T CELL RECEPTOR: STRUCTURE AND GENETIC BASIS

Size: px
Start display at page:

Download "T CELL RECEPTOR: STRUCTURE AND GENETIC BASIS"

Transcription

1 T CELL RECEPTOR: STRUCTURE AND GENETIC BASIS Objectives: (1) Present an overview of the T receptor structure and organization of the gene loci encoding for the T cell receptor chains; (2) explain mechanisms underlying generation of T cell receptor diversity; (3) examine the stages in thymic selection of T lymphocytes; and (4) compare and contrast the T cell receptor with the B cell receptor. Keywords: T cell receptor (TCR). Reading: Coico and Sunshine. Immunology: A Short Course. John Wiley & Sons, Inc, New York, NY. 6 th edition, Chapter 9; The acquired immune response is subdivided, based on participation of two major cell types. B lymphocytes originate in the bone marrow, and synthesize/secrete antibodies. This is termed humoral immunity. T lymphocytes mature in the thymus, and secrete immunoregulatory factors following interaction with antigen presenting cells; this is termed cellular immunity (CMI). Lymphocyte Biology Lymphoid cells provide efficient, specific and long-lasting immunity against microbes/pathogens and are responsible for acquired immunity. This lecture will primarily examine the biology of two classes of lymphocytes: (1) thymic-dependent cells or T lymphocytes that operate in cellular and humoral immunity; and (2) B lymphocytes that differentiate into plasma cells to secrete antibodies. T and B lymphocytes produce and express specific receptors for antigens. The major properties of the acquired immune response are specificity, memory, adaptiveness, and discrimination between self and non-self. All of these properties are related to the random selection of variable region components during the development of both B cells and T cells. The lymphatic organs are tissues in which lymphocytes mature, differentiate and proliferate. The primary (central) lymphoid organs are those in which B and T lymphocytes mature into antigen recognizing cells. In embryonic life, B cells mature and differentiate from hematopoietic stem cells in the fetal liver. After birth, B cells differentiate in the bone marrow. Maturation of T cells occurs in a different manner. Progenitor cells from the bone marrow migrate to the thymus where they differentiate into T lymphocytes. The T lymphocytes continue to differentiate after leaving the thymus, and are driven to do so by encounter with specific antigen in the secondary lymphoid organs. The secondary lymphoid organs are those tissues in which antigen-driven proliferation and differentiation take place. The spleen and lymph nodes are the major secondary lymphoid organs. Additional secondary lymphoid organs include the tonsils, appendix, and Peyer s patches. Aggregates of cells in the lamina propria of the digestive tract lining may also be included in this category, as well as any tissue described as MALT (mucosa-associated lymphoid tissue), GALT (gut-associated lymphoid tissue) or BALT bronchus-associated lymphoid tissue). T Lymphocytes: T lymphocytes are involved in regulation of immune response and cell mediated immunity. They provide necessary factors to help B cells produce antibody. Mature T cells express antigen-specific T

2 cell receptors (TCR). Every mature T cell expresses the CD3 molecule, which is associated with the TCR. The TCR/CD3 complex recognizes antigens associated with the major histocompatibility complex (MHC) molecules on target cells (e.g. virus-infected cell). The TCR is also expressed on the cell surface in association with co-receptor or accessory molecules (CD4 or CD8). The structure of the T-cell receptor (TCR) complex showing the predominant form of the antigen-binding chains, a and b, and the associated signal transduction complex, CD3 (γ, δ and ε chains) plus ζ (zeta) or η (eta) or θ (theta). (-) and (+) represent electrostatic interactions. T Cell Receptor: The TCR is a transmembrane heterodimer composed of two disulfide-linked polypeptide chains. T lymphocytes of all antigenic specificities exist prior to contact with antigen. Each lymphocyte carries a TCR of only a single specificity. T Lymphocytes can be stimulated by antigen to give rise to progeny with identical antigenic specificity. Lymphocytes reactive with self are deleted or inactivated to ensure that no immune response is mounted against self components. The vast majority of T lymphocytes express alpha [α] and beta [β] chains on their surface. Cells that express gamma [γ] and delta [δ] chains comprise only 5% of the normal circulating T cell population in healthy adults. Each chain (α, β, γ or δ) represents a distinct protein with approximate molecular weight of 45 kda. An individual T cell can express either an αβ or a γδ heterodimer as its receptor, but never both. The TCR recognizes antigen in the form of peptides which are bound in the groove on MHC molecules (reviewed in detail in lecture: Role of MHC in Immune Response). The interactions between heterodimers create three hypervariable regions called complementarity determining regions (CDRs 1, 2, and 3).

3 The interaction of TCR, MHC, and peptide. The complementarity determining regions (CDRs) of the TCR V regions and peptide bound in the peptide-binding groove of an MHC class I molecule are depicted. [Based on the crystal structure described by K. C. Garcia et al. (1998): Science 279: 1166.] The T cell receptor genes are closely related members of the immunoglobulin gene superfamily. Each chain consists of a constant (C) and a variable (V) region, and is formed by a gene-sorting mechanism similar to that found in antibody formation. The repertoire is generated by combinatorial joining of variable (V), joining (J), and diversity (D) genes, and by N region diversification (nucleotides inserted by the enzyme deoxynucleotidyl-transferase). Unlike immunoglobulin genes, genes encoding TCR do not undergo somatic mutation. Thus there is no change in the affinity of the TCR during activation, differentiation, and expansion.

