Statistique en grande dimension

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Statistique en grande dimension"

Transcription

1 Statistique en grande dimension Lecturer : Dalalyan A., Scribe : Thomas F.-X. First lecture Introduction. Statistique classique Statistique paramétriques : Z,..., Z n iid, avec une loi commune P θ On fait l hypothèse θ Θ R d Connu : Z,..., Z n et Θ Inconnu : θ ou P θ Hypothèse importante : d est fixe et n + On sait dans ce cas que l estimateur du MV est asymptotiquement le plus) efficace convergent) : ˆθ MV vérifie quand n + : E P ˆθ MV θ 2] = C + o )) n On estime θ à une vitesse n vitesse paramétrique) Constat. Si d = d n t.q. lim n + d n = +, alors toute la théorie paramétrique est inutilisable. De plus, l estimateur du MV n est plus le meilleur estimateur!.2 Statistique non paramétrique On observe Z,..., Z n iid de loi P, inconnue, telle que P P θ, θ Θ, mais avec Θ soit de dimension infinie, soit de dimension d = d n finie mais + avec la taille de l échantillon. Exemples: Θ = = f : 0, ] R, f Lipschitz de constante L f : 0, ] R, x, y, f x) f y) L x y Θ = θ = θ, θ 2,...), j= ) 2) θ 2 j < + = l 2 3) Démarche générale: On approche Θ par une suite croissante Θ k de sous-ensembles de Θ telle que Θ k est de

2 dimension d k. En procédant comme si θ appartenait à Θ k ce n est pas nécessairement le cas), on utilise une méthode paramétrique pour définir un estimateur θ k de θ. Cela nous donne une famille d estimateurs θ k. Question principale. Comment choisir k pour minimiser le risque de θ k? Si k est petit, on est face à un phénomène de sous-apprentissage underfitting) Inversement, si k est grand, phénomène de sur-apprentissage overfitting).3 Principal models in non-parametric statistics Density model. We have X,..., X n iid with a density f defined on R p, and : P X A) = A f x)dx The assumptions imposed on f are very weak as opposed to the parametric setting. For instance, a typical assumption in parametric setting is that f is the Gaussian density : f x) = det Σ ) 2π) p/2 exp ] 2 x µ)t Σ x µ), whereas a common assumption on f in nonparametric framework is : f is smooth, say, twice continuously differentiable with a bounded second derivative. Regression model. We observe Z i = X i, Y i ), with input X i, output Y i and error ε i : Y i = f X i ) + ε i. The function f is called the regression function. Here, the goal is to estimate f without assuming any parametric structure on it. Practical examples. Marketing. Each i represents a consumer X i are the features of the consumer A typical question is how do I estimate different relevant groups of consumers. A typical answer is then to use clustering algorithms. We assume that X,..., X n are iid with density f. Then, we estimate f in a non-parametric manner by ˆf. The clusters are defined as regions around the local maxima of the function ˆf..4 Machine Learning Essentially the same as non-parametric statistics The main focus here is on the algorithms rather than on the models), their statistical performance and their computational complexity. 2

3 2 Main concepts and notations Observations : Z,..., Z n iid, P Non-supervised learning : Z i = X i Supervised learning : Z i = X i, Y i ), where X i is an example or a feature, and Y i a label. Aim. To learn the distribution P or some properties of it. Prediction. We assume that a new feature X from the same prob. distribution as X,..., X n ) is observed. The aim is to predict the label associated to X. To measure the quality of a prediction, we need a loss function l y, ỹ) y is the true label, ỹ is the predicted label). In practice, both y and ỹ are random variables, furthermore y and its distribution are unknown, so l is hard to compute! Risk function. This is the expectation of the loss. Definition Assume that Z i = X i, Y i ) X Y and l : Y Y R is a loss function. A predictor, or preduction algorithm, is any mapping : The risk of the prediction function g is : ĝ : X Y) n Y X R P g ] = E P l Y, gx))] The risk of a predictor ĝ is R P ĝ ], which is random since ĝ depends on the data. R P ĝ ] = l y, ĝx)) dp x, y) Examples: X Y. Binary classification: Y = 0,, with any X l y, ỹ) = 0, if y = ỹ, otherwise = y = ỹ) = y ỹ) Least-squares regression: Y R, with any X l y, ỹ) = y ỹ) 2. 3 Excess risk and Bayes predictor We have Z i = X i, Y i ) R P g ] = X Y l y, gx)) P dx, dy) P dx, dy) = P Y X dy X = x) P X dx) Definition 2 Given a loss function l : Y Y R, the Bayes predictor, or oracle is the prediction function minimizing the risk : g arg min g Y X R P g ] 3

