Chemical Bonding II. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Size: px
Start display at page:

Download "Chemical Bonding II. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory"

Transcription

1 Chemical Bonding II Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

2 Lewis Theory of Molecular Shape and Polarity

3 Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule. The structure includes many factors, such as: Skeletal arrangement of the atoms Kind of bonding between the atoms Shape of the molecule

4 Molecular Geometry We can describe the shape of a molecule with terms that relate to geometric figures These geometric figures have characteristic corners (indicating the positions of atoms) The geometric figures also have characteristic angles that we call bond angles.

5 Lewis Theory of Molecular Shapes VSEPR Theory Electron groups repel each other. Predicting the shapes of molecules 1) The arrangement of the electron groups will be determined by trying to minimize repulsions between them. 2) The arrangement of atoms ( molecular shape ) surrounding a central atom will be determined by where the bonding electron groups are. 3) 1 and 2 are not necessarily the same

6 Electron Groups A Lewis structure predicts the number of valence electron pairs around a central atom(s). Each lone pair of electrons constitutes one electron group on a central atom. Each bond constitutes one electron group, regardless of whether it is single, double, or triple O S O There are three electron groups around S: one lone pair one single bond one double bond

7 Electron Group Geometry There are five basic arrangements of electron groups around a central atom. For molecules that exhibit resonance, it doesn t matter which resonance form you use the electron group geometry will be the same.

8 Electron Group Geometries

9 Molecular Shapes linear trigonal planar tetrahedral trigonal bipyramidal octahedral

10 Molecular Geometry 1) The actual geometry ( molecular geometry ) of a molecule may be different from the electron geometry. 2) When the electron groups are attached to atoms of different size, or when the bonding to one atom is different than the bonding to another, this will affect the molecular geometry around the central atom. 3) Lone pairs occupy space on the central atom, but are not seen as points on the molecular geometry.

11 Not Quite Perfect Geometry Because the bonds and atom sizes are not identical in formaldehyde, the observed angles are slightly different from ideal.

12 The Effect of Lone Pairs The bonding electrons are shared by two atoms, so some of the negative charge is removed from the central atom. The nonbonding electrons are localized on the central atom, so area of negative charge takes more space.

13 The Effect of Lone Pairs Lone pair groups occupy more space on the central atom than bonding electrons. Relative sizes of repulsive force interactions: Lone Pair Lone Pair > Lone Pair Bonding Pair > Bonding Pair Bonding Pair This affects the bond angles, making the bonding pair bonding pair angles smaller than expected.

14 Molecular geometries derived from tetrahedral electron geometry.

15 Molecular geometries derived from trigonal bipyramidal electron geometry.

16 Molecular geometries derived from octahedral electron geometry.

17 Predicting the Shapes Around Central Atoms 1. Draw the Lewis structure 2. Determine the number of electron groups around the central atom 3. Classify each electron group as bonding or lone pair, and count each type 4. Determine the shape and bond angles

18 Molecules with Multiple Central Atoms Methanol H O H N C C O H H H Glycine

19 Polarity of Molecules

20 Polarity of Molecules For a molecule to be polar, it must have polar bonds, and have an unsymmetrical shape Polarity affects the intermolecular forces of attraction and therefore affects boiling points and solubilities Nonbonding pairs affect molecular polarity.

21 Molecular Polarity The H Cl bond is polar. The bonding electrons are pulled toward the Cl end of the molecule. The net result is a polar molecule.

22 Adding Dipole Moments to Determine Whether a Molecule is Polar

23 Some molecules are inherently polar because of the atoms which they contain and the arrangement of these atoms in space. H2O NH3 CH2O HCl δ δ+ A crude representation of a polar molecule

24 Other molecules are considered nonpolar CH4 BH3 C2H2 CO2 Nonpolarized electron clouds

25 What about Tetrahedral Geometry?

26 Molecular Formula Structural Formula Dot Diagram Molecular Shape Molecular Polarity Intermolecular Forces Melting Point, Boiling Point, Solubility

27 Chemical Bonding Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

28 Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions. Lewis theory gives good first approximations of the bond angles in molecules, but usually cannot be used to get actual bond angles. Lewis theory cannot write one correct structure for many molecules where resonance is important. Lewis theory often does not predict the correct magnetic behavior of molecules.

