First mean return time in decoherent quantum walks


 Tyler Arnold
 2 years ago
 Views:
Transcription
1 First mean return time in decoherent quantum walks Péter Sinkovicz, János K. Asbóth, Tamás Kiss Wigner Research Centre for Physics Hungarian Academy of Sciences, April 0.
2 Problem statement Example: N=,,,... A ij = A ji transition amplitude First mean return time in decoherent quantum walks /
3 Problem Our numerical results Conclusion Arrival by absorption: 0i := ψ0 i First mean return time in decoherent quantum walks /
4 Problem Our numerical results Conclusion Arrival by absorption: 0i := ψ0 i First mean return time in decoherent quantum walks U 0i /
5 Problem Our numerical results Conclusion Arrival by absorption: 0i := ψ0 i U 0i or p := h0 U 0i First mean return time in decoherent quantum walks ψ i := [I 0ih0 ] U 0i q := hψ ψ i /
6 Conditional wave function: evolve these parts, which haven t come back where ψ t+ := [I 0 0 ] U ψ t p t := 0 U ψ t q t+ := ψ t+ ψ t+ p t probability: Prob(X t = 0 X n 0 if n < t) q t probability: Prob(X n 0 if n t) First mean return time in decoherent quantum walks /
7 Mean return time T := tp t q t := Trρ(t) t= t=0 t=0 where q t+ + p t+ = q t and q 0 = F. A. Grünbaum,A. H. Werner, R. F. Werner, (0) First mean return time in decoherent quantum walks /
8 Mean return time T := tp t q t := Trρ(t) t= t=0 t=0 where q t+ + p t+ = q t and q 0 = pt N= example p t : t pt t F. A. Grünbaum,A. H. Werner, R. F. Werner, (0) First mean return time in decoherent quantum walks /
9 Mean return time T := tp t q t := Trρ(t) t= t=0 t=0 where q t+ + p t+ = q t and q 0 = pt N= example p t : t pt t T is an integer number equal with the graph size independent of A ij transition amplitude T = N F. A. Grünbaum,A. H. Werner, R. F. Werner, (0) First mean return time in decoherent quantum walks /
10 Classical case : symmetric, regular graph T Kemeny, G.; Snell, L. (90) First mean return time in decoherent quantum walks /
11 Our interest? decoherence x First mean return time in decoherent quantum walks 7 /
12 Numerical study in order to find out?? T = N I) homogeneous decoherence II) Kraus representation III) Master equation First mean return time in decoherent quantum walks 8 /
13 Homogeneous decoherence For see a transition between Grünbaum et al. s and the Classical random walk we stick in a simplest decoherence. So one step of the process is the following: coherent time step decoherence C[ρ] = UρU measurement D[ρ] xy = dρ xy + ( d)ρ xx δ xy M[ρ] = [I 0 0 ] ρ [I 0 0 ] First mean return time in decoherent quantum walks 9 /
14 T numerical result U + homogeneous decoherence T = N N for d = unitary time evolution, and d = 0 is the classical case d 0 where d ρ t+ = M[T [ρ t ]] = M[D[C[ρ t ]]] d and D[ρ] = ρ dρ dρ... dρ ρ First mean return time in decoherent quantum walks 0 /
15 Numerical study in order to find out?? T = N I) homogeneous decoherence II) Kraus representation III) Master equation First mean return time in decoherent quantum walks /
16 Kraus representation In order to map all quantum channel we can use Kraus representation for the decoherence channel d ρ := D[ρ] = K µ ρk µ µ= ρ m,µ = D m,n µ,ν ρ n,ν trace preserving (probability preserving): d K µk µ = I D stochastic µ= may we will get some redundancy, because the measure and the unitary time evolution can be defined by Kraus operators First mean return time in decoherent quantum walks /
17 numerical guess unital map T [ N I] = N I T = N T [ ] = D[C[ ]] measure less process is unital (leave the totally mixed state invariant) only if d K µ K µ = I D T stochastic µ= trace preserving and untial map quantum walk ρ T [ρ] classical walk λ t Wλ t First mean return time in decoherent quantum walks /
18 Numerical study in order to find out?? T = N I) homogeneous decoherence II) Kraus representation III) Master equation First mean return time in decoherent quantum walks /