4 Remark In practice, g is unavailable, since it depends on P, which is unknown. The ultimate goal is to do almost as well as the oracle. A predictor ĝ n will be considered as a good one if : lim R P ĝ n ] R P g ] = 0 n + excess risk Definition 3 We say that the predictor ĝ n is consistent universally consistent) if P, we have : Theorem lim E P R P ĝ n ]] R P g ] = 0 n +. Suppose that x X,the infimum of y E P l Y, y) X = x] is reached. Then the funcion g defined by : g x) arg min y Y E P l Y, y) X = x]...is a Bayes predictor. 2. In the case of the binary classification, Y = 0, and l y, ỹ) = y = ỹ), g x) = η x) > ) where η x) = P Y = X = x]. 2 Furthermore, the excess risk can be computed by R P g] R P g ] = E P gx) g X)) 2η X))]. 4) 3. In the case of the least squares regression, Furthermore, for any η : X Y, we have : g x) = η x) where η x) = E P Y X = x] R P η ] R P η ] = E P η X) η X)) 2] Proof. Let g Y X and let : We have : g x) arg min y Y E P l Y, y) X = x]. R P g ] = E P l Y, g X))] = EP l Y, g X)) X = x] P X dx) EP l Y, g x)) X = x] P X dx) = R P g ]. 4

5 2. Using the first assertion, Therefore, g x) arg min P Y = y) X = x] y 0, = arg min P Y = y X = x) y 0, = arg max P Y = y X = x) y 0, To check 4), it suffices to remark that = arg max η x)y = ) + η x))y = 0). y 0, g x) = 0, if P Y = X = x) 2, otherwise. R P g] = E P gx) Y) 2 ] = E P gx) 2 ] + E P Y 2 ] 2E P YgX)] = E P gx)] + E P Y] 2E P E P YgX) X)] = E P gx)] + E P Y] 2E P gx)e P Y X)] = E P gx)] + E P Y] 2E P gx)η P X)] = E P gx) 2η P X)] + E PY]. Writing the same identity for g P and making the difference of these two identities, we get the desired result. 3. In view of the first assertion of the theorem, we have: g x) arg min y R E ] P Y y) 2 X = x = arg min y R ϕ y) where ϕ y) = E P Y 2 X = x ] 2yE P Y X = x] + y 2 is a second order polynomial. The minimization of such a polynomial is straightforward and leads to: arg min y R ϕ y) = E P Y X = x]. This shows that the Bayes predictor is equal to the regression function η x). The risk of this predictor is: R P η ] = E P Y η X)) 2] ]) = E P EP Y η X)) 2 X ] = E P EP Y η X)) 2 X ] = R P η ] E P η η) 2 X), where the cross-product term vanishes since ) + 2E P Y η X)) η η) X) X] + η η) 2 X) E P Y η X)) η η) X) X] = η η) X)E P Y η X)) X] = 0. This completes the proof of the theorem. 5

6 3. Link between Binary Classification & Regression Plug-in rule We start by estimating η x) by ˆη n x), ) We define ĝ n x) = ˆη n > 2. Question: How good the plug-in rule ĝ n is? ) Proposition Let ˆη be an estimator of the regression function η, and let ĝx) = ˆη x) > 2. Then, we have : R class ĝ] R class g ] 2 R reg ˆη] R reg η ] ) Proof Let η : X Y R, and gx) = ηx) > 2, and let s compute the excess risk of g. We have, R class g] R class g ] = E P gx) g X)) 2η X))]. Since g and g are both indicator functions and, therefore, take only the values 0 and, their difference will be nonzero if and only if one of them is equal to and the other one is equal to 0. This leads to R class g ] Rclass E P ηx) /2 < η X) ) 2η X) ] +E P η X) /2 < ηx) ) 2η X) ] = 2E P /2 η X), ηx)] ) η X) /2 ] If ηx) /2 and η X) > /2, then η X) /2 η X) ηx), and thus : ] R class g Rclass g ] 2E P /2 ηx), η X)] ) η X ) η X) ] 2E P ηx) η X) ] 2 EP ηx) η X) ) 2] = 2 R reg η) R reg η ). Since this inequality is true for every deterministic η, we get the desired property. 6

