Solutions to Homework 3
|
|
|
- Muriel Black
- 9 years ago
- Views:
Transcription
1 Solutions to Homework 3 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 2.4 Recurrence for Algorithm A Using Master s theorem we get a bound of O(n log 5 ). Recurrence for Algorithm B T (n) = 5T ( n ) + O(n) (1) 2 T (n) = 2T (n 1) + O(1) (2) The idea to solve such recurrence is to use a recursion tree and combine the constant time operation at each level of recursion tree. Alternatively you can use substitution. T (n) = 2T (n 1) + O(1) T (n 1) = 2T (n 2) + O(1)... T (2) = 2T (1) + O(1) Substituting the values of T(i-1) into the equation of T(i), we get the following sum n 1 T (n) = 2 i O(1) (3) Thus we obtain T(n) as O(2 n ) Recurrence for Algorithm C i=0 T (n) = 9T ( n 3 ) + O(n2 ) (4) Using Master s theorem we get O(n 2 log n) If we do an order analysis, it turns out that Algorithm C is most efficient, since log n grows slower than n log
2 2 Problem 2.12 In this problem we have to give an recurrence for the number of lines printed by the algorithm. The recurrence is given as follows L(n) = { 1 + 2L( n 2 ) if n > 1 0 if n = 1 (5) Theorem 1 L(n) = Θ(n) Proof: Base Case: L(1) = 0 which is Θ(1) Hypothesis: c 1 k L(k) c 2 (k-1), k < n Induction: L(n) = 1 + 2L( n 2 ) 1 + 2(c 1 n 2 )=1+c 1n=k 1 n where k 1 is a constant equal to c n Similarly for the other bound, L(n) = 1 + 2L( n 2 ) 1 + 2(c 2 ( n 2 1)) = 1+c 2n - 2c 2 = k 2 (n-1) where k 2 = c 2 (c2 1) (n 1) Using above result we can say that L(n) is Θ(n). We can do a more accurate analysis using recursion tree and establish that the line will be printed n-1 times, which is still Θ(n). 3 Problem 2.14 Given an array of n elements, we need to remove the duplicate elements from the array in O(n log n) time. Idea is to maintain the order of elements in the array after the duplicates are removed. The following example explains the idea. Let the array A has following numbers: Once the duplicate numbers are removed the output array should be Note that the order of elements in the final output array is maintained. In other words the final array is not sorted. function remove-duplicate(a[1...n]) Input: An array of numbers a[1...n] Output: Array A with duplicates removed Construct an array temp[1..n]: temp[i] has two fields key and value for i = 1 to n temp[i].value = a[i] temp[i].key = i sort temp based on value remove duplicates from temp based on value: keep the entry with minimum key sort temp based on key construct array A from temp: A[i] = temp[i].value return A 2
3 The field key helps in keeping the order of elements in output array. Two sort takes O(n log n). Duplicate removal considering key is O(n). Therefore the algorithm is O(n log n). If we don t consider maintaining the order of the original array in the output array the algorithm can be simply given as function remove-duplicate(a[1...n]) Input: An array of numbers a[1...n] Output: Array A with duplicates removed sort a construct array A from a: by removing duplicate entries from a return A 4 Problem 3.5 Given a graph G = (V,E) we have th find another graph G R = (V, E R ) where E R = (v, u) : (u, v) E. We assume that each edge e has a source vertex u and a sink vertex v associated with it. function find-reverse(g) Input: Graph G = (V,E) in adjacency list representation Output: Graph G R Generate all edges e E using any traversal Construct adjacency list G R : vertex set = V For each generated edge e temp = e.source e.source = e.sink e.sink = temp insert e into G R return G R Complexity Analysis: All edges can be generated in O(V + E). Edges can be modified and new adjacency list can be populated in O(E). Therefore the algorithm is linear. 5 Problem 3.7 A bipartite graph G=(V,E) is a graph whose vertices can be partitioned into two sets (V=V 1 V 2 and V 1 V 2 = such that there are no edges between vertices in the same set.formally u, v V 1 (u, v) / E u, v V 2 (u, v) / E 3
