Layer 4: UDP, TCP, and others

Size: px
Start display at page:

Download "Layer 4: UDP, TCP, and others"

Transcription

1 Layer 4: UDP, TCP, and others based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Concepts application set transport set High-level, "Application Set" protocols deal only with how handled by processes on each node Low-level, or "Transport Set", protocols are concerned only with moving packets from source node to destination node The Transport layer lies at the junction of these - TCP is the most popular protocol for use with IP, hence the name "TCP/IP" - Other protocols are in use as well Some protocols occupy a niche between layer 3 and layer 4 1

2 Model Layers and Applications OSI Application Presentation TCP/IP Application HTTP FTP SMTP SSH NFS DNS DHCP Session Ping Transport Transport TCP TCP SCTP TCP TCP UDP UDP UDP Network Internet IPSec IP ICMP IGMP Datalink Link Ethernet ARP WiFi Frame Relay Token Ring Physical Physical TCP Transport Layer - Connection-oriented, Reliable UDP Transport Layer - Connectionless, "Best-Effort" ICMP part of Network Layer - Very simple format - Between protocol utilities, not application processes IGMP part of Network Layer - Communications between multicast destinations and routers/switches (look for icmp, igmp packets using Wireshark) Layer 3.5?: IP Management 2

3 ICMP Internet Control Message Protocol For communication between IP layers on network nodes - Ping application can use ICMP "Layer 3.5" ICMP messages are carried in IP packets Constant-size header - Varying field meanings based on the message Data often absent - ping data field padded with arbitrary contents - some error messages include portions of a failed IP packet (headers, etc.) The ICMP Protocol Data Unit 1 st byte 2 nd byte 3 rd byte 4 th byte bit numbers st word 2 nd word Type Code Rest of header depends on type, code Checksum Payload (optional, 0..64KB) a.k.a. Protocol Data Unit, PDU Types include - Echo Request (ping request) - Echo Reply (ping reply) - Destination Unreachable» Code explains why - TTL exceeded Payload often includes the beginning of the packet that caused the ICMP response - IPv4 header - 8 bytes of layer-3 PDU 3

4 ICMP packet reporting an error In this Wireshark session a machine has requested a TCP connection. - by sending a SYN packet. The ICMP packet is reporting that the connection has been refused. - Its payload is the IP and TCP headers of the packet that made the request. ICMP "Smurf Attack" Attacker broadcasts ICMP packets - Source addresses are spoofed to be the victim's address Network hosts all respond to the ICMP packets - Doesn't matter what they send Victim is overwhelmed with response packets that it never asked for - Victim falls over This is a DDOS Distributed Denial Of Service 4

5 ICMP as a Phishing Tool 2006 phishing Trojan captures account/password information, transmits to a host using encrypted ping packets carries encrypted account info :-) This "innocent" ping packet IGMP Internet Group Management Protocol Very simple protocol between routers, multicast members - Version 1: 8-byte header (1 unused), no data - Version 2: Max-response-time, query / report / leave options 5

6 an IGMP packet, in Wireshark :53 am (look for http, ssh, netcat packets using Wireshark) Layer 4: Ports; UDP, TCP 6

7 Transport layer requirements Process identity multiple (application) processes on a node - All communicating processes have the same source IP address (and MAC address) Transport layer establishes a socket" that identifies each process Establishes sessions for processes needing steady communication - Some processes want a steady communication channel - some use individual transmissions» cf. phone conversations versus mail Process Identities Processes that need to communicate with other processes establish a reference to that process - IP address what node the process is on - Port the process's "ID number" on that node IP address plus port number is a socket Some server processes use Well-Known Port assignments See /etc/services Client process also needs its own port number Randomly chosen FTP 20, 21 POP3 110 SSH 22 NetBIOS Name Service 137 SMTP 25 SNMP 161 HTTP 80 HTTPS 443 Kerberos 88 rsync 873 7