4 TCR-CD3-complex. The TCR heterodimer is tightly associated with six independently encoded CD3 subunits (δ, γ, ε, ζ, η and θ) required for efficient transport to the cell surface. CD3 subunits possess long intracellular tails and are responsible for transducing signals upon TCR engagement. Genes Coding for T-Cell Receptors. Genes which code for the T cell receptor and the mechanisms used to generate TCR diversity are similar to those of immunoglobulins. The TCR V, D, and J genes are mixed together in a more complicated manner than found for immunoglobulin genes. α and γ uses only V and J gene segments. β and δ use V, D, and J gene segments. There are many more Vα and Vβ genes (50-100) than Vγ and Vδ genes (5-10) present in germ line. The a and d chain genes are mixed together in one locus. The genes encoding the d chain are entirely located between the cluster of Vα and Jα gene segments. The top and bottom rows show germline arrangement of the variable (V), diversity (D), joining (J), and constant (C) gene segments at the T-cell receptor α and β loci. During T- cell development, a V-region sequence for each chain is assembled by DNA recombination. For the α chain (top), a Vα gene segment rearranges to a Jα gene segment to create a functional gene encoding the V domain. For the β chain (bottom), re-arrangement of a Dβ, a Jβ, and a Vβ gene segment creates the functional V-domain exon. Order of TCR Gene Rearrangement. The earliest cell entering the thymus has its TCR genes in the germ line configuration (unrearranged). Both γ and β chain genes then begin to rearrange, more or less simultaneously. If the γ chain genes rearrange successfully, then δ chain genes also start to rearrange. If both γ and δ genes rearrange functionally, no further gene rearrangement takes place and the cell remains a γδ T cell. If γ and/or δ rearrangements are not functional, then β gene rearrangement continues followed by α gene rearrangement. In this manner, a αβ product appears, and the cell becomes an αβ T cell.

5 The Process of Recombination. Recombination of V, D, and J gene segments is coordinated by recombinaseactivating genes RAG-1 and RAG-2. The enzymes recognize specific DNA signal sequences consisting of a heptamer, followed a spacer of 12 or 23 bases, and then a nonamer. If either RAG gene is impaired or missing, homologous recombination events are abolished. This gives rise to severe combined immunodeficiency (SCID). Mutations which result in partial enzymatic activity can also occur, and can give rise to immunodeficiency diseases. An example of such disorder is Omenn Syndrome, discussed in detail in the Case Studies in Immunology (Geha and Notarangelo, chapter 7) text. Generation of T-Cell Receptor Diversity. The overall level of diversity is greater for T cell receptors than that for immunoglobulins. This is primarily due to additional junctional diversity in possible TCR gene rearrangements. Most of the variability in the TCR occurs within junctional regions encoded by D, J and N nucleotides. This is the region that corresponds to the CDR3 loops that form the center of the binding sites.

6 So, while the center of the binding site is highly variable, the remaining portion of the heterodimer is subject to relatively little variation. Number of V gene pairs Junctional diversity Total Diversity Immunoglobulins ~2-3.4 x 106 ~3 x 107 ~1014 T cell a:b Receptors 5.8 x 106 ~2 x 1011 ~1018 Development of T lymphocytes During differentiation in the thymus, immature T cells undergo rearrangement of their TCR α and β genes to generate a diverse set of clonotypic TCRs. Immature thymocytes are selected for further maturation only if their TCRs do not interact with self-peptides presented in the context of self-major histocompatibility complex (MHC) molecules on antigen presenting cells. Different signals lead to the alternate developmental outcomes of maturation or apoptosis (positive versus negative selection). Positively selected thymocytes undergo alternate commitment to either the T killer or T helper lineages, which correlate precisely with a cell's TCR specificity towards MHC class I or II molecules, respectively. Lineage commitment is marked phenotypically by the loss of expression of one of the co-receptor molecules, CD8 or CD4. Immature thymocytes express both co-receptors (double positive), while T killer or T helper cells express only CD8 or CD4, respectively (single positive CD8+ or CD4+). The majority of peripheral blood T lymphocytes express the α and β form of the TCR. In healthy adults, less than 5% express a heterodimer comprised of the γ and δ chains. Virtually all the cells that express the TCRabare CD4+CD8- (T helper) or CD4-CD8+ (T cytotoxic or T suppressor). Almost all cells expressing TCR-γδ are CD4-CD8- (double negative). While the TCR-αβ expressing lymphocytes are known to function as helper and cytotoxic cells, the function of the TCR-γδ cells is not well understood. Figure. Changes in surface molecules allow thymocytes at different stages of maturation. Figure. Main stages in the development of a T lymphocyte.