Statistiques en grande dimension

Statistiques en grande dimension Statistiques en grande dimension Christophe Giraud 1,2 et Tristan Mary-Huart 3,4 (1) Université Paris-Sud (2) Ecole Polytechnique (3) AgroParistech (4) INRA - Le Moulon M2 MathSV & Maths Aléa C. Giraud

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Open call for tenders n SCIC C4 2014/01

Open call for tenders n SCIC C4 2014/01 EUROPEAN COMMISSION DIRECTORATE GENERAL FOR INTERPRETATION RESOURCES AND SUPPORT DIRECTORATE Open call for tenders n SCIC C4 2014/01 Accident and sickness insurance for Conference Interpreting Agents Questions

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Consistent Binary Classification with Generalized Performance Metrics

Consistent Binary Classification with Generalized Performance Metrics Consistent Binary Classification with Generalized Performance Metrics Nagarajan Natarajan Joint work with Oluwasanmi Koyejo, Pradeep Ravikumar and Inderjit Dhillon UT Austin Nov 4, 2014 Problem and Motivation

More information

Machine de Soufflage defibre

Machine de Soufflage defibre Machine de Soufflage CABLE-JET Tube: 25 à 63 mm Câble Fibre Optique: 6 à 32 mm Description générale: La machine de soufflage parfois connu sous le nom de «câble jet», comprend une chambre d air pressurisé

More information

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014

More information

A.II. Kernel Estimation of Densities

A.II. Kernel Estimation of Densities A.II. Kernel Estimation of Densities Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Introduction 2 Issues with Empirical Averages 3 Kernel Estimator 4 Optimal Bandwidth 5 Bivariate

More information

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Personnalisez votre intérieur avec les revêtements imprimés ALYOS design

Personnalisez votre intérieur avec les revêtements imprimés ALYOS design Plafond tendu à froid ALYOS technology ALYOS technology vous propose un ensemble de solutions techniques pour vos intérieurs. Spécialiste dans le domaine du plafond tendu, nous avons conçu et développé

More information

Troncatures dans les modèles linéaires simples et à effets mixtes sous R

Troncatures dans les modèles linéaires simples et à effets mixtes sous R Troncatures dans les modèles linéaires simples et à effets mixtes sous R Lyon, 27 et 28 juin 2013 D.Thiam, J.C Thalabard, G.Nuel Université Paris Descartes MAP5 UMR CNRS 8145 IRD UMR 216 2èmes Rencontres

More information

Week 1: Introduction to Online Learning

Week 1: Introduction to Online Learning Week 1: Introduction to Online Learning 1 Introduction This is written based on Prediction, Learning, and Games (ISBN: 2184189 / -21-8418-9 Cesa-Bianchi, Nicolo; Lugosi, Gabor 1.1 A Gentle Start Consider

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

Density Level Detection is Classification

Density Level Detection is Classification Density Level Detection is Classification Ingo Steinwart, Don Hush and Clint Scovel Modeling, Algorithms and Informatics Group, CCS-3 Los Alamos National Laboratory {ingo,dhush,jcs}@lanl.gov Abstract We

More information

Licence Informatique Année 2005-2006. Exceptions

Licence Informatique Année 2005-2006. Exceptions Université Paris 7 Java Licence Informatique Année 2005-2006 TD n 8 - Correction Exceptions Exercice 1 La méthode parseint est spécifiée ainsi : public static int parseint(string s) throws NumberFormatException

More information

MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

More information

Influences in low-degree polynomials

Influences in low-degree polynomials Influences in low-degree polynomials Artūrs Bačkurs December 12, 2012 1 Introduction In 3] it is conjectured that every bounded real polynomial has a highly influential variable The conjecture is known

More information

Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler

Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error

More information

Introduction. GEAL Bibliothèque Java pour écrire des algorithmes évolutionnaires. Objectifs. Simplicité Evolution et coévolution Parallélisme