8 Ports and netstat Unix netstat --inet -n command shows network connections - the --inet option restricts report to TCP and UDP ports over the network interface - this display shows four client sessions, three TCP server processes, and six UDP servers - Use -n to turn off name resolution Windows netstat -a shows comparable information UDP User Datagram Protocol Connectionless protocol Unreliable Simpler, less overhead required than for TCP - Good for broadcasts, other uses that may or may not create replies» DHCP, BOOTP» DNS» SNMP Applications can implement reliability themselves: - TFTP for lightweight, local file transfers 8

9 Encapsulation in UDP Datagrams traceroute application (random UDP ports) (no layer 7 header) UDP header some data some data some data data message datagram DNS application (UDP port 53) (no data) DNS headers (no data) UDP header DNS headers (no data) data message datagram UDP Header Fields 1 st byte 2 nd byte 3 rd byte 4 th byte bit numbers st word Source Port number (optional) Destination Port number 2 nd word Datagram length (minimum value 8) Checksum Payload (optional, 0..64KB) Header is always two words (eight bytes) in size Source port can be set to all 0s if no reply is needed Checksum includes data, UDP header, and a pseudo-ip header

10 TCP Transmission Control Protocol Connection-oriented protocol establishes endto-end session before sending application messages - "3-way handshake" establishes connection» SYN / SYN-ACK / ACK sequence - FIN sequence closes connection - Reset packet demands immediate disconnection TCP Encapsulation TCP header HTTP headers HTTP headers some file some file some file data message segment TCP payload (Protocol Data Unit, PDU) TCP header identifies server and client applications Supports breaking large files into manageable-sized segments Flow control prevents sender from overwhelming receiver with too many segments 10

11 TCP Header Fields 1 st byte 2 nd byte 3 rd byte 4 th byte bit numbers st word 2 nd word 3 rd word 4 th word Reserved - Data offset NS CWR ECE Urg Ack Psh Rst Syn Fin 5 th word 0-10 optional words Source Port number Checksum Sequence number Acknowledgement number Destination Port number Window size Urgent pointer Payload (optional, 0..64KB) TCP Header Fields Detail Source and port numbers - Both required Sequence, Acknowledgement numbers - provide reliable, in-order delivery Data offset counts length of TCP header in 4-byte words - minimum value is 5 Reserved bits - must be 0's Flags bits indicate various conditions - Syn, Fin are used to start, finish connections - Ack supports reliable delivery 1 st byte 2 nd byte 3 rd byte 4 th byte bit numbers st word 2 nd word 3 rd word 4 th Reserved - word Data offset NS CWR ECE Urg Ack Psh Rst Syn Fin th word 0-10 optional words Source Port number Checksum Sequence number Acknowledgement number Data bytes (optional, 0..64KB) Destination Port number Window size Urgent pointer Window size supports flow control Checksum includes header fields, data, and a pseudo-ip header Urgent pointer allows data to "cut in front" of earlier packets in the stream Optional fields support various values 11

12 TCP and Reliability Sender Receiver Sender splits arbitrary-length application messages into segments - MSS Maximum Segment Size is negotiated as part of the 3-way handshake - Sequence number identifies segment's position within overall message Receiver buffers incoming segments - Out-of-order packet delivery requires that segments be put into proper order - Last-received in-order packet is acknowledged» (actually, the next-expected-position is sent) Stop-and-Wait: each segment must be acknowledged before the next can be sent Unacknowledged segments must be re-sent timeout TCP and Performance Sender Receiver 200-byte window Client and server negotiate a Sliding Window for each - # of bytes sent before receiving an ACK - Separate window for each direction Sender may send packets until it has "filled the window" Receiver acknowledges packets and reports remaining window space When the receiving application takes bytes from receive buffer, the window "opens up" some more timeout 12