7

8 T Helper Cells: T helper cells (Th) are the primary regulators of T cell- and B cell-mediated responses. They 1) aid antigen-stimulated subsets of B lymphocytes to proliferate and differentiate toward antibody-producing cells; 2) express the CD4 molecule; 3) recognize foreign antigen complexed with MHC class II molecules on B cells, macrophages or other antigen-presenting cells; and 4) aid effector T lymphocytes in cell-mediated immunity. Currently, it is believed that there are two main functional subsets of Th cells, plus other helper subsets of importance. T helper 1 (Th1) cells aid in the regulation of cellular immunity, and T helper 2 (Th2) cells aid B cells to produce certain classes of antibodies (e.g., IgA and IgE). The functions of these subsets of Th cells depend upon the specific types of cytokines that are generated, for example interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) by Th1 cells; IL-4, IL-6 and IL-10 by Th2 cells. Two other classes of T helper cells are thought to be involved in oral tolerance and serve as regulators for immune function. Th3 cells secrete IL-4 and TGF-b and provide help for IgA production, and have suppressive properties for Th1 and Th2 cells. Th17 cells, characterized by IL-17 secretion, are thought to be involved as effector cells for autoimmune disease progression. T Cytotoxic Cells: T cytotoxic cells (CTLs) are cytotoxic against tumor cells and host cells infected with intracellular pathogens. These cells 1) usually express CD8, and, 2) destroy infected cells in an antigenspecific manner that is dependent upon the expression of MHC class I molecules on antigen presenting cells. T Suppressor/ T Regulatory Cells: T suppressor cells suppress the T and B cell responses and express CD8 molecules. T regulatory cells also affect T cell response, with many cells characterized as CD4+CD25+, TGFb secretors. γδ T Cells: Not all T cells express αβ TCRs. An alternative is to express γδ chains of the TCR. Generally, γδ cells lack CD4, although some γδ cells do express CD8. The functions of γδ cells are not well understood. γδ T cells can function in the absence of MHC molecules. They home to the lamina propria of the gut, and are thought to assist in protection against microorganisms entering through epithelium at mucosal surfaces. Their range of response to antigens is limited. γδ expressing cells have been found to be active towards mycobacterial antigens and heat shock proteins. They have the ability to secrete cytokines like their αβ counterparts. Natural Killer T Cells: Natural killer T cells (NKT) are a heterogeneous group of T cells that share properties of both T cells and natural killer (NK) cells. hese cells recognize an antigen- presenting molecule (CD1d) that binds self- and foreign lipids and glycolipids. They constitute only 0.2% of all peripheral blood T cells. The term NK T cells was first used in mice to define a subset of T cells that expressed the natural killer (NK) cell-associated marker NK1.1 (CD161). It is now generally accepted that the term NKT cells refers to CD1d-restricted T cells coexpressing a heavily biased, semi-invariant T cell receptor (TCR) and NK cell markers. Natural killer T (NKT) cells should not be confused with natural killer (NK) cells. Comparison between B cell and T cell receptors Both BCRs and TCRs share these properties: They are integral membrane proteins They are present in thousands of identical copies exposed at the cell surface They are made before the cell ever encounters an antigen They are encoded by genes assembled by the recombination of segments of DNA Allelic exclusion ensures only one receptor with a single antigenic specificity They demonstrate N region addition during gene rearrangement

9 They have a unique binding site This site binds to a portion of the antigen called an antigenic determinant or epitope The binding, like that between an enzyme and its substrate depends on complementarity of the surface of the receptor and the surface of the epitope The binding occurs by non-covalent forces (again, like an enzyme binding to its substrate) Successful binding of the antigen receptor to the epitope, if accompanied by additional"signals", results in: 1. Stimulation of the cell to leave G0 and enter the cell cycle 2. Repeated mitosis leads to the development of a clone of cells bearing the same antigen receptor; that is, a clone of cells of the identical specificity. BCRs and TCRs differ in: Their structure The genes that encode them The type of epitope to which they bind TCRs do not somatically mutate TCRs do not undergo isotype switching TCR gene recombination exhibits far greater junctional diversity than Ig genes TCRs are never secreted from the T cell

10 SUMMARY T Lymphocytes T lymphocytes are involved in regulation of immune response and in cell mediated immunity. Every mature T cell expresses CD3, which is associated with the TCR. During thymic differentiation, immature T cells undergo rearrangement of their TCR α and β genes to generate a diverse set of clonotypic TCRs. Immature thymocytes are selected for further maturation only if they recognize foreign antigens in the context of MHC molecules. Mature T cells usually display one of two accessory molecules. CD4+ T helper cells are the primary regulators of T cell- and B cell-mediated responses, and are further subdivided into functional subsets dependent upon cytokines secreted. CD8+ T cytotoxic cells (CTLs) are cytotoxic against tumor cells and host cells infected with intracellular pathogens. T suppressor cells suppress the T and B cell responses and express CD8 molecules. T Cell Receptor: Structure and Genetic Basis 1. Mature T cells express antigen-specific TCR in a complex with CD3 molecules. The TCR is a disulfidelinked heterodimer composed of either αβ or γδ chains. T cells express either αβ or γδ chain heterodimers, but never both. 2. T cell receptor genes are closely related members of the immunoglobulin gene superfamily and derive part of their structural diversity form recombination of different V, D, and J gene segments. 3. The mechanisms for T cell receptor gene switching are similar to those of immunoglobulin genes, but T cell receptor genes do not have somatic mutations. γ chains of the TCR have only V and J segments, and join to δ chains. δ chains of the TCR have genes for V, D, and J segments. The process of recombination is coordinated by recombinase-activating genes RAG-1 and RAG If gd rearrangements are unsuccessful on both chromosomes, α chains join to β chains to give αβ phenotypic T cells. α chains have only V and J segments; β chains have V, D, and J segments.

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins

specific B cells Humoral immunity lymphocytes antibodies B cells bone marrow Cell-mediated immunity: T cells antibodies proteins Adaptive Immunity Chapter 17: Adaptive (specific) Immunity Bio 139 Dr. Amy Rogers Host defenses that are specific to a particular infectious agent Can be innate or genetic for humans as a group: most microbes

More information

2) Macrophages function to engulf and present antigen to other immune cells.

2) Macrophages function to engulf and present antigen to other immune cells. Immunology The immune system has specificity and memory. It specifically recognizes different antigens and has memory for these same antigens the next time they are encountered. The Cellular Components

More information

Name (print) Name (signature) Period. (Total 30 points)

Name (print) Name (signature) Period. (Total 30 points) AP Biology Worksheet Chapter 43 The Immune System Lambdin April 4, 2011 Due Date: Thurs. April 7, 2011 You may use the following: Text Notes Power point Internet One other person in class "On my honor,

More information

B Cells and Antibodies

B Cells and Antibodies B Cells and Antibodies Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School Lecture outline Functions of antibodies B cell activation; the role of helper T cells in antibody production

More information

Antibody Function & Structure

Antibody Function & Structure Antibody Function & Structure Specifically bind to antigens in both the recognition phase (cellular receptors) and during the effector phase (synthesis and secretion) of humoral immunity Serology: the

More information

B cell activation and Humoral Immunity

B cell activation and Humoral Immunity B cell activation and Humoral Immunity Humoral immunity is mediated by secreted antibodies and its physiological function is defense against extracellular microbes (including viruses) and microbial exotoxins.