Introduction. GEAL Bibliothèque Java pour écrire des algorithmes évolutionnaires. Objectifs. Simplicité Evolution et coévolution Parallélisme GEAL 1.2 Generic Evolutionary Algorithm Library http://dpt-info.u-strasbg.fr/~blansche/fr/geal.html 1 /38 Introduction GEAL Bibliothèque Java pour écrire des algorithmes évolutionnaires Objectifs Généricité

More information

Solutions of Equations in One Variable. Fixed-Point Iteration II

Solutions of Equations in One Variable. Fixed-Point Iteration II Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Online Learning. 1 Online Learning and Mistake Bounds for Finite Hypothesis Classes

Online Learning. 1 Online Learning and Mistake Bounds for Finite Hypothesis Classes Advanced Course in Machine Learning Spring 2011 Online Learning Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz In this lecture we describe a different model of learning which is called online

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

(Quasi-)Newton methods

(Quasi-)Newton methods (Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

Trading regret rate for computational efficiency in online learning with limited feedback

Trading regret rate for computational efficiency in online learning with limited feedback Trading regret rate for computational efficiency in online learning with limited feedback Shai Shalev-Shwartz TTI-C Hebrew University On-line Learning with Limited Feedback Workshop, 2009 June 2009 Shai

More information

Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Régression logistique : introduction

Régression logistique : introduction Chapitre 16 Introduction à la statistique avec R Régression logistique : introduction Une variable à expliquer binaire Expliquer un risque suicidaire élevé en prison par La durée de la peine L existence

More information

Uncertainty quantification for the family-wise error rate in multivariate copula models

Uncertainty quantification for the family-wise error rate in multivariate copula models Uncertainty quantification for the family-wise error rate in multivariate copula models Thorsten Dickhaus (joint work with Taras Bodnar, Jakob Gierl and Jens Stange) University of Bremen Institute for

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

More information

Parallel Discrepancy-based Search

Parallel Discrepancy-based Search Parallel Discrepancy-based Search T. Moisan, J. Gaudreault, C.-G. Quimper Université Laval, FORAC research consortium February 21 th 2014 T. Moisan, J. Gaudreault, C.-G. Quimper Parallel Discrepancy-based

More information

General Certificate of Education Advanced Level Examination June 2012

General Certificate of Education Advanced Level Examination June 2012 General Certificate of Education Advanced Level Examination June 2012 French Unit 4 Speaking Test Candidate s Material To be conducted by the teacher examiner between 7 March and 15 May 2012 (FRE4T) To

More information

EMPIRICAL RISK MINIMIZATION FOR CAR INSURANCE DATA

EMPIRICAL RISK MINIMIZATION FOR CAR INSURANCE DATA EMPIRICAL RISK MINIMIZATION FOR CAR INSURANCE DATA Andreas Christmann Department of Mathematics homepages.vub.ac.be/ achristm Talk: ULB, Sciences Actuarielles, 17/NOV/2006 Contents 1. Project: Motor vehicle

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

Les Cahiers du GERAD ISSN: 0711 2440

Les Cahiers du GERAD ISSN: 0711 2440 Les Cahiers du GERAD ISSN: 0711 2440 Filtering for Detecting Multiple Targets Trajectories on a One-Dimensional Torus Ivan Gentil Bruno Rémillard G 2003 09 February 2003 Les textes publiés dans la série

More information

EPREUVE D EXPRESSION ORALE. SAVOIR et SAVOIR-FAIRE

EPREUVE D EXPRESSION ORALE. SAVOIR et SAVOIR-FAIRE EPREUVE D EXPRESSION ORALE SAVOIR et SAVOIR-FAIRE Pour présenter la notion -The notion I m going to deal with is The idea of progress / Myths and heroes Places and exchanges / Seats and forms of powers

More information

Bayes and Naïve Bayes. cs534-machine Learning

Bayes and Naïve Bayes. cs534-machine Learning Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

ALOHA Performs Delay-Optimum Power Control

ALOHA Performs Delay-Optimum Power Control ALOHA Performs Delay-Optimum Power Control Xinchen Zhang and Martin Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556, USA {xzhang7,mhaenggi}@nd.edu Abstract As

More information

Fanny Dos Reis. Visiting Assistant Professor, Texas A&M University. September 2006 - May 2008

Fanny Dos Reis. Visiting Assistant Professor, Texas A&M University. September 2006 - May 2008 Fanny Dos Reis Positions Held Visiting Assistant Professor, Texas A&M University. September 2006 - May 2008 Visiting Assistant Professor, University of Lille 1, France. September 2004 - August 2006 Visiting

More information

Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC

Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC Machine Learning for Medical Image Analysis A. Criminisi & the InnerEye team @ MSRC Medical image analysis the goal Automatic, semantic analysis and quantification of what observed in medical scans Brain

More information

Localisation des racines d un polynome et de ses dérivées, étude statistique. André Galligo. Seminaire Passe-Partout. Nice, Mars 2011.