13 Sliding Window Detailed Example Client C sends SYN, Server S sends SYN/ACK, C sends ACK - S offers 500-byte window C sends 100-byte segment followed by 250- byte segment, gets ACK of first segment - ACK shows 400 bytes of window following first segment C sends 150 more bytes, then waits S processes 220 bytes, offers more window C sends 200 bytes S processes entire buffer, offers more window the process is symmetric: - C offers a window, S sets a first sequence number - C sets a window, S sends segments and C acknowledges them - as C process takes data, C s window slides forward Attacks on TCP Connections Most TCP attacks involve invalid or falsified ("spoofed") header values that disrupt a session or the protocol stack itself SYN Flood - Attacker sends many SYN packets to initiate connections, but never ACKs the server's responses - Server reserves resources for each connection until it runs out, resulting in Denial of Service (DoS) - Spoofed sender IP conceals the attacker SYN/FIN attack - SYN flag combined with FIN flag disrupted older TCP software RST attack, SYN attack - Spoofed packet with RST or SYN flag set will terminate victim's connection another DoS Session hijacking - Sophisticated packet spoofing can intercept data, inject false data, etc. 13

14 done 14

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP Guide to Network Defense and Countermeasures Third Edition Chapter 2 TCP/IP Objectives Explain the fundamentals of TCP/IP networking Describe IPv4 packet structure and explain packet fragmentation Describe

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

2057-15. First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring

2057-15. First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring 2057-15 First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring 7-25 September 2009 TCP/IP Networking Abhaya S. Induruwa Department

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Outline. CSc 466/566. Computer Security. 18 : Network Security Introduction. Network Topology. Network Topology. Christian Collberg

Outline. CSc 466/566. Computer Security. 18 : Network Security Introduction. Network Topology. Network Topology. Christian Collberg Outline Network Topology CSc 466/566 Computer Security 18 : Network Security Introduction Version: 2012/05/03 13:59:29 Department of Computer Science University of Arizona collberg@gmail.com Copyright

More information

Networks: IP and TCP. Internet Protocol

Networks: IP and TCP. Internet Protocol Networks: IP and TCP 11/1/2010 Networks: IP and TCP 1 Internet Protocol Connectionless Each packet is transported independently from other packets Unreliable Delivery on a best effort basis No acknowledgments

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Transport Layer. Chapter 3.4. Think about

Transport Layer. Chapter 3.4. Think about Chapter 3.4 La 4 Transport La 1 Think about 2 How do MAC addresses differ from that of the network la? What is flat and what is hierarchical addressing? Who defines the IP Address of a device? What is

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

Chapter 11. User Datagram Protocol (UDP)

Chapter 11. User Datagram Protocol (UDP) Chapter 11 User Datagram Protocol (UDP) The McGraw-Hill Companies, Inc., 2000 1 CONTENTS PROCESS-TO-PROCESS COMMUNICATION USER DATAGRAM CHECKSUM UDP OPERATION USE OF UDP UDP PACKAGE The McGraw-Hill Companies,

More information

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student

More information

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

Overview of TCP/IP. TCP/IP and Internet

Overview of TCP/IP. TCP/IP and Internet Overview of TCP/IP System Administrators and network administrators Why networking - communication Why TCP/IP Provides interoperable communications between all types of hardware and all kinds of operating

More information

What is a DoS attack?

What is a DoS attack? CprE 592-YG Computer and Network Forensics Log-based Signature Analysis Denial of Service Attacks - from analyst s point of view Yong Guan 3216 Coover Tel: (515) 294-8378 Email: guan@ee.iastate.edu October

More information

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet Basic Networking Concepts 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet 1 1. Introduction -A network can be defined as a group of computers and other devices connected

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

TCP/IP and the Internet

TCP/IP and the Internet TCP/IP and the Internet Computer networking today is becoming more and more entwined with the internet. By far the most popular protocol set in use is TCP/IP (Transmission Control Protocol/Internet Protocol).

More information

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address Objectives University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 Lab.4 Basic Network Operation and Troubleshooting 1. To become familiar

More information

User Datagram Protocol - Wikipedia, the free encyclopedia

User Datagram Protocol - Wikipedia, the free encyclopedia Página 1 de 6 User Datagram Protocol From Wikipedia, the free encyclopedia User Datagram Protocol (UDP) is one of the core protocols of the Internet protocol suite. Using UDP, programs on networked computers

More information

Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2

Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Network-Oriented Software Development Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Topics Layering TCP/IP Layering Internet addresses and port numbers Encapsulation