More information

LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES

LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES Introduction to immunology. LESSON 3: ANTIBODIES/BCR/B-CELL RESPONSES Today we will get to know: The antibodies How antibodies are produced, their classes and their maturation processes Antigen recognition

More information

Chapter 43: The Immune System

Chapter 43: The Immune System Name Period Our students consider this chapter to be a particularly challenging and important one. Expect to work your way slowly through the first three concepts. Take particular care with Concepts 43.2

More information

The Immune System: A Tutorial

The Immune System: A Tutorial The Immune System: A Tutorial Modeling and Simulation of Biological Systems 21-366B Shlomo Ta asan Images taken from http://rex.nci.nih.gov/behindthenews/uis/uisframe.htm http://copewithcytokines.de/ The

More information

Chapter 5: Organization and Expression of Immunoglobulin Genes

Chapter 5: Organization and Expression of Immunoglobulin Genes Chapter 5: Organization and Expression of Immunoglobulin Genes I. Genetic Model Compatible with Ig Structure A. Two models for Ab structure diversity 1. Germ-line theory: maintained that the genome contributed

More information

Activation and effector functions of HMI

Activation and effector functions of HMI Activation and effector functions of HMI Hathairat Thananchai, DPhil Department of Microbiology Faculty of Medicine Chiang Mai University 25 August 2015 ว ตถ ประสงค หล งจากช วโมงบรรยายน แล วน กศ กษาสามารถ

More information

T Cell Maturation,Activation and Differentiation

T Cell Maturation,Activation and Differentiation T Cell Maturation,Activation and Differentiation Positive Selection- In thymus, permits survival of only those T cells whose TCRs recognize self- MHC molecules (self-mhc restriction) Negative Selection-

More information

HUMORAL IMMUNE RE- SPONSES: ACTIVATION OF B CELLS AND ANTIBODIES JASON CYSTER SECTION 13

HUMORAL IMMUNE RE- SPONSES: ACTIVATION OF B CELLS AND ANTIBODIES JASON CYSTER SECTION 13 SECTION 13 HUMORAL IMMUNE RE- SPONSES: ACTIVATION OF B CELLS AND ANTIBODIES CONTACT INFORMATION Jason Cyster, PhD (Email) READING Basic Immunology: Functions and Disorders of the Immune System. Abbas,

More information

B Cell Generation, Activation & Differentiation. B cell maturation

B Cell Generation, Activation & Differentiation. B cell maturation B Cell Generation, Activation & Differentiation Naïve B cells- have not encountered Ag. Have IgM and IgD on cell surface : have same binding VDJ regions but different constant region leaves bone marrow

More information

Microbiology AN INTRODUCTION EIGHTH EDITION

Microbiology AN INTRODUCTION EIGHTH EDITION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION Differentiate between innate and acquired immunity. Chapter 17 Specific Defenses of the Host: The Immune Response B.E Pruitt & Jane J. Stein

More information

Antibody Structure, and the Generation of B-cell Diversity CHAPTER 4 04/05/15. Different Immunoglobulins

Antibody Structure, and the Generation of B-cell Diversity CHAPTER 4 04/05/15. Different Immunoglobulins Antibody Structure, and the Generation of B-cell Diversity B cells recognize their antigen without needing an antigen presenting cell CHAPTER 4 Structure of Immunoglobulin G Different Immunoglobulins Differences

More information

Overview. Transcriptional cascades. Amazing aspects of lineage plasticity. Conventional (B2) B cell development

Overview. Transcriptional cascades. Amazing aspects of lineage plasticity. Conventional (B2) B cell development Overview B cell development Transcriptional cascades Amazing aspects of lineage plasticity Conventional (B2) B cell development What happens to an autoreactive B cell? B1 vs B2 cells Key anatomical sites

More information

Immunology. B lymphocytes & Antibodies. 20.10.2014, Ruhr-Universität Bochum Marcus Peters, marcus.peters@rub.de

Immunology. B lymphocytes & Antibodies. 20.10.2014, Ruhr-Universität Bochum Marcus Peters, marcus.peters@rub.de Immunology B lymphocytes & Antibodies 20.10.2014, Ruhr-Universität Bochum Marcus Peters, marcus.peters@rub.de What is an antibody? An antibody is a glycoprotein, which specifically binds to a substance,

More information

The immune system. Bone marrow. Thymus. Spleen. Bone marrow. NK cell. B-cell. T-cell. Basophil Neutrophil. Eosinophil. Myeloid progenitor

The immune system. Bone marrow. Thymus. Spleen. Bone marrow. NK cell. B-cell. T-cell. Basophil Neutrophil. Eosinophil. Myeloid progenitor The immune system Basophil Neutrophil Bone marrow Eosinophil Myeloid progenitor Dendritic cell Pluripotent Stem cell Lymphoid progenitor Platelets Bone marrow Thymus NK cell T-cell B-cell Spleen Cancer

More information

CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS

CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS Although the process by which a functional gene for immunoglobulin HEAVY and LIGHT CHAINS is formed is highly unusual, the SYNTHESIS, POST- TRANSLATIONAL PROCESSING

More information

THE HUMORAL IMMUNE SYSTEM

THE HUMORAL IMMUNE SYSTEM MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel HUMORAL IMMUNOLOGY We are surrounded by a sea of microorganisms

More information

Recognition of T cell epitopes (Abbas Chapter 6)

Recognition of T cell epitopes (Abbas Chapter 6) Recognition of T cell epitopes (Abbas Chapter 6) Functions of different APCs (Abbas Chapter 6)!!! Directon Routes of antigen entry (Abbas Chapter 6) Flow of Information Barrier APCs LNs Sequence of Events

More information

The Body s Defenses CHAPTER 24

The Body s Defenses CHAPTER 24 CHAPTER 24 The Body s Defenses PowerPoint Lectures for Essential Biology, Third Edition Neil Campbell, Jane Reece, and Eric Simon Essential Biology with Physiology, Second Edition Neil Campbell, Jane Reece,