19 Master equation For check we formulated our guess in another language: T [ ] can be substitute with the time evolution which has generated by the t ρ = i [H, ρ] + L(ρ) L(ρ) = i,j κ i,j [ i j ρ j i ( i i ρ + ρ j j ) ] Master equation. First mean return time in decoherent quantum walks /
20 Master equation For check we formulated our guess in another language: T [ ] can be substitute with the time evolution which has generated by the t ρ = i [H, ρ] + L(ρ) L(ρ) = i,j κ i,j [ i j ρ j i ( i i ρ + ρ j j ) ] Master equation. numerical guess unital map L(I) = 0 κ i,j = κ j,i T = N First mean return time in decoherent quantum walks /
21 Conclusion I) numerically studied systems Kraus representation unitary quantum walk homogeneous decoherence inhomogeneous, but symmetric decoherence unistochastic map Master equation L(I) = 0 (unital map) II) analytically we need proof for numerical guess T [I] = I unital T = N First mean return time in decoherent quantum walks /
LECTURE 4. Last time: Lecture outline
LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random
More informationChapter 9. Systems of Linear Equations
Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables
More informationgeometric transforms
geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition
More informationLecture 2: Essential quantum mechanics
Department of Physical Sciences, University of Helsinki http://theory.physics.helsinki.fi/ kvanttilaskenta/ p. 1/46 Quantum information and computing Lecture 2: Essential quantum mechanics JaniPetri Martikainen
More informationQuantum Computing Lecture 7. Quantum Factoring. Anuj Dawar
Quantum Computing Lecture 7 Quantum Factoring Anuj Dawar Quantum Factoring A polynomial time quantum algorithm for factoring numbers was published by Peter Shor in 1994. polynomial time here means that
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationUnit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12
Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One
More informationSIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
More informationThree Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009
Three Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 Outline of the Talk Brief review of (or introduction to) quantum mechanics. 3 different viewpoints on calculation. Schrödinger, Heisenberg,
More informationQuantum Algorithms in NMR Experiments. 25 th May 2012 Ling LIN & Michael Loretz
Quantum Algorithms in NMR Experiments 25 th May 2012 Ling LIN & Michael Loretz Contents 1. Introduction 2. Shor s algorithm 3. NMR quantum computer Nuclear spin qubits in a molecule NMR principles 4. Implementing
More informationThe Limits of Adiabatic Quantum Computation
The Limits of Adiabatic Quantum Computation Alper Sarikaya June 11, 2009 Presentation of work given on: Thesis and Presentation approved by: Date: Contents Abstract ii 1 Introduction to Quantum Computation
More informationRate of convergence towards Hartree dynamics
Rate of convergence towards Hartree dynamics Benjamin Schlein, LMU München and University of Cambridge Universitá di Milano Bicocca, October 22, 2007 Joint work with I. Rodnianski 1. Introduction boson
More informationTons of Free Math Worksheets at:
Topic : Equations of Circles  Worksheet 1 form which has a center at (6, 4) and a radius of 5. x 28x+y 28y12=0 circle with a center at (4,4) and passes through the point (7, 3). center located at
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationSystem Identification for Acoustic Comms.:
System Identification for Acoustic Comms.: New Insights and Approaches for Tracking Sparse and Rapidly Fluctuating Channels Weichang Li and James Preisig Woods Hole Oceanographic Institution The demodulation
More informationHow to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
More informationTopic: Special Products and Factors Subtopic: Rules on finding factors of polynomials
Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:
More informationDO WE REALLY UNDERSTAND QUANTUM MECHANICS?