29 Valence Bond Theory Linus Pauling and others applied the principles of quantum mechanics to molecules. They reasoned that bonds between atoms would occur when the atomic orbitals interacted to make new bonds. The types of interactions depend on whether the orbitals align along the axis between the nuclei, or outside the axis.

30 Orbital Interaction As two atoms approached, the half-filled valence atomic orbitals on each atom would interact to form molecular orbitals. The molecular orbitals would be more stable than the separate atomic orbitals because they would contain paired electrons shared by both atoms.

31 Orbital Diagram for the H S H Formation of H2S H 1s H S bond S 1s 3s 3p H S bond H

32 Orbital Diagram for the Formation of H2S Predicts bond angle = 90 Actual bond angle = 92

33 Unhybridized C Orbitals Predict the Wrong Bonding & Geometry H 1s H 1s C 2s 2p

34 Valence Bond Theory Hybridization The number of partially filled or empty atomic orbitals does not always predict the number of bonds or orientation of bonds. Ex: C = 2s 2 2px 1 2py 1 2pz 0 would predict two or three bonds that are 90 apart. For carbon what is actually observed are four bonds that are apart. To adjust for these inconsistencies, it was postulated that the valence atomic orbitals hybridize before bonding took place.

35 Unhybridized C Orbitals Predict the Wrong Bonding & Geometry

36 Valence Bond Theory - Main Concepts Valence electrons of the atoms in a molecule reside in quantum-mechanical atomic orbitals. The orbitals can be the standard s, p, d, and f orbitals, or they may be hybrid combinations of these. A chemical bond results when two of these atomic orbitals interact and there is a total of two electrons in a new molecular orbital. The shape of the molecule is determined by the geometry of the interacting orbitals.

37 Hybridization Hybridizing is mixing different types of orbitals in the valence shell to make a new set of degenerate orbitals # of new orbitals-----> 2, 3, 4, 5, 6 orbital designation---> sp, sp 2, sp 3, sp 3 d, sp 3 d 2 The same type of atom can have different types of hybridization: C = sp, sp 2, sp 3 The particular kind of hybridization that occurs is the one that yields the lowest overall energy for the molecule.

38 The sp Hybrid Orbitals in Gaseous BeCl2

39 Cl Be Cl

40 The sp 2 Hybrid Orbitals in BF3 F B F F

41 The sp 3 Hybrid Orbitals in CH4

42 The sp 3 d Hybrid Orbitals in PCl5

43 The sp 3 d 2 Hybrid Orbitals in SF6

44 sp 3 Hybridization Atom with four electron groups around it tetrahedral electron group geometry ~109.5 angles between hybrid orbitals tetrahedral molecular geometry for carbon trigonal pyramidal geometry for nitrogen bent geometry for oxygen Atom uses hybrid orbitals for all bonds & lone pairs

45

46 Bonding in Methane (Valence Bond Explanation)

47 Hybridization and VSEPR Theory sp 3 hybridization sp 3 hybridization sp 3 hybridization tetrahedral trigonal pyramidal bent

48 sp 3 Hybridized Atoms Place electrons into hybrid and unhybridized valence orbitals as if all the orbitals have equal energy Unhybridized atom sp 3 hybridized atom C 2s 2p 2sp 3 2s 2p 2sp 3 N 2s 2p 2sp 3 O

49 Bonding with Valence Bond Theory Bonding takes place between atoms when their atomic or hybrid orbitals interact ( overlap ). To interact, the orbitals must either be aligned along the axis between the atoms, or The orbitals must be parallel to each other and perpendicular to the interatomic axis.

50 Types of Bonds Sigma (σ) bond - when the interacting atomic orbitals point along the axis connecting the two bonding nuclei Pi (π) bond - when the bonding atomic orbitals are parallel to each other and perpendicular to the axis connecting the two bonding nuclei The interaction between parallel orbitals is not as strong as between orbitals that point at each other; Therefore, σ bonds are stronger than π bonds.