More information

Lymph capillaries, Lymphatic collecting vessels, Valves, Lymph Duct, Lymph node, Vein

Lymph capillaries, Lymphatic collecting vessels, Valves, Lymph Duct, Lymph node, Vein WLHS/A&P/Oppelt Name Lymphatic System Practice 1. Figure 12-1 provides an overview of the lymphatic vessels. First color code the following structures. Color code in Figure 12-1 Heart Veins Lymphatic vessels/lymph

More information

MHC (MAJOR HISTOCOMPATIBILITY COMPLEX)

MHC (MAJOR HISTOCOMPATIBILITY COMPLEX) MHC (MAJOR HISTOCOMPATIBILITY COMPLEX) MHC complex is group of genes on a single chromosome that codes the MHC antigens. Major as well as minor histocompatibility antigens (also called transplantation

More information

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense The Immune System 2 Types of Defense Mechanisms Immune System the system that fights infection by producing cells to inactivate foreign substances to avoid infection and disease. Immunity the body s ability

More information

TEMA 10. REACCIONES INMUNITARIAS MEDIADAS POR CÉLULAS.

TEMA 10. REACCIONES INMUNITARIAS MEDIADAS POR CÉLULAS. TEMA 10. REACCIONES INMUNITARIAS MEDIADAS POR CÉLULAS. The nomenclature of cytokines partly reflects their first-described function and also the order of their discovery. There is no single unified nomenclature,

More information

Cytotoxic T Lymphocytes (CTLs) and NK Cells. Effector T cells. After activation, naïve T cells differentiate into effector and memory T cells

Cytotoxic T Lymphocytes (CTLs) and NK Cells. Effector T cells. After activation, naïve T cells differentiate into effector and memory T cells After activation, naïve T cells differentiate into effector and memory T cells Cytotoxic T Lymphocytes (CTLs) and NK Cells After activation, T cells remain in lymph nodes for 5-6 days Effector T cells

More information

ELISA BIO 110 Lab 1. Immunity and Disease

ELISA BIO 110 Lab 1. Immunity and Disease ELISA BIO 110 Lab 1 Immunity and Disease Introduction The principal role of the mammalian immune response is to contain infectious disease agents. This response is mediated by several cellular and molecular

More information

Autoimmunity and immunemediated. FOCiS. Lecture outline

Autoimmunity and immunemediated. FOCiS. Lecture outline 1 Autoimmunity and immunemediated inflammatory diseases Abul K. Abbas, MD UCSF FOCiS 2 Lecture outline Pathogenesis of autoimmunity: why selftolerance fails Genetics of autoimmune diseases Therapeutic

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Interpreting Sameness of Monoclonal Antibody Products Under the Orphan Drug Regulations U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation

More information

Dendritic Cells: A Basic Review *last updated May 2003

Dendritic Cells: A Basic Review *last updated May 2003 *last updated May 2003 Prepared by: Eric Wieder, PhD MD Anderson Cancer Center Houston, TX USA What is a dendritic cell? Dendritic cells are antigen-presenting cells (APCs) which play a critical role in

More information

Basics of Immunology

Basics of Immunology Basics of Immunology 2 Basics of Immunology What is the immune system? Biological mechanism for identifying and destroying pathogens within a larger organism. Pathogens: agents that cause disease Bacteria,

More information

The role of IBV proteins in protection: cellular immune responses. COST meeting WG2 + WG3 Budapest, Hungary, 2015

The role of IBV proteins in protection: cellular immune responses. COST meeting WG2 + WG3 Budapest, Hungary, 2015 The role of IBV proteins in protection: cellular immune responses COST meeting WG2 + WG3 Budapest, Hungary, 2015 1 Presentation include: Laboratory results Literature summary Role of T cells in response

More information

The Case of Baby Joe by Kristen L.W. Walton Page 1

The Case of Baby Joe by Kristen L.W. Walton Page 1 The Case of Baby Joe: Chronic Infections in an Infant by Kristen L.W. Walton SPIRE Postdoctoral Fellowship Program University of North Carolina Chapel Hill Part I Background At birth, Baby Joe appeared

More information

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells. Virus and Immune System Review Directions: Write your answers on a separate piece of paper. 1. Why does a cut in the skin threaten the body s nonspecific defenses against disease? a. If a cut bleeds, disease-fighting

More information

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1 AP BIOLOGY ANIMALS FORM & FUNCTION ACTIVITY #4 NAME DATE HOUR BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES Animals Form & Function Activity #4 page 1 INFLAMMATORY RESPONSE ANTIMICROBIAL

More information

CONTENT. Chapter 1 Review of Literature. List of figures. List of tables

CONTENT. Chapter 1 Review of Literature. List of figures. List of tables Abstract Abbreviations List of figures CONTENT I-VI VII-VIII IX-XII List of tables XIII Chapter 1 Review of Literature 1. Vaccination against intracellular pathogens 1-34 1.1 Role of different immune responses

More information

Core Topic 2. The immune system and how vaccines work

Core Topic 2. The immune system and how vaccines work Core Topic 2 The immune system and how vaccines work Learning outcome To be able to describe in outline the immune system and how vaccines work in individuals and populations Learning objectives Explain

More information

Asthma (With a little SCID to start) Disclosures Outline Starting with the Immune System The Innate Immune System The Adaptive Immune System

Asthma (With a little SCID to start) Disclosures Outline Starting with the Immune System The Innate Immune System The Adaptive Immune System 1 2 3 4 5 6 7 8 9 Asthma (With a little SCID to start) Lauren Smith, MD CHKD Pediatric Allergy/Immunology Disclosures None Will be discussing some medications that are not yet FDA approved Outline SCID

More information

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism.