DO WE REALLY UNDERSTAND QUANTUM MECHANICS? COMPRENONSNOUS VRAIMENT LA MECANIQUE QUANTIQUE? VARIOUS INTERPRETATIONS OF QUANTUM MECHANICS IHES, 29 janvier 2015 Franck Laloë, LKB, ENS Paris 1 INTRODUCTION
More informationSimplification of Radical Expressions
8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of
More informationTime dependence in quantum mechanics Notes on Quantum Mechanics
Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:3705:00 Copyright 2003 Dan
More informationLinear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
More informationThe Essentials of Quantum Mechanics
The Essentials of Quantum Mechanics Prof. Mark Alford v7, 2008Oct22 In classical mechanics, a particle has an exact, sharply defined position and an exact, sharply defined momentum at all times. Quantum
More informationMth 95 Module 2 Spring 2014
Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression
More informationQuantum Computing and Grover s Algorithm
Quantum Computing and Grover s Algorithm Matthew Hayward January 14, 2015 1 Contents 1 Motivation for Study of Quantum Computing 3 1.1 A Killer App for Quantum Computing.............. 3 2 The Quantum Computer
More informationSPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BIDIAGONAL REPRESENTATIONS FOR PHASE TYPE DISTRIBUTIONS AND MATRIXEXPONENTIAL DISTRIBUTIONS
Stochastic Models, 22:289 317, 2006 Copyright Taylor & Francis Group, LLC ISSN: 15326349 print/15324214 online DOI: 10.1080/15326340600649045 SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BIDIAGONAL
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationSimplifying Algebraic Fractions
5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions
More information3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
More informationLecture 4: Thermodynamics of Diffusion: Spinodals
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 4: Thermodynamics of Diffusion: Spinodals Fick
More informationQuantum Mechanics and Representation Theory
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30
More informationSYSTEMS OF EQUATIONS
SYSTEMS OF EQUATIONS 1. Examples of systems of equations Here are some examples of systems of equations. Each system has a number of equations and a number (not necessarily the same) of variables for which
More informationPolynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range
THEORY OF COMPUTING, Volume 1 (2005), pp. 37 46 http://theoryofcomputing.org Polynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range Andris Ambainis
More information2. Introduction to quantum mechanics
2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian
More informationThe counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive
The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive approximation converter. 1 2 The idea of sampling is fully covered
More informationMaster equation for retrodiction of quantum communication signals
Master equation for odiction of quantum communication signals Stephen M. Barnett 1, David T. Pegg 2, John Jeffers 1 and Ottavia Jedrkiewicz 3 1 Department of Physics and Applied Physics, University of
More informationHomework set 4  Solutions
Homework set 4  Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at
More information~ EQUIVALENT FORMS ~
~ EQUIVALENT FORMS ~ Critical to understanding mathematics is the concept of equivalent forms. Equivalent forms are used throughout this course. Throughout mathematics one encounters equivalent forms of
More informationChemical group theory for quantum simulation
Title JDWhitfield@gmail.com 1/19 Chemical group theory for quantum simulation James Daniel Whitfield U. Ghent September 28, 2015 Title JDWhitfield@gmail.com 2/19 1. Computational chemistry 2. Symmetry
More informationFactoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
More informationDifference of Squares and Perfect Square Trinomials
4.4 Difference of Squares and Perfect Square Trinomials 4.4 OBJECTIVES 1. Factor a binomial that is the difference of two squares 2. Factor a perfect square trinomial In Section 3.5, we introduced some
More informationThe Australian Journal of Mathematical Analysis and Applications
The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 114, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO
More informationModeling and Performance Evaluation of Computer Systems Security Operation 1
Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system
More information1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
More informationChapter 9 Unitary Groups and SU(N)
Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three
More informationTangent line of a circle can be determined once the tangent point or the slope of the line is known.
Worksheet 7: Tangent Line of a Circle Name: Date: Tangent line of a circle can be determined once the tangent point or the slope of the line is known. Straight line: an overview General form : Ax + By
More information5.1 The Unit Circle. Copyright Cengage Learning. All rights reserved.