4 (a)we use the property given in (b) to get a linear time algorithm to determine whether a graph is bipartite. The property says that an undirected graph is bipartite if it can be colored by two colors. The algorithm we present is a modified DFS that colors the graph using 2 colors. Whenever an back-edge, forward-edge or cross-edge is encountered, the algorithm checks whether 2-coloring still holds. function graph-coloring(g) Input: Graph G Output: returns true if the graph is bipartite false otherwise for all v V: visited(v)= false color(v) = GREY while s V : visited(s) = false visited(s) = true color(s) = WHITE S = [s] (stack containing v) while S is not empty u = pop(s) for all edges (u,v) E: if visited(v) = false: visited[v] = true push(s,v) if color(v) = GREY if color(u) = BLACK: color(v) = WHITE if color(u) = WHITE: color(v) = BLACK else if color(v) = WHITE: if color(u) BLACK: return false else if color(v) = BLACK: if color(u) WHITE: return false return true (b) Lemma 1 An undirected graph is bipartite if and only if it contains no cyles of odd length Proof: Consider a path P whose start vertex is s, end vertex is t and it passes through vertices u 1, u 2,..., u n and the associated edges are (s, u 1 ), (u 1, u 2 ),..., (u n, t). Now if P is a cycle, then s and t are the same vertices. Without loss of generality assume s is in V 1. Each edge (u i, u i+1 ) goes from one vertex set to other. Therefore a path must have 2 i edges to come back into the same vertex set where i N. Since s and t are in same vertex set, so the length of the cycle formed must be 2 i which is even. Suppose the graph has a cycle of odd length. Let the cycle be C and it 4
5 passes through vertices u 1, u 2,..., u n where u 1 = u n. The associated edges are (u 1, u 2 ),..., (u n 1, u n ). We start coloring edges of using two colors WHITE and BLACK. Without any loss of generality u 1 is colored WHITE while u n 1 is colored BLACK since n is odd and therefore n 1 is even. Choosing color of u n as WHITE conflicts with the color of u n 1 while choosing color as BLACK conflicts with the color of u 1. Therefore it is not possible to color an odd cycle with 2 colors which implies that the graph is not bipartite(using the property mentioned in (b)) (c)3. It follows from the proof of part (b). 6 Problem 3.13 (a) Lemma 2 In any connected undirected graph G=(V,E) there is a vertex v V whose removal leaves G connected Proof: Consider a graph G=(V,E) and a Depth-first-search tree T constructed from the graph using DFS. Given any connected graph, generation of T is linear time O(V+E) and there exist one unique tree T. Denote the leaves of the tree T by L(T). If we choose any vertex v L(T), removal of that vertex and the edges associated with it will keep T connected (by the definition of tree). Thus ˆT = T - {v} is connected which implies that the graph Ĝ=(V-{v},E- {(i, j) : i = v j = v}) is connected since ˆT and Ĝ are isomorphic. (b)see Figure 1(a) (c)see Figure 1(b) Figure 1: Examples for 3.13(b) and 3.13(c) 5
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
Connectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
Analysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010
CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected
each college c i C has a capacity q i - the maximum number of students it will admit
n colleges in a set C, m applicants in a set A, where m is much larger than n. each college c i C has a capacity q i - the maximum number of students it will admit each college c i has a strict order i
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Lecture 22: November 10
CS271 Randomness & Computation Fall 2011 Lecture 22: November 10 Lecturer: Alistair Sinclair Based on scribe notes by Rafael Frongillo Disclaimer: These notes have not been subjected to the usual scrutiny
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Finding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
Binary Search Trees CMPSC 122
Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.
1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The
Simplified External memory Algorithms for Planar DAGs. July 2004
Simplified External Memory Algorithms for Planar DAGs Lars Arge Duke University Laura Toma Bowdoin College July 2004 Graph Problems Graph G = (V, E) with V vertices and E edges DAG: directed acyclic graph
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
Any two nodes which are connected by an edge in a graph are called adjacent node.
. iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
Sample Questions Csci 1112 A. Bellaachia
Sample Questions Csci 1112 A. Bellaachia Important Series : o S( N) 1 2 N N i N(1 N) / 2 i 1 o Sum of squares: N 2 N( N 1)(2N 1) N i for large N i 1 6 o Sum of exponents: N k 1 k N i for large N and k
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
CS473 - Algorithms I
CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine
Data Structure [Question Bank]
Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:
CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin
CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie. An Iterative Compression Algorithm for Vertex Cover
Friedrich-Schiller-Universität Jena Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie Studienarbeit An Iterative Compression Algorithm for Vertex Cover von Thomas Peiselt
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.
7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,
Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C
Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate
THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM
1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware
Graph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis [email protected] http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
Sorting revisited. Build the binary search tree: O(n^2) Traverse the binary tree: O(n) Total: O(n^2) + O(n) = O(n^2)
Sorting revisited How did we use a binary search tree to sort an array of elements? Tree Sort Algorithm Given: An array of elements to sort 1. Build a binary search tree out of the elements 2. Traverse
P. Jeyanthi and N. Angel Benseera
Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
Introduction to Graph Theory
Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
Cycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Distributed Computing over Communication Networks: Maximal Independent Set
Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.
A Fast Algorithm For Finding Hamilton Cycles
A Fast Algorithm For Finding Hamilton Cycles by Andrew Chalaturnyk A thesis presented to the University of Manitoba in partial fulfillment of the requirements for the degree of Masters of Science in Computer
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
Graphical degree sequences and realizations
swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS - Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Tree-representation of set families and applications to combinatorial decompositions
Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. [email protected]
CIS 700: algorithms for Big Data
CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv
Data Structures. Chapter 8
Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a
A 2-factor in which each cycle has long length in claw-free graphs
A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
Large induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
Discrete Mathematics Problems
Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: [email protected] Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
An inequality for the group chromatic number of a graph
Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,
Data Structure with C
Subject: Data Structure with C Topic : Tree Tree A tree is a set of nodes that either:is empty or has a designated node, called the root, from which hierarchically descend zero or more subtrees, which
Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb
Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations
8. Matchings and Factors
8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,
Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally
Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which
Sum of Degrees of Vertices Theorem
Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2
Cpt S 223. School of EECS, WSU
The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties
Chapter 6: Graph Theory
Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.
A Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:
Generating Elementary Combinatorial Objects
Fall 2009 Combinatorial Generation Combinatorial Generation: an old subject Excerpt from: D. Knuth, History of Combinatorial Generation, in pre-fascicle 4B, The Art of Computer Programming Vol 4. Combinatorial
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
Analysis of Algorithms I: Binary Search Trees
Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary
Mean Ramsey-Turán numbers
Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new
Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of
3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
Class One: Degree Sequences
Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of
Strategic Deployment in Graphs. 1 Introduction. v 1 = v s. v 2. v 4. e 1. e 5 25. e 3. e 2. e 4
Informatica 39 (25) 237 247 237 Strategic Deployment in Graphs Elmar Langetepe and Andreas Lenerz University of Bonn, Department of Computer Science I, Germany Bernd Brüggemann FKIE, Fraunhofer-Institute,
Polytope Examples (PolyComp Fukuda) Matching Polytope 1
Polytope Examples (PolyComp Fukuda) Matching Polytope 1 Matching Polytope Let G = (V,E) be a graph. A matching in G is a subset of edges M E such that every vertex meets at most one member of M. A matching
Network (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 [email protected],
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
Introduced by Stuart Kauffman (ca. 1986) as a tunable family of fitness landscapes.
68 Part II. Combinatorial Models can require a number of spin flips that is exponential in N (A. Haken et al. ca. 1989), and that one can in fact embed arbitrary computations in the dynamics (Orponen 1995).
Even Faster Algorithm for Set Splitting!
Even Faster Algorithm for Set Splitting! Daniel Lokshtanov Saket Saurabh Abstract In the p-set Splitting problem we are given a universe U, a family F of subsets of U and a positive integer k and the objective
Simple Graphs Degrees, Isomorphism, Paths
Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