More information

Understanding Layer 2, 3, and 4 Protocols

Understanding Layer 2, 3, and 4 Protocols 2 Understanding Layer 2, 3, and 4 Protocols While many of the concepts well known to traditional Layer 2 and Layer 3 networking still hold true in content switching applications, the area introduces new

More information

Lab 2. CS-335a. Fall 2012 Computer Science Department. Manolis Surligas surligas@csd.uoc.gr

Lab 2. CS-335a. Fall 2012 Computer Science Department. Manolis Surligas surligas@csd.uoc.gr Lab 2 CS-335a Fall 2012 Computer Science Department Manolis Surligas surligas@csd.uoc.gr 1 Summary At this lab we will cover: Basics of Transport Layer (TCP, UDP) Broadcast ARP DNS More Wireshark filters

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7 20-CS-6053-00X Network Security Spring, 2014 An Introduction To Network Security Week 1 January 7 Attacks Criminal: fraud, scams, destruction; IP, ID, brand theft Privacy: surveillance, databases, traffic

More information

CSE 127: Computer Security. Network Security. Kirill Levchenko

CSE 127: Computer Security. Network Security. Kirill Levchenko CSE 127: Computer Security Network Security Kirill Levchenko December 4, 2014 Network Security Original TCP/IP design: Trusted network and hosts Hosts and networks administered by mutually trusted parties

More information

TCP/IP Security Problems. History that still teaches

TCP/IP Security Problems. History that still teaches TCP/IP Security Problems History that still teaches 1 remote login without a password rsh and rcp were programs that allowed you to login from a remote site without a password The.rhosts file in your home

More information

Post-Class Quiz: Telecommunication & Network Security Domain

Post-Class Quiz: Telecommunication & Network Security Domain 1. What type of network is more likely to include Frame Relay, Switched Multi-megabit Data Services (SMDS), and X.25? A. Local area network (LAN) B. Wide area network (WAN) C. Intranet D. Internet 2. Which

More information

BASIC ANALYSIS OF TCP/IP NETWORKS

BASIC ANALYSIS OF TCP/IP NETWORKS BASIC ANALYSIS OF TCP/IP NETWORKS INTRODUCTION Communication analysis provides powerful tool for maintenance, performance monitoring, attack detection, and problems fixing in computer networks. Today networks

More information

Network Programming TDC 561

Network Programming TDC 561 Network Programming TDC 561 Lecture # 1 Dr. Ehab S. Al-Shaer School of Computer Science & Telecommunication DePaul University Chicago, IL 1 Network Programming Goals of this Course: Studying, evaluating

More information

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci. Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation

More information

CS5008: Internet Computing

CS5008: Internet Computing CS5008: Internet Computing Lecture 22: Internet Security A. O Riordan, 2009, latest revision 2015 Internet Security When a computer connects to the Internet and begins communicating with others, it is

More information

Unix System Administration

Unix System Administration Unix System Administration Chris Schenk Lecture 08 Tuesday Feb 13 CSCI 4113, Spring 2007 ARP Review Host A 128.138.202.50 00:0B:DB:A6:76:18 Host B 128.138.202.53 00:11:43:70:45:81 Switch Host C 128.138.202.71

More information

[Prof. Rupesh G Vaishnav] Page 1

[Prof. Rupesh G Vaishnav] Page 1 Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the

More information

Introduction to IP networking

Introduction to IP networking DD2395 p2 2011 Introduction to IP networking Olof Hagsand KTH CSC 1 Example: Packet transfer www.server.org An end host requests a web-page from a server via a local-area network The aim of this lecture

More information

CYBER ATTACKS EXPLAINED: PACKET CRAFTING

CYBER ATTACKS EXPLAINED: PACKET CRAFTING CYBER ATTACKS EXPLAINED: PACKET CRAFTING Protect your FOSS-based IT infrastructure from packet crafting by learning more about it. In the previous articles in this series, we explored common infrastructure

More information

Solution of Exercise Sheet 5

Solution of Exercise Sheet 5 Foundations of Cybersecurity (Winter 15/16) Prof. Dr. Michael Backes CISPA / Saarland University saarland university computer science Protocols = {????} Client Server IP Address =???? IP Address =????