5.1 The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives The Unit Circle Terminal Points on the Unit Circle The Reference Number 2 The Unit Circle In this section we explore some
More informationELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
More informationWhat Has Quantum Mechanics to Do With Factoring? Things I wish they had told me about Peter Shor s algorithm
What Has Quantum Mechanics to Do With Factoring? Things I wish they had told me about Peter Shor s algorithm 1 Question: What has quantum mechanics to do with factoring? Answer: Nothing! 2 Question: What
More informationFACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
More informationit s refraction, it s diffraction, it s a kinoform lens  new concepts in focusing xrays detlef smilgies chess
it s refraction, it s diffraction, it s a kinoform lens  new concepts in focusing xrays detlef smilgies chess what is a lens? incoherent source > geometric optics > refraction Snell s law > lensmaker
More informationResearch Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three
Advances in Mathematical Physics Volume 203, Article ID 65798, 5 pages http://dx.doi.org/0.55/203/65798 Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three Wenjun
More informationCorinne: I m thinking of a number between 220 and 20. What s my number? Benjamin: Is it 25?
Walk the Line Adding Integers, Part I Learning Goals In this lesson, you will: Model the addition of integers on a number line. Develop a rule for adding integers. Corinne: I m thinking of a number between
More information4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.
4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch
More informationThe Ramsey Discounting Formula for a HiddenState Stochastic Growth Process / 8
The Ramsey Discounting Formula for a HiddenState Stochastic Growth Process Martin L. Weitzman May 2012 Bergen Conference LongTerm Social Discount Rates What is Approach of This Paper? Increasing fuzziness
More informationpath tracing computer graphics path tracing 2009 fabio pellacini 1
path tracing computer graphics path tracing 2009 fabio pellacini 1 path tracing Monte Carlo algorithm for solving the rendering equation computer graphics path tracing 2009 fabio pellacini 2 solving rendering
More informationMatrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
More informationA characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
More informationLecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
More informationGrade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
More informationAuger width of metastable states in antiprotonic helium II
«Избранные вопросы теоретической физики и астрофизики». Дубна: ОИЯИ, 2003. С. 153 158. Auger width of metastable states in antiprotonic helium II J. Révai a and A. T. Kruppa b a Research Institute for
More informationCorrelation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
More informationIntroduction to time series analysis
Introduction to time series analysis Margherita Gerolimetto November 3, 2010 1 What is a time series? A time series is a collection of observations ordered following a parameter that for us is time. Examples
More informationThe Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
More informationTraffic Behavior Analysis with Poisson Sampling on Highspeed Network 1
Traffic Behavior Analysis with Poisson Sampling on Highspeed etwork Guang Cheng Jian Gong (Computer Department of Southeast University anjing 0096, P.R.China) Abstract: With the subsequent increasing
More informationExample: Boats and Manatees
Figure 96 Example: Boats and Manatees Slide 1 Given the sample data in Table 91, find the value of the linear correlation coefficient r, then refer to Table A6 to determine whether there is a significant
More informationMathematics Notes for Class 12 chapter 3. Matrices
1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form
More informationLINEAR ALGEBRA OF PASCAL MATRICES
LINEAR ALGEBRA OF PASCAL MATRICES LINDSAY YATES Abstract. The famous Pascal s triangle appears in many areas of mathematics, such as number theory, combinatorics and algebra. Pascal matrices are derived
More information3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models
3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.11 Polynomial Function A polynomial function of degree n, where n
More informationJoint distributions Math 217 Probability and Statistics Prof. D. Joyce, Fall 2014
Joint distributions Math 17 Probability and Statistics Prof. D. Joyce, Fall 14 Today we ll look at joint random variables and joint distributions in detail. Product distributions. If Ω 1 and Ω are sample
More informationMarkov Chains. Table of Contents. Schedules
Markov Chains These notes contain material prepared by colleagues who have also presented this course at Cambridge, especially James Norris. The material mainly comes from books of Norris, Grimmett & Stirzaker,
More informationFactoring by Quantum Computers
Factoring by Quantum Computers Ragesh Jaiswal University of California, San Diego A Quantum computer is a device that uses uantum phenomenon to perform a computation. A classical system follows a single
More informationAlgebra 2 PreAP. Name Period
Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing
More informationThe composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.
30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).