Localisation des racines d un polynome et de ses dérivées, étude statistique. André Galligo. Seminaire Passe-Partout. Nice, Mars 2011. Localisation des racines d un polynome et de ses dérivées, étude statistique André Galligo Laboratoire J.-A. Dieudonné UMR CNRS 6621 Université de Nice - Sophia Antipolis, France et projet-commun Galaad

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Universal Portfolios With and Without Transaction Costs

Universal Portfolios With and Without Transaction Costs CS8B/Stat4B (Spring 008) Statistical Learning Theory Lecture: 7 Universal Portfolios With and Without Transaction Costs Lecturer: Peter Bartlett Scribe: Sahand Negahban, Alex Shyr Introduction We will

More information

Online Learning, Stability, and Stochastic Gradient Descent

Online Learning, Stability, and Stochastic Gradient Descent Online Learning, Stability, and Stochastic Gradient Descent arxiv:1105.4701v3 [cs.lg] 8 Sep 2011 September 9, 2011 Tomaso Poggio, Stephen Voinea, Lorenzo Rosasco CBCL, McGovern Institute, CSAIL, Brain

More information

Power Distribution System. Additional Information on page 2 See Page 2 Page 6. Eaton. See Page 2. Additional Information on page 2

Power Distribution System. Additional Information on page 2 See Page 2 Page 6. Eaton. See Page 2. Additional Information on page 2 IEC SYSTEM FOR MUTUAL RECOGNITION OF TEST CERTIFICATES FOR ELECTRICAL EQUIPMENT (IECEE) CB SCHEME SYSTEME CEI D ACCEPTATION MUTUELLE DE CERTIFICATS D ESSAIS DES EQUIPEMENTS ELECTRIQUES (IECEE) METHODE

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

Introduction au BIM. ESEB 38170 Seyssinet-Pariset Economie de la construction email : contact@eseb.fr

Introduction au BIM. ESEB 38170 Seyssinet-Pariset Economie de la construction email : contact@eseb.fr Quel est l objectif? 1 La France n est pas le seul pays impliqué 2 Une démarche obligatoire 3 Une organisation plus efficace 4 Le contexte 5 Risque d erreur INTERVENANTS : - Architecte - Économiste - Contrôleur

More information

Lecture 10: CPA Encryption, MACs, Hash Functions. 2 Recap of last lecture - PRGs for one time pads

Lecture 10: CPA Encryption, MACs, Hash Functions. 2 Recap of last lecture - PRGs for one time pads CS 7880 Graduate Cryptography October 15, 2015 Lecture 10: CPA Encryption, MACs, Hash Functions Lecturer: Daniel Wichs Scribe: Matthew Dippel 1 Topic Covered Chosen plaintext attack model of security MACs

More information

1 Formulating The Low Degree Testing Problem

1 Formulating The Low Degree Testing Problem 6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Linearity Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz In the last lecture, we proved a weak PCP Theorem,

More information

An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Liste d'adresses URL

Liste d'adresses URL Liste de sites Internet concernés dans l' étude Le 25/02/2014 Information à propos de contrefacon.fr Le site Internet https://www.contrefacon.fr/ permet de vérifier dans une base de donnée de plus d' 1

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

«Object-Oriented Multi-Methods in Cecil» Craig Chambers (Cours IFT6310, H08)

«Object-Oriented Multi-Methods in Cecil» Craig Chambers (Cours IFT6310, H08) «Object-Oriented Multi-Methods in Cecil» Craig Chambers (Cours IFT6310, H08) Mathieu Lemoine 2008/02/25 Craig Chambers : Professeur à l Université de Washington au département de Computer Science and Engineering,