More information

Computer Networks/DV2 Lab

Computer Networks/DV2 Lab Computer Networks/DV2 Lab Room: BB 219 Additional Information: http://www.fb9dv.uni-duisburg.de/ti/en/education/teaching/ss08/netlab Equipment for each group: - 1 Server computer (OS: Windows 2000 Advanced

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Network Security Fundamentals

Network Security Fundamentals APNIC elearning: Network Security Fundamentals 27 November 2013 04:30 pm Brisbane Time (GMT+10) Introduction Presenter Sheryl Hermoso Training Officer sheryl@apnic.net Specialties: Network Security IPv6

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Network Models and Protocols

Network Models and Protocols 669-5ch01.fm Page 1 Friday, April 12, 2002 2:01 PM C H A P T E R Network Models and Protocols 1 EXAM OBJECTIVES 1.1 Layered Network Models 1.2 The Layers of the TCP/IP 5-Layer Model 1.3 Network Protocols

More information

Network Layer: and Multicasting. 21.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Network Layer: and Multicasting. 21.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 21 Network Layer: Address Mapping, Error Reporting, and Multicasting 21.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 21-1 ADDRESS MAPPING The delivery

More information

APNIC elearning: Network Security Fundamentals. 20 March 2013 10:30 pm Brisbane Time (GMT+10)

APNIC elearning: Network Security Fundamentals. 20 March 2013 10:30 pm Brisbane Time (GMT+10) APNIC elearning: Network Security Fundamentals 20 March 2013 10:30 pm Brisbane Time (GMT+10) Introduction Presenter/s Nurul Islam Roman Senior Training Specialist nurul@apnic.net Specialties: Routing &

More information

ACHILLES CERTIFICATION. SIS Module SLS 1508

ACHILLES CERTIFICATION. SIS Module SLS 1508 ACHILLES CERTIFICATION PUBLIC REPORT Final DeltaV Report SIS Module SLS 1508 Disclaimer Wurldtech Security Inc. retains the right to change information in this report without notice. Wurldtech Security

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

Session Hijacking Exploiting TCP, UDP and HTTP Sessions

Session Hijacking Exploiting TCP, UDP and HTTP Sessions Session Hijacking Exploiting TCP, UDP and HTTP Sessions Shray Kapoor shray.kapoor@gmail.com Preface With the emerging fields in e-commerce, financial and identity information are at a higher risk of being

More information

The OSI and TCP/IP Models. Lesson 2

The OSI and TCP/IP Models. Lesson 2 The OSI and TCP/IP Models Lesson 2 Objectives Exam Objective Matrix Technology Skill Covered Exam Objective Exam Objective Number Introduction to the OSI Model Compare the layers of the OSI and TCP/IP

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services

Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services CS4983 Senior Technical Report Brian Chown 0254624 Faculty of Computer Science University of New Brunswick Canada

More information

Computer Networks UDP and TCP

Computer Networks UDP and TCP Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing

More information

Chapter 8 Security Pt 2

Chapter 8 Security Pt 2 Chapter 8 Security Pt 2 IC322 Fall 2014 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose and K.W. Ross,

More information

Internet Protocols. Background CHAPTER

Internet Protocols. Background CHAPTER CHAPTER 3 Internet Protocols Background The Internet protocols are the world s most popular open-system (nonproprietary) protocol suite because they can be used to communicate across any set of interconnected

More information

CSCE 465 Computer & Network Security

CSCE 465 Computer & Network Security CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Vulnerability Analysis 1 Roadmap Why vulnerability analysis? Example: TCP/IP related vulnerabilities

More information

Technical Support Information Belkin internal use only

Technical Support Information Belkin internal use only The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.

