California Prepared For The City of Lompoc BY August 15, 2006 Phone: (805) 685-6511 250 Big Sur Dr., Goleta, CA 93117

More information

SPECIFICATIONS Rev:

SPECIFICATIONS Rev: SPECIFICATIONS Rev: 060209 Section Helical Steel Piles 1. General 1.1. Description 1.1.1. The work of this section consists of furnishing and installing steel helical piles manufactured by MacLean-Dixie

More information

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT GROUND WATER BRANCH GUIDELINES FOR WELL ABANDONMENT

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT GROUND WATER BRANCH GUIDELINES FOR WELL ABANDONMENT ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT GENERAL GROUND WATER BRANCH GUIDELINES FOR WELL ABANDONMENT According to the U.S. E.P.A., the objectives of an abandonment procedure are to: 1) eliminate

More information