More information

AgroMarketDay. Research Application Summary pp: 371-375. Abstract

AgroMarketDay. Research Application Summary pp: 371-375. Abstract Fourth RUFORUM Biennial Regional Conference 21-25 July 2014, Maputo, Mozambique 371 Research Application Summary pp: 371-375 AgroMarketDay Katusiime, L. 1 & Omiat, I. 1 1 Kampala, Uganda Corresponding

More information

Tail inequalities for order statistics of log-concave vectors and applications

Tail inequalities for order statistics of log-concave vectors and applications Tail inequalities for order statistics of log-concave vectors and applications Rafał Latała Based in part on a joint work with R.Adamczak, A.E.Litvak, A.Pajor and N.Tomczak-Jaegermann Banff, May 2011 Basic

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

F.S. Hillier & G.T Lierberman Introduction to Operations Research McGraw-Hill, 2004

F.S. Hillier & G.T Lierberman Introduction to Operations Research McGraw-Hill, 2004 Recherche opérationnelle. Master 1 - Esa Si vous souhaitez prendre connaissance des questions traitées dans le cours de recherche opérationnelle du Master 1 ESA, je vous recommande cet ouvrage. F.S. Hillier

More information

Reject Inference in Credit Scoring. Jie-Men Mok

Reject Inference in Credit Scoring. Jie-Men Mok Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business

More information

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore. CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

More information

"Internationalization vs. Localization: The Translation of Videogame Advertising"

Internationalization vs. Localization: The Translation of Videogame Advertising Article "Internationalization vs. Localization: The Translation of Videogame Advertising" Raquel de Pedro Ricoy Meta : journal des traducteurs / Meta: Translators' Journal, vol. 52, n 2, 2007, p. 260-275.

More information

POB-JAVA Documentation

POB-JAVA Documentation POB-JAVA Documentation 1 INTRODUCTION... 4 2 INSTALLING POB-JAVA... 5 Installation of the GNUARM compiler... 5 Installing the Java Development Kit... 7 Installing of POB-Java... 8 3 CONFIGURATION... 9

More information

Cross-validation for detecting and preventing overfitting

Cross-validation for detecting and preventing overfitting Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.

More information

GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1

GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1 (R) User Manual Environmental Energy Technologies Division Berkeley, CA 94720 http://simulationresearch.lbl.gov Michael Wetter MWetter@lbl.gov February 20, 2009 Notice: This work was supported by the U.S.

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Guidance on Extended Producer Responsibility (EPR) Analysis of EPR schemes in the EU and development of guiding principles for their functioning

Guidance on Extended Producer Responsibility (EPR) Analysis of EPR schemes in the EU and development of guiding principles for their functioning (EPR) Analysis of in the EU and development of guiding principles for their functioning In association with: ACR+ SITA LUNCH DEBATE 25 September 2014 Content 1. Objectives and 2. General overview of in

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

In-Home Caregivers Teleconference with Canadian Bar Association September 17, 2015

In-Home Caregivers Teleconference with Canadian Bar Association September 17, 2015 In-Home Caregivers Teleconference with Canadian Bar Association September 17, 2015 QUESTIONS FOR ESDC Temporary Foreign Worker Program -- Mr. Steve WEST *Answers have been updated following the conference

More information

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d). 1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM

False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM Int. Journal of Math. Analysis, Vol. 6, 2012, no. 24, 1153-1162 False-Alarm and Non-Detection Probabilities for On-line Quality Control via HMM C.C.Y. Dorea a,1, C.R. Gonçalves a, P.G. Medeiros b and W.B.

More information

Lecture 5 - CPA security, Pseudorandom functions

Lecture 5 - CPA security, Pseudorandom functions Lecture 5 - CPA security, Pseudorandom functions Boaz Barak October 2, 2007 Reading Pages 82 93 and 221 225 of KL (sections 3.5, 3.6.1, 3.6.2 and 6.5). See also Goldreich (Vol I) for proof of PRF construction.