More information

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet Review questions 1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet C Media access method D Packages 2 To which TCP/IP architecture layer

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

TCP Performance Management for Dummies

TCP Performance Management for Dummies TCP Performance Management for Dummies Nalini Elkins Inside Products, Inc. Monday, August 8, 2011 Session Number 9285 Our SHARE Sessions Orlando 9285: TCP/IP Performance Management for Dummies Monday,

More information

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

General Network Security

General Network Security 4 CHAPTER FOUR General Network Security Objectives This chapter covers the following Cisco-specific objectives for the Identify security threats to a network and describe general methods to mitigate those

More information

Scapy. On-the-fly Packet Generation by codemonk@u-sys.org. Dienstag, 10. Januar 12

Scapy. On-the-fly Packet Generation by codemonk@u-sys.org. Dienstag, 10. Januar 12 Scapy On-the-fly Packet Generation by codemonk@u-sys.org 1 Overview Repetition of network basics Python Basics Scapy Basics Example: SYN Scan Hands-on: Traceroute Promiscuous Scan ARP Spoofing 2 Layers

More information

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user Transport service characterization The Transport Layer End-to-End Protocols: UDP and TCP Connection establishment (if connection-oriented) Data transfer Reliable ( TCP) Unreliable / best effort ( UDP)

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Attack Lab: Attacks on TCP/IP Protocols

Attack Lab: Attacks on TCP/IP Protocols Laboratory for Computer Security Education 1 Attack Lab: Attacks on TCP/IP Protocols Copyright c 2006-2010 Wenliang Du, Syracuse University. The development of this document is funded by the National Science

More information

Raritan Valley Community College Academic Course Outline. CISY 253 - Advanced Computer Networking

Raritan Valley Community College Academic Course Outline. CISY 253 - Advanced Computer Networking Raritan Valley Community College Academic Course Outline CISY 253 - Advanced Computer Networking I. Basic Course Information A. Course number and Title: CISY 253- Advanced Computer Networking (TCP/IP)

More information

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) April 25, 2015 5:22pm c 2015 Avinash Kak, Purdue

More information

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX APPENDIX A Introduction Understanding TCP/IP To fully understand the architecture of Cisco Centri Firewall, you need to understand the TCP/IP architecture on which the Internet is based. This appendix

More information

Firewalls. Test your Firewall knowledge. Test your Firewall knowledge (cont) (March 4, 2015)

Firewalls. Test your Firewall knowledge. Test your Firewall knowledge (cont) (March 4, 2015) s (March 4, 2015) Abdou Illia Spring 2015 Test your knowledge Which of the following is true about firewalls? a) A firewall is a hardware device b) A firewall is a software program c) s could be hardware

More information

Internetworking. Problem: There is more than one network (heterogeneity & scale)

Internetworking. Problem: There is more than one network (heterogeneity & scale) Internetworking Problem: There is more than one network (heterogeneity & scale) Hongwei Zhang http://www.cs.wayne.edu/~hzhang Internetworking: Internet Protocol (IP) Routing and scalability Group Communication

More information

Troubleshooting Tools

Troubleshooting Tools Troubleshooting Tools An overview of the main tools for verifying network operation from a host Fulvio Risso Mario Baldi Politecnico di Torino (Technical University of Turin) see page 2 Notes n The commands/programs

More information

Computer Networks/DV2 Lab

Computer Networks/DV2 Lab Computer Networks/DV2 Lab Room: BB 219 Additional Information: http://www.fb9dv.uni-duisburg.de/ti/en/education/teaching/ss13/netlab Equipment for each group: - 1 Server computer (OS: Windows Server 2008

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

Brocade NetIron Denial of Service Prevention

Brocade NetIron Denial of Service Prevention White Paper Brocade NetIron Denial of Service Prevention This white paper documents the best practices for Denial of Service Attack Prevention on Brocade NetIron platforms. Table of Contents Brocade NetIron

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

Laboratory work 4. Application of Windows OS Built-in Networks Diagnostic Tools

Laboratory work 4. Application of Windows OS Built-in Networks Diagnostic Tools Laboratory work 4 Application of Windows OS Built-in Networks Diagnostic Tools Objectives Get acquainted with Windows OS command-line network diagnostic, monitoring and management tools and their application

More information

A Very Incomplete Diagram of Network Attacks

A Very Incomplete Diagram of Network Attacks A Very Incomplete Diagram of Network Attacks TCP/IP Stack Reconnaissance Spoofing Tamper DoS Internet Transport Application HTTP SMTP DNS TCP UDP IP ICMP Network/Link 1) HTML/JS files 2)Banner Grabbing

More information

Chapter 5. Transport layer protocols

Chapter 5. Transport layer protocols Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission

More information

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets)

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) The diagram below illustrates four routers on the Internet backbone along with two companies that have gateways for their internal

More information

Chapter 9. IP Secure

Chapter 9. IP Secure Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.