51 Types of Bonds

52 Carbon Hybridizations Unhybridized sp 3 hybridized 2s 2p 2 sp 3 Unhybridized 2s 2p sp 2 hybridized 2sp 2 2p Unhybridized 2s 2p sp hybridized 2sp 2p

53 Different Carbon Hybridizations Lead to Different Molecular Geometries sp 3 sp 2 sp electron density

54 sp 2 Hybridization Atom with three electron groups around it trigonal electron group planar system ~120 bond angles - flat C = trigonal planar molecular geometry N = bent molecular geometry O = linear geometry Atom uses hybrid orbitals for σ bonds and lone pairs Atom uses a nonhybridized p orbital for a π bond

55

56 sp 2 Hybridized Atoms Orbital Diagrams Unhybridized atom sp 2 hybridized atom C 2s 2p 2sp 2 2p 2s 2p 2sp 2 2p N 2s 2p 2sp 2 2p O

57 Ethene, CH2CH2 H H C C H H p C sp 2 C π σ p C sp 2 C σ σ σ σ 1s H 1s H 1s H 1s H

58 Bonding in Ethene, C2H4 π π

59

60 Bond Rotation Rotation around a σ bond does not require breaking the interaction between atomic orbitals. Rotation around a π bond requires the breaking of the interaction between atomic orbitals.

61 Restricted Rotation Around π-bonded Atoms in C2H2Cl2 no net dipole

62 sp hybridization Atom with two electron groups linear shape 180 bond angle Atoms use hybrid orbitals for σ bonds or lone pairs Atom use nonhybridized p orbitals for π bonds

63

64 sp Hybridized Atoms Orbital Diagrams Unhybridized atom 2s 2p sp hybridized atom 2sp 2p C C 2s 2p 2sp 2p N

65 HCCH (C2H2) Orbitals H C C H p C sp C 2π σ p C sp C s σ s σ 1s H 1s H

66 Bonding in C2H2

67 Bonding in C2H2

68 sp 3 d hybridization Atom with five electron groups around it trigonal bipyramidal electron geometry Seesaw, T Shape, Linear 120 & 90 bond angles Uses empty d orbitals from valence shell d orbitals can be used to make π bonds

69 sp 3 d hybridization

70 sp 3 d hybridization Unhybridized atom sp 3 d hybridized atom P 3s 3p 3d 3sp 3 d 3s 3p 3d 3sp 3 d S 4s 4p 4d 4sp 3 d (non-hybridizing d orbitals not shown) Br

71 sp 3 d hybridization F F F F F As F F F S F F Br F F

72 sp 3 d 2 hybridization Atom with six electron groups around it octahedral electron geometry Square Pyramid, Square Planar 90 bond angles Use empty d orbitals from valence shell. d orbitals can be used to make π bonds.

73 sp 3 d 2 hybridization

74 sp 3 d 2 Hybridized Atoms Orbital Diagrams Unhybridized atom sp 3 d 2 hybridized atom S 3s 3p 3d 3sp 3 d 2 Br 4s 4p 4d 4sp 3 d 2 5s 4s 4p 5p 5d 4d 4sp 5sp 3 d 2 Xe

75 sp 3 d 2 hybridization F F F S F F F F F F Br F F F F Xe F F

76 Predicting Hybridization and Bonding Scheme 1. Start by drawing the Lewis structure 2. Use VSEPR Theory to predict the electron group geometry around each central atom. 3. Select the hybridization scheme that matches the electron group geometry. 4. Sketch the atomic and hybrid orbitals on the atoms in the molecule, showing overlap of the appropriate orbitals 5. Label the bonds as σ or π

77 Predict the hybridization and bonding scheme for CH2CH2 1.! Start by drawing the Lewis structure 2.! Use VSEPR Theory to predict the electron group geometry around each central atom The molecule has two interior atoms. Since each atom has three electron groups (one double bond and two single bonds), the electron geometry about each atom is trigonal planar.

78 Predict the hybridization and bonding scheme for CH2CH2 3. Select the hybridization scheme that matches the electron group geometry C1 = trigonal planar C1 = sp 2 C2 = trigonal planar C2 = sp 2 4.! Sketch the atomic and hybrid orbitals on the atoms in the molecule, showing overlap of the appropriate orbitals continued

79 Predict the hybridization and bonding scheme for CH2CH2 5.! Label the bonds as σ or π π H H C C H H σ

80 Predict the hybridization and bonding scheme for CH3CHO 1.! Start by drawing the Lewis structure ! Use VSEPR Theory to predict the electron group geometry around each central atom C2 = 4 electron areas C2= tetrahedral C1 = 3 electron areas C1 = trigonal planar

81 Predict the hybridization and bonding scheme for CH3CHO Select the hybridization scheme that matches the electron group geometry C2 = tetrahedral C2 = sp 3 C1 = trigonal planar C1 = sp 2 4.! Sketch the atomic and hybrid orbitals on the atoms in the molecule, showing overlap of the appropriate orbitals

82 Predict the hybridization and bonding scheme for CH3CHO ! Label the bonds as σ or π H H H C π C O H σ

83 Chemical Bonding Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

84 Problems with Valence Bond Theory VB theory predicts properties better than Lewis theory bonding schemes, bond strengths, lengths, rigidity There are still properties it doesn t predict perfectly magnetic behavior of certain molecules strength of bonds VB theory presumes the electrons are localized in orbitals doesn t account for delocalization

85 Molecular Orbital Theory In MO theory, we apply Schrödinger s wave equation to the molecule to calculate a set of molecular orbitals. The equation solution is estimated. We start with good guesses as to what the orbitals should look like, then test the estimate until the energy is minimized The electrons belong to the whole molecule orbitals are delocalized

86 LCAO The simple guess starts with atomic orbitals of the atoms adding together to make molecular orbitals, the Linear Combination of Atomic Orbitals. The waves can combine either constructively or destructively.

87 Molecular Orbitals When wave functions combine constructively, the resulting molecular orbital has less energy than the original atomic orbitals it is called a Bonding Molecular Orbital σ, π most of the electron density between the nuclei Amplitudes of wave functions added

88 Molecular Orbitals When wave functions combine destructively, the resulting molecular orbital has more energy than the original atomic orbitals it is called an Antibonding Molecular Orbital σ*, π* most of the electron density outside the nuclei nodes between nuclei Amplitudes of wave functions subtracted.

89 Interaction of 1s Orbitals

90 Molecular Orbital Theory Electrons in bonding MOs are stabilizing lower energy than the atomic orbitals Electrons in antibonding MOs are destabilizing higher in energy than atomic orbitals electron density located outside the internuclear axis electrons in antibonding orbitals cancel stability gained by electrons in bonding orbitals

91 Contours and energies of the bonding and antibonding molecular orbitals (MOs) in H2.

92 Energy Comparisons of Atomic Orbitals to Molecular Orbitals Increasing energy

93 Molecular Orbitals and Properties Bond Order = difference between number of electrons in bonding and antibonding orbitals only need to consider valence electrons may be a fraction higher bond order = stronger and shorter bonds If bond order = O, then bond is unstable compared to individual atoms and no bond will form A substance will be paramagnetic if there are unpaired electrons in molecular orbitals

94 A Molecular Orbital Diagram - H2 antibonding MO σ* H H 1s atomic orbital σ bonding MO 1s atomic orbital

95 A Molecular Orbital Diagram - H2 LUMO σ* lowest unoccupied molecular orbital H H 1s atomic orbital 1s atomic orbital σ HOMO highest occupied molecular orbital

96 A Molecular Orbital Diagram - H2 σ* H H 1s atomic orbital 1s atomic orbital σ = 1 Because more electrons are in bonding orbitals than are in antibonding orbitals, there is a net bonding interaction.

97 A Molecular Orbital Diagram - He2 σ* He: 1s atomic orbital 1s atomic orbital He: σ = 0 Because as many electrons are in bonding orbitals as in antibonding orbitals, no net bonding interaction.

98 A Molecular Orbital Diagram - Li2 σ* Li 2s atomic orbital σ 2s atomic orbital Li σ* 1s atomic orbital σ 1s atomic orbital

99 A Molecular Orbital Diagram - Li2 σ* Li 2s atomic orbital 2s atomic orbital Li σ = 1 Because more electrons are in bonding orbitals than are in antibonding orbitals, there is a net bonding interaction.

100 Interaction of p Orbitals Contour representations of the molecular orbitals formed by the 2p orbitals on two atoms. Each time we combine two atomic orbitals, we obtain two molecular orbitals: one bonding and one antibonding. In (a) the p orbitals overlap "head-to-head" to form and * molecular orbitals. In (b) and (c) they overlap "sideways" to form and * molecular orbitals.

101 Molecular Orbitals - B2, C2, N2, O2, F2, Ne2,

102 A Molecular Orbital Diagram - O2 Oxygen Atomic Orbitals π! σ! Oxygen Atomic Orbitals 2p Because more electrons are in bonding orbitals than are in antibonding orbitals, there is a net bonding interaction. O 2 MO s π! σ! σ! 2p Because there are unpaired electrons in the antibonding orbitals, O2 is predicted to be paramagnetic 2s BO = ½(8 be 4 abe) BO = 2 σ" 2s

103 Dioxygen ( O2 ) is Paramagnetic

104 Using MO Theory to Explain Bond Properties As the following data show, removing an electron from N2 forms an ion with a weaker, longer bond than in the parent molecules, whereas the ion formed from O2 has a stronger, shorter bond: These facts can be explained by examining diagrams that show the sequence and occupancy of MOs.

105 Using MO Theory to Explain Bond Properties N 2 N 2 + O 2 O 2 + bonding e - lost σ 2p π 2p σ 2p π 2p antibonding e - lost σ 2p σ 2p π 2p π 2p σ 2s σ 2s σ 2s σ 2s 1/2(8-2)=3 1/2(7-2)=2.5 1/2(8-4)=2 1/2(8-3)=2.5 Bond orders

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5 Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

Hybrid Molecular Orbitals

Hybrid Molecular Orbitals Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18 AP EMISTRY APTER REVIEW APTER 7: VALENT BNDING You should understand the nature of the covalent bond. You should be able to draw the Lewis electron-dot structure for any atom, molecule, or polyatomic ion.

More information

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16. 129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

More information

Hybrid Atomic Orbitals

Hybrid Atomic Orbitals Hybrid Atomic Orbitals These materials were adapted from Prof. George Bodner, Purdue University (http:// chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/hybrid.html#geom; excerpted 08/25/2011). This

More information

Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory

Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory Structures and Properties of Substances Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory The VSEPR theory In 1957, the chemist Ronald Gillespie and Ronald Nyholm, developed a model for

More information

VSEPR Theory, Valence Bond Theory, Characteristic of Covalent Compounds. VSEPR theory was proposed by Gillespie and Nyholm to explain the shapes of molecules and ions.. The orbital which contains the bonded

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

5. Which of the following is the correct Lewis structure for SOCl 2

5. Which of the following is the correct Lewis structure for SOCl 2 Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

LCAO-MO Correlation Diagrams

LCAO-MO Correlation Diagrams LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO

More information

Fundamentals of Organic Molecules and Semiconductors

Fundamentals of Organic Molecules and Semiconductors Fundamentals of Organic Molecules and Semiconductors Molecule 2 Periodic Table of the Elements 3 Carbon Carbon is found in every living creature. Elemental carbon can be black (graphite), or hard and beautiful

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Ch a p t e r s 8 a n d 9

Ch a p t e r s 8 a n d 9 Ch a p t e r s 8 a n d 9 Covalent Bonding and Molecular Structures Objectives You will be able to: 1. Write a description of the formation of the covalent bond between two hydrogen atoms to form a hydrogen

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

COVALENT BONDING. [MH5; Chapter 7]

COVALENT BONDING. [MH5; Chapter 7] COVALENT BONDING [MH5; Chapter 7] Covalent bonds occur when electrons are equally shared between two atoms. The electrons are not always equally shared by both atoms; these bonds are said to be polar covalent.

More information

Chapter 12 Review 1: Covalent Bonds and Molecular Structure

Chapter 12 Review 1: Covalent Bonds and Molecular Structure Chapter 12 Review 1: Covalent Bonds and Molecular Structure 1) How are ionic bonds and covalent bonds different, and what types of elements combine to form each? Ionic bonds result from the transfer of

More information

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

Molecular Orbital Approach to Bonding

Molecular Orbital Approach to Bonding Chemistry 362; spring 2016 Marcetta Y. Darensbourg, Professor Xuemei Yang, Graduate Assistant Pokhraj Ghosh, Graduate Assistant The following slides were mainly a gift from Professor Martyn Poliakoff Of

More information

Unit 28 Molecular Geometry

Unit 28 Molecular Geometry Unit 28 Molecular Geometry There are two concepts in the study of molecular geometry. One is called the Valence Shell Electron Pair Repulsion (VSEPR) model. The other is electron orbital hybridization.

More information

Chapter 9-10 practice test

Chapter 9-10 practice test Class: Date: Chapter 9-10 practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following is most likely to be an ionic compound?

More information

Ch. 9 Review Packet Answers - 1. Chapter 9 Review Packet

Ch. 9 Review Packet Answers - 1. Chapter 9 Review Packet Ch. 9 Review Packet Answers - 1 Chapter 9 Review Packet 1. The hybridization of the central nitrogen of N O is: a) not hybridized. b) sp c) sp d) sp 3 e) dsp 3. The hybridization of the central atom, sulfur,

More information

UNIT TEST Atomic & Molecular Structure. Name: Date:

UNIT TEST Atomic & Molecular Structure. Name: Date: SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A - Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Geometries and Valence Bond Theory Worksheet

Geometries and Valence Bond Theory Worksheet Geometries and Valence Bond Theory Worksheet Also do Chapter 10 textbook problems: 33, 35, 47, 49, 51, 55, 57, 61, 63, 67, 83, 87. 1. Fill in the tables below for each of the species shown. a) CCl 2 2

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar

More information

Hybrid Orbitals Introduction Hybridization Examples of sp Hybridization... 6

Hybrid Orbitals Introduction Hybridization Examples of sp Hybridization... 6 Hybrid Orbitals These materials were adapted from (http://chemwiki.ucdavis.edu/organic_chemistry/ Fundamentals/Hybrid_Orbitals?highlight=hybrid+orbitals); excerpted 09/13/2011). This work is licensed under

More information

Molecular Geometry and Molecular Models

Molecular Geometry and Molecular Models Experiment 10 Molecular Geometry and Molecular Models molecular geomometry background.wpd INTENT The purpose of this experiment is to introduce to you some of the basic theories and techniques used by

More information

Exercises Topic 2: Molecules

Exercises Topic 2: Molecules hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry

More information

Covalent Bonding and Molecular Geometry

Covalent Bonding and Molecular Geometry Name Section # Date of Experiment Covalent Bonding and Molecular Geometry When atoms combine to form molecules (this also includes complex ions) by forming covalent bonds, the relative positions of the

More information

CHAPTER 5: MOLECULAR ORBITALS

CHAPTER 5: MOLECULAR ORBITALS Chapter 5 Molecular Orbitals 5 CHAPTER 5: MOLECULAR ORBITALS 5. There are three possible bonding interactions: p z d z p y d yz p x d xz 5. a. Li has a bond order of. (two electrons in a bonding orbital;

More information

Valence Bond Theory: Hybridization

Valence Bond Theory: Hybridization Exercise 13 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Valence Bond Theory: ybridization Name: Objectives To illustrate the distribution of electrons and rearrangement of orbitals

More information

ACE PRACTICE TEST Chapter 8, Quiz 3

ACE PRACTICE TEST Chapter 8, Quiz 3 ACE PRACTICE TEST Chapter 8, Quiz 3 1. Using bond energies, calculate the heat in kj for the following reaction: CH 4 + 4 F 2 CF 4 + 4 HF. Use the following bond energies: CH = 414 kj/mol, F 2 = 155 kj/mol,

More information

Molecular Geometry. How can molecular shapes be predicted using the VSEPR theory? H 2. CO 3 electron domains (3 bonding, 0 nonbonding)

Molecular Geometry. How can molecular shapes be predicted using the VSEPR theory? H 2. CO 3 electron domains (3 bonding, 0 nonbonding) Why? Molecular Geometry How can molecular shapes be predicted using the VSEPR theory? When you draw a Lewis structure for a molecule on paper, you are making a two-dimensional representation of the atoms.

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Lab Manual Supplement

Lab Manual Supplement Objectives 1. Learn about the structures of covalent compounds and polyatomic ions. 2. Draw Lewis structures based on valence electrons and the octet rule. 3. Construct 3-dimensional models of molecules

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

CHAPTER 9 COVALENT BONDING: ORBITALS. Questions

CHAPTER 9 COVALENT BONDING: ORBITALS. Questions APTER 9 VALET BDIG: RBITALS Questions 9. In hybrid orbital theory, some or all of the valence atomic orbitals of the central atom in a molecule are mixed together to form hybrid orbitals; these hybrid

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O..

Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O.. John W. Moore onrad L. Stanitski Peter. Jurs http://academic.cengage.com/chemistry/moore hapter 9 Molecular Structures Stephen. oster Mississippi State University Molecular Structures 2 6 structural isomers:

More information

Chapter 01