More informationChapter 8 Graphs and Functions:
Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes
More informationStochastic Gene Expression in Prokaryotes: A Point Process Approach
Stochastic Gene Expression in Prokaryotes: A Point Process Approach Emanuele LEONCINI INRIA Rocquencourt  INRA JouyenJosas ASMDA Mataró June 28 th 2013 Emanuele LEONCINI (INRIA) Stochastic Gene Expression
More informationAnyone know these guys?
Anyone know these guys? Gavin Brown and Miles Reid We observe that some of our diptych varieties have a beautiful description in terms of key 5folds V (k) A k+5 that are almost homogeneous spaces. By
More informationFACTORISATION YEARS. A guide for teachers  Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project
9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers  Years 9 10 June 2011 Factorisation (Number and Algebra : Module
More information5 Homogeneous systems
5 Homogeneous systems Definition: A homogeneous (homojeen ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m
More informationQuantum Mechanics: mysteries and solutions
Quantum Mechanics: mysteries and solutions ANGELO BASSI Department of Theoretical Physics, University of Trieste, Italy and INFN  Trieste Angelo Bassi 1 Quantization of light: Planck s hypothesis (1900)
More informationMath 201 Lecture 23: Power Series Method for Equations with Polynomial
Math 201 Lecture 23: Power Series Method for Equations with Polynomial Coefficients Mar. 07, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in
More information12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
More informationStochastic Gene Expression in Prokaryotes: A Point Process Approach
Stochastic Gene Expression in Prokaryotes: A Point Process Approach Emanuele LEONCINI INRIA Rocquencourt  INRA JouyenJosas Mathematical Modeling in Cell Biology March 27 th 2013 Emanuele LEONCINI (INRIA)
More informationLights and Darks of the StarFree Star
Lights and Darks of the StarFree Star Edward Ochmański & Krystyna Stawikowska Nicolaus Copernicus University, Toruń, Poland Introduction: star may destroy recognizability In (finitely generated) trace
More informationA stochastic individualbased model for immunotherapy of cancer
A stochastic individualbased model for immunotherapy of cancer Loren Coquille  Joint work with Martina Baar, Anton Bovier, Hannah Mayer (IAM Bonn) Michael Hölzel, Meri Rogava, Thomas Tüting (UniKlinik
More informationFactoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)
Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if
More informationCopyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
More informationRank one SVD: un algorithm pour la visualisation d une matrice non négative
Rank one SVD: un algorithm pour la visualisation d une matrice non négative L. Labiod and M. Nadif LIPADE  Universite ParisDescartes, France ECAIS 2013 November 7, 2013 Outline Outline 1 Data visualization
More informationMatrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo
Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for
More informationElectronic Structure Methods. by Daniel Rohr Vrije Universiteit Amsterdam
Electronic Structure Methods by Daniel Rohr Vrije Universiteit Amsterdam drohr@few.vu.nl References WFT Szaboo & Ostlund Modern Quantum Chemistry Helgaker, Jørgensen & Olsen Molecular ElectronicStructure
More informationSolutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
More informationAnalysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TUBerlin IRCAM Analysis/Synthesis
More informationFactoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More informationDisorderinduced rounding of the phase transition. in the largeqstate Potts model. F. Iglói SZFKI  Budapest
Disorderinduced rounding of the phase transition in the largeqstate Potts model M.T. Mercaldo JC. Anglès d Auriac Università di Salerno CNRS  Grenoble F. Iglói SZFKI  Budapest Motivations 2. CRITICAL
More information15th European Union Contest for Young Scientists
15th written projects conception to conclusion European Union Contest for Young Scientists Budapest, Hungary 2026 September, 2003 Millenary Park Organizers: originality and creativity reasoning and clarity
More informationWhat does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra  Linear Equations & Inequalities T37/H37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
More informationLogarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationStock price fluctuations and the mimetic behaviors of traders
Physica A 382 (2007) 172 178 www.elsevier.com/locate/physa Stock price fluctuations and the mimetic behaviors of traders Junichi Maskawa Department of Management Information, Fukuyama Heisei University,
More information1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
More information