More information

Algemene Theorie en Vaardigheden 2. April 2014 Theaterschool OTT-2 1

Algemene Theorie en Vaardigheden 2. April 2014 Theaterschool OTT-2 1 Les 6 Showcontrol April 2014 Theaterschool OTT-2 1 OSI layers versus equipment Layer 1: Physical Network Interface Card (NIC) Hub (multiport repeater) Modem (modulator/demodulator, converts signals) Layer

More information

Datacommunication. Internet Infrastructure IPv4 & IPv6

Datacommunication. Internet Infrastructure IPv4 & IPv6 Internet Infrastructure IPv4 & IPv6 Eric Malmström eric.malmstrom@globalone.net Slide 1 Background mid 1970 DARPA finances research on packet switching networks p-p networks, packet radio and satellite

More information

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration

Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking

More information

Cape Girardeau Career Center CISCO Networking Academy Bill Link, Instructor. 2.,,,, and are key services that ISPs can provide to all customers.

Cape Girardeau Career Center CISCO Networking Academy Bill Link, Instructor. 2.,,,, and are key services that ISPs can provide to all customers. Name: 1. What is an Enterprise network and how does it differ from a WAN? 2.,,,, and are key services that ISPs can provide to all customers. 3. Describe in detail what a managed service that an ISP might

More information

Internet Firewall CSIS 3230. Internet Firewall. Spring 2012 CSIS 4222. net13 1. Firewalls. Stateless Packet Filtering

Internet Firewall CSIS 3230. Internet Firewall. Spring 2012 CSIS 4222. net13 1. Firewalls. Stateless Packet Filtering Internet Firewall CSIS 3230 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 8.8: Packet filtering, firewalls, intrusion detection Ch

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

CHAPTER. Securing TCP/IP

CHAPTER. Securing TCP/IP chapple06 10/12/04 9:21 AM Page 135 CHAPTER Securing TCP/IP 6 After reading this chapter, you will be able to: Explain the role that the Transmission Control Protocol (TCP) and the Internet Protocol (IP)

More information

UNDERSTANDING FIREWALLS TECHNICAL NOTE 10/04

UNDERSTANDING FIREWALLS TECHNICAL NOTE 10/04 UNDERSTANDING FIREWALLS TECHNICAL NOTE 10/04 REVISED 23 FEBRUARY 2005 This paper was previously published by the National Infrastructure Security Co-ordination Centre (NISCC) a predecessor organisation

More information

Network and Services Discovery

Network and Services Discovery A quick theorical introduction to network scanning January 8, 2016 Disclaimer/Intro Disclaimer/Intro Network scanning is not exact science When an information system is able to interact over the network

More information

Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs

Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Overview of Network Security The need for network security Desirable security properties Common vulnerabilities Security policy designs Why Network Security? Keep the bad guys out. (1) Closed networks

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Networking Attacks: Link-, IP-, and TCP-layer attacks. CS 161: Computer Security Prof. David Wagner

Networking Attacks: Link-, IP-, and TCP-layer attacks. CS 161: Computer Security Prof. David Wagner Networking Attacks: Link-, IP-, and TCP-layer attacks CS 161: Computer Security Prof. David Wagner February 28, 2013 General Communication Security Goals: CIA! Confidentiality: No one can read our data

More information

LESSON 3.6. 98-366 Networking Fundamentals. Understand TCP/IP

LESSON 3.6. 98-366 Networking Fundamentals. Understand TCP/IP Understand TCP/IP Lesson Overview In this lesson, you will learn about: TCP/IP Tracert Telnet Netstat Reserved addresses Local loopback IP Ping Pathping Ipconfig Protocols Anticipatory Set Experiment with

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information