Final Review. Aptamers. Making Aptamers: SELEX 6/3/2011. sirna and mirna. Central Dogma. RNAi: A translation regulation mechanism. Central Dogma Final Review Section Week 10 DNA RNA Protein DNA DNA replication DNA RNA transcription RNA Protein translation **RNA DNA reverse transcription http://bass.bio.uci.edu/~hudel/bs99a/lecture20/lecture1_1.html

More information

Hapten - a small molecule that is antigenic but not (by itself) immunogenic.

Hapten - a small molecule that is antigenic but not (by itself) immunogenic. Chapter 3. Antigens Terminology: Antigen: Substances that can be recognized by the surface antibody (B cells) or by the TCR (T cells) when associated with MHC molecules Immunogenicity VS Antigenicity:

More information

Multiple Myeloma and Colorectal Cancer

Multiple Myeloma and Colorectal Cancer Multiple Myeloma and Colorectal Cancer From Systems Immunology to Single Cells Leo Hansmann Mark M. Davis Lab Department of Microbiology&Immunology Stanford University Multiple Myeloma Monoclonal disease

More information

The Lymphatic System. Dr. Naim Kittana, PhD

The Lymphatic System. Dr. Naim Kittana, PhD The Lymphatic System Dr. Naim Kittana, PhD 1 Disclosure The material and the illustrations are adopted from the textbook Human Anatomy and Physiology / Ninth edition/ Eliane N. Marieb 2013 Dr. Naim Kittana,

More information

Chapter 3. Immunity and how vaccines work

Chapter 3. Immunity and how vaccines work Chapter 3 Immunity and how vaccines work 3.1 Objectives: To understand and describe the immune system and how vaccines produce immunity To understand the differences between Passive and Active immunity

More information

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Immunity Humans have three types of immunity innate, adaptive, and passive: Innate Immunity Everyone is born with innate (or natural) immunity, a type of general protection. Many of the germs that affect

More information

7.012 Quiz 3 practice

7.012 Quiz 3 practice MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel 7.012 Quiz 3 practice Quiz 3 on Friday, November 12th

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression What is Gene Expression? Gene expression is the process by which informa9on from a gene is used in the synthesis of a func9onal gene product. What is Gene Expression? Figure

More information

CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES

CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES CHAPTER 6 ANTIBODY GENETICS: ISOTYPES, ALLOTYPES, IDIOTYPES See APPENDIX: (3) OUCHTERLONY; (4) AFFINITY CHROMATOGRAPHY Human immunoglobulins are made up of LIGHT and HEAVY chains encoded by a total of

More information

2006 7.012 Problem Set 6 KEY

2006 7.012 Problem Set 6 KEY 2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial

More information

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types:

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types: Immune system. One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types: (pathogen - disease causing organism) 1) Non specific. Anything foreign

More information

Types, production of antibodies and Antibody/antigen interaction

Types, production of antibodies and Antibody/antigen interaction Types, production of antibodies and Antibody/antigen interaction Antibodies Secreted by B lymphocytes Great diversity and specificity: >109 different antibodies; can distinguish between very similar molecules

More information

Module 2: Antibodies and Antigens

Module 2: Antibodies and Antigens Module 2: Antibodies and Antigens Lecture 7: Antibodies and Antigens (part I) Antibodies may be defined as the proteins that recognize and neutralize any microbial toxin or foreign substance such as bacteria

More information

Figure 14.2 Overview of Innate and Adaptive Immunity

Figure 14.2 Overview of Innate and Adaptive Immunity I M M U N I T Y Innate (inborn) Immunity does not distinguish one pathogen from another Figure 14.2 Overview of Innate and Adaptive Immunity Our first line of defense includes physical and chemical barriers

More information

OKT3. ~ The first mouse monoclonal antibody. used in clinical practice in the field of transplantation ~

OKT3. ~ The first mouse monoclonal antibody. used in clinical practice in the field of transplantation ~ g944202 潘 怡 心 OKT3 ~ The first mouse monoclonal antibody used in clinical practice in the field of transplantation ~ As everybody knows, OKT3 is the first mouse monoclonal antibody produced for the treatment

More information

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer Name: Part A: Components of Blood 1. List the 3 plasma proteins and describe the function of each Albumins osmotic balance Globulins antibodies,

More information

Chapter 14: The Lymphatic System and Immunity

Chapter 14: The Lymphatic System and Immunity Chapter 14: The Lymphatic System and Immunity Major function of the Lymphatic System o Network of vessels that collect and carry excess fluid from interstitial spaces back to blood circulation o Organs

More information

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response

Some terms: An antigen is a molecule or pathogen capable of eliciting an immune response Overview of the immune system We continue our discussion of protein structure by considering the structure of antibodies. All organisms are continually subject to attack by microorganisms and viruses.

More information

Supplemental Material CBE Life Sciences Education. Su et al.

Supplemental Material CBE Life Sciences Education. Su et al. Supplemental Material CBE Life Sciences Education Su et al. APPENDIX Human Body's Immune System Test This test consists of 31 questions, with only 1 answer to be selected for each question. Please select

More information

TABLE OF CONTENT. Page ACKNOWLEDGEMENTS. iii ENGLISH ABSTRACT THAI ABSTRACT. vii LIST OF TABLES LIST OF FIGURES. xvi ABBREVIATIONS.

TABLE OF CONTENT. Page ACKNOWLEDGEMENTS. iii ENGLISH ABSTRACT THAI ABSTRACT. vii LIST OF TABLES LIST OF FIGURES. xvi ABBREVIATIONS. x TABLE OF CONTENT ACKNOWLEDGEMENTS ENGLISH ABSTRACT THAI ABSTRACT LIST OF TABLES LIST OF FIGURES ABBREVIATIONS iii iv vii xv xvi xviii CHAPTER I: INTRODUCTION 1.1 Statement of problems 1 1.2 Literature

More information

Immunology Ambassador Guide (updated 2014)

Immunology Ambassador Guide (updated 2014) Immunology Ambassador Guide (updated 2014) Immunity and Disease We will talk today about the immune system and how it protects us from disease. Also, we ll learn some unique ways that our immune system

More information

The Immune System. How your immune system works. Organs of the Immune System

The Immune System. How your immune system works. Organs of the Immune System UW MEDICINE PATIENT EDUCATION The Immune System How your immune system works The immune system is a network of special cells, tissues, and organs that defend the body against attacks from foreign invaders,

More information

Essentials of Anatomy and Physiology, 5e (Martini/Nath) Chapter 14 The Lymphoid System and Immunity. Multiple-Choice Questions

Essentials of Anatomy and Physiology, 5e (Martini/Nath) Chapter 14 The Lymphoid System and Immunity. Multiple-Choice Questions Essentials of Anatomy and Physiology, 5e (Martini/Nath) Chapter 14 The Lymphoid System and Immunity Multiple-Choice Questions 1) The lymphoid system is composed of A) lymphatic vessels. B) lymph nodes.

More information

Unit 1 Higher Human Biology Summary Notes

Unit 1 Higher Human Biology Summary Notes Unit 1 Higher Human Biology Summary Notes a. Cells tissues organs body systems Division of labour occurs in multicellular organisms (rather than each cell carrying out every function) Most cells become

More information

Too Many B Cells: Chronic Lymphocytic Leukemia and the Role of Flow Cytometry

Too Many B Cells: Chronic Lymphocytic Leukemia and the Role of Flow Cytometry Too Many B Cells: Chronic Lymphocytic Leukemia and the Role of Flow Cytometry by Debby R. Walser-Kuntz Biology Department Carleton College, Northfield, MN Taylor goes in to see her doctor, Dr. Chavez,

More information

Cancer Immunotherapy: Can Your Immune System Cure Cancer? Steve Emerson, MD, PhD Herbert Irving Comprehensive Cancer Center

Cancer Immunotherapy: Can Your Immune System Cure Cancer? Steve Emerson, MD, PhD Herbert Irving Comprehensive Cancer Center Cancer Immunotherapy: Can Your Immune System Cure Cancer? Steve Emerson, MD, PhD Herbert Irving Comprehensive Cancer Center Bodnar s Law Simple Things are Important Very Simple Things are Very Important

More information

Making the switch to a safer CAR-T cell therapy

Making the switch to a safer CAR-T cell therapy Making the switch to a safer CAR-T cell therapy HaemaLogiX 2015 Technical Journal Club May 24 th 2016 Christina Müller - chimeric antigen receptor = CAR - CAR T cells are generated by lentiviral transduction

More information

BLOOD-Chp. Chp.. 6 What are the functions of blood? What is the composition of blood? 3 major types of plasma proteins

BLOOD-Chp. Chp.. 6 What are the functions of blood? What is the composition of blood? 3 major types of plasma proteins 6.1 Blood: An overview BLOOD-Chp Chp.. 6 What are the functions of blood? Transportation: oxygen, nutrients, wastes, carbon dioxide and hormones Defense: against invasion by pathogens Regulatory functions:

More information

Uses of Flow Cytometry

Uses of Flow Cytometry Uses of Flow Cytometry 1. Multicolour analysis... 2 2. Cell Cycle and Proliferation... 3 a. Analysis of Cellular DNA Content... 4 b. Cell Proliferation Assays... 5 3. Immunology... 6 4. Apoptosis... 7

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Immune System Memory Game

Immune System Memory Game Immune System Memory Game Recommended Age: 12 years old Time: 45 minutes Everyday our bodies come in contact with millions of tiny organisms and particles that could potentially make us sick. Despite this,

More information

B Lymphocyte (B cell)

B Lymphocyte (B cell) B Lymphocyte (B cell) B cells: Develop from stem cells in the bone marrow and differentiate into antibody-producing plasma cells in the blood Are capable of making a vast number of antibody specificities

More information

About B Cell Lymphomas Groupmeeting Klipp/Spang, December 09 2002 Dennis Kostka Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin 1 Overview Short History of Lymphoma Classification

More information

= Lymphatic systems =

= Lymphatic systems = = Lymphatic systems = Why do we need it? Lymph node Lymphatic vessel Lymphatic vessel Vein Capillary Artery tissues blood Capillaries Speaker: 許 書 豪 解 剖 學 科 助 理 教 授 1 Lymphatic tissue and organ Lymphatic

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

The Costimulatory Molecule CD27 Maintains Clonally

The Costimulatory Molecule CD27 Maintains Clonally Immunity, Volume 35 Supplemental Information The Costimulatory Molecule CD7 Maintains Clonally Diverse CD8 + T Cell Responses of Low Antigen Affinity to Protect against Viral Variants Klaas P.J.M. van

More information

Pulling the Plug on Cancer Cell Communication. Stephen M. Ansell, MD, PhD Mayo Clinic

Pulling the Plug on Cancer Cell Communication. Stephen M. Ansell, MD, PhD Mayo Clinic Pulling the Plug on Cancer Cell Communication Stephen M. Ansell, MD, PhD Mayo Clinic Why do Waldenstrom s cells need to communicate? Waldenstrom s cells need activating signals to stay alive. WM cells

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression (Learning Objectives) Explain the role of gene expression is differentiation of function of cells which leads to the emergence of different tissues, organs, and organ systems

More information

treatments) worked by killing cancerous cells using chemo or radiotherapy. While these techniques can

treatments) worked by killing cancerous cells using chemo or radiotherapy. While these techniques can Shristi Pandey Genomics and Medicine Winter 2011 Prof. Doug Brutlag Chronic Myeloid Leukemia: A look into how genomics is changing the way we treat Cancer. Until the late 1990s, nearly all treatment methods

More information

Why use passive immunity?

Why use passive immunity? Vaccines Active vs Passive Immunization Active is longer acting and makes memory and effector cells Passive is shorter acting, no memory and no effector cells Both can be obtained through natural processes:

More information

STEM CELL FELLOWSHIP

STEM CELL FELLOWSHIP Module I: The Basic Principles of Stem Cells 1. Basics of Stem Cells a. Understanding the development of embryonic stem cells i. Embryonic stem cells ii. Embryonic germ cells iii. Differentiated stem cell

More information

Antigenic variation in Plasmodium falciparum : Erythrocyte invasion and immune escape mechanisms

Antigenic variation in Plasmodium falciparum : Erythrocyte invasion and immune escape mechanisms Antigenic variation in Plasmodium falciparum : Erythrocyte invasion and immune escape mechanisms Introduction Why does immunity to malaria take so long to develop? The parasite s survival depends on its

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis Blood Objectives Describe the functions of blood Describe blood plasma Explain the functions of red blood cells, white blood cells, and platelets Summarize the process of blood clotting What is Blood?

More information

Reproductive System & Development: Practice Questions #1

Reproductive System & Development: Practice Questions #1 Reproductive System & Development: Practice Questions #1 1. Which two glands in the diagram produce gametes? A. glands A and B B. glands B and E C. glands C and F D. glands E and F 2. Base your answer

More information

Human CD4+T Cell Care Manual

Human CD4+T Cell Care Manual Human CD4+T Cell Care Manual INSTRUCTION MANUAL ZBM0067.02 SHIPPING CONDITIONS Human CD4+T Cells, cryopreserved Cryopreserved human CD4+T cells are shipped on dry ice and should be stored in liquid nitrogen

More information

Natalia Taborda Vanegas. Doc. Sci. Student Immunovirology Group Universidad de Antioquia

Natalia Taborda Vanegas. Doc. Sci. Student Immunovirology Group Universidad de Antioquia Pathogenesis of Dengue Natalia Taborda Vanegas Doc. Sci. Student Immunovirology Group Universidad de Antioquia Infection process Epidermis keratinocytes Dermis Archives of Medical Research 36 (2005) 425

More information

Lecture 3: Mutations

Lecture 3: Mutations Lecture 3: Mutations Recall that the flow of information within a cell involves the transcription of DNA to mrna and the translation of mrna to protein. Recall also, that the flow of information between

More information

Why discuss CLL? Common: 40% of US leukaemia. approx 100 pa in SJH / MWHB 3 inpatients in SJH at any time

Why discuss CLL? Common: 40% of US leukaemia. approx 100 pa in SJH / MWHB 3 inpatients in SJH at any time Why discuss CLL? Common: 40% of US leukaemia approx 100 pa in SJH / MWHB 3 inpatients in SJH at any time Median age of dx is 65 (30s. Incurable, survival 2-202 20 years Require ongoing supportive care

More information

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs)

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Single nucleotide polymorphisms or SNPs (pronounced "snips") are DNA sequence variations that occur

More information

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology The Master Degree in Medical Laboratory Sciences / Clinical Microbiology, Immunology or

More information

Idiotypes. Introduction. Structure and Expression of Idiotypes. Advanced article

Idiotypes. Introduction. Structure and Expression of Idiotypes. Advanced article Aysegul Uner, Hacettepe University, Ankara, Turkey Jerrie Gavalchin, SUNY Upstate Medical University, Syracuse, New York, USA Idiotypes, the unique and characteristic determinants of an immunoglobulin

More information

An Artificial Immune System for Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal and Memory Detectors

An Artificial Immune System for Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal and Memory Detectors Int. Journ. of Unconventional Computing, Vol. 1, pp. 221 254 Reprints available directly from the publisher Photocopying permitted by license only 2005 Old City Publishing, Inc. Published by license under

More information

The Human Immune System and Network Intrusion Detection

The Human Immune System and Network Intrusion Detection The Human Immune System and Network Intrusion Detection Jungwon Kim and Peter Bentley Department of Computer Science, University Collge London Gower Street, London, WC1E 6BT, U. K. Phone: +44-171-380-7329,

More information

Unit 9: The Lymphatic and Immune Systems NURSING PHYSIOLOGY (NRSG237)

Unit 9: The Lymphatic and Immune Systems NURSING PHYSIOLOGY (NRSG237) Unit 9: The Lymphatic and Immune Systems Dr. Moattar Raza Rizvi NURSING PHYSIOLOGY (NRSG237) Functions: Transports Excess Interstitial Fluid Back to Bloodstream Lymphatic vessels collect lymph from loose

More information

MULTIPLE MYELOMA. Dr Malkit S Riyat. MBChB, FRCPath(UK) Consultant Haematologist

MULTIPLE MYELOMA. Dr Malkit S Riyat. MBChB, FRCPath(UK) Consultant Haematologist MULTIPLE MYELOMA Dr Malkit S Riyat MBChB, FRCPath(UK) Consultant Haematologist Multiple myeloma is an incurable malignancy that arises from postgerminal centre, somatically hypermutated B cells.

More information

Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation

Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation Identification of rheumatoid arthritis and osterthritis patients by transcriptome-based rule set generation Bering Limited Report generated on September 19, 2014 Contents 1 Dataset summary 2 1.1 Project

More information

Staph Protein A, Immune Complexes, Cryoglobulins, and the Treatment of Rheumatoid Arthritis:

Staph Protein A, Immune Complexes, Cryoglobulins, and the Treatment of Rheumatoid Arthritis: Staph Protein A, Immune Complexes, Cryoglobulins, and the Treatment of Rheumatoid Arthritis: Immunomodulation, not Immunosuppression Written by Craig Wiesenhutter, M.D. January 2016 This paper has been

More information

The Adaptive Immune System

The Adaptive Immune System Chapter 25 The Adaptive Immune ystem 25 Our adaptive immune system saves us from certain death by infection. An infant born with a severely defective adaptive immune system will soon die unless extraordinary

More information