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

The Brauer Manin obstruction for curves having split Jacobians

The Brauer Manin obstruction for curves having split Jacobians Journal de Théorie des Nombres de Bordeaux 00 (XXXX), 000 000 The Brauer Manin obstruction for curves having split Jacobians par Samir SIKSEK Résumé. Soit X A un morphism (qui n est pas constant) d une

More information

Switching Power Supply XP POWER INC. SUITE 150, 1241 E DYER RD SANTA ANA CA 92705, USA XP POWER INC SUITE 150, 1241 E DYER RD SANTA ANA CA 92705, USA

Switching Power Supply XP POWER INC. SUITE 150, 1241 E DYER RD SANTA ANA CA 92705, USA XP POWER INC SUITE 150, 1241 E DYER RD SANTA ANA CA 92705, USA IEC SYSTEM FOR MUTUAL RECOGNITION OF TEST CERTIFICATES FOR ELECTRICAL EQUIPMENT (IECEE) CB SCHEME SYSTEME CEI D'ACCEPTATION MUTUELLE DE CERTIFICATS D'ESSAIS DES EQUIPEMENTS ELECTRIQUES (IECEE) METHODE

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Comparaison et analyse des labels de durabilité pour la montagne, en Europe et dans le monde.

Comparaison et analyse des labels de durabilité pour la montagne, en Europe et dans le monde. Labels Touristiques Européens Comparaison et analyse des labels de durabilité pour la montagne, en Europe et dans le monde. Prof. Dr. Tobias Luthe November 2013 Structure de la presentation 1. L eventail

More information

Sélection adaptative de codes polyédriques pour GPU/CPU

Sélection adaptative de codes polyédriques pour GPU/CPU Sélection adaptative de codes polyédriques pour GPU/CPU Jean-François DOLLINGER, Vincent LOECHNER, Philippe CLAUSS INRIA - Équipe CAMUS Université de Strasbourg Saint-Hippolyte - Le 6 décembre 2011 1 Sommaire

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:

More information

Note concernant votre accord de souscription au service «Trusted Certificate Service» (TCS)

Note concernant votre accord de souscription au service «Trusted Certificate Service» (TCS) Note concernant votre accord de souscription au service «Trusted Certificate Service» (TCS) Veuillez vérifier les éléments suivants avant de nous soumettre votre accord : 1. Vous avez bien lu et paraphé

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Concentration inequalities for order statistics Using the entropy method and Rényi s representation

Concentration inequalities for order statistics Using the entropy method and Rényi s representation Concentration inequalities for order statistics Using the entropy method and Rényi s representation Maud Thomas 1 in collaboration with Stéphane Boucheron 1 1 LPMA Université Paris-Diderot High Dimensional

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

Sun Management Center Change Manager 1.0.1 Release Notes

Sun Management Center Change Manager 1.0.1 Release Notes Sun Management Center Change Manager 1.0.1 Release Notes Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 817 0891 10 May 2003 Copyright 2003 Sun Microsystems, Inc. 4150

More information

Dimensioning an inbound call center using constraint programming

Dimensioning an inbound call center using constraint programming Dimensioning an inbound call center using constraint programming Cyril Canon 1,2, Jean-Charles Billaut 2, and Jean-Louis Bouquard 2 1 Vitalicom, 643 avenue du grain d or, 41350 Vineuil, France ccanon@fr.snt.com

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Inspection des engins de transport

Inspection des engins de transport Inspection des engins de transport Qu est-ce qu on inspecte? Inspection des engins de transport Inspection administrative préalable à l'inspection: - Inspection des documents d'accompagnement. Dans la

More information

Sun Cobalt Control Station. Using the LCD Console

Sun Cobalt Control Station. Using the LCD Console Sun Cobalt Control Station Using the LCD Console Copyright 1997-2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved. Sun Microsystems, Inc. has

More information

Survey on Conference Services provided by the United Nations Office at Geneva

Survey on Conference Services provided by the United Nations Office at Geneva Survey on Conference Services provided by the United Nations Office at Geneva Trade and Development Board, fifty-eighth session Geneva, 12-23 September 2011 Contents Survey contents Evaluation criteria

More information

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut. Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,

More information

Ivory Coast (Côte d Ivoire) Tourist visa Application for citizens of Tahiti living in Alberta

Ivory Coast (Côte d Ivoire) Tourist visa Application for citizens of Tahiti living in Alberta Ivory Coast (Côte d Ivoire) Tourist visa Application for citizens of Tahiti living in Alberta Please enter your contact information Name: Email: Tel: Mobile: The latest date you need your passport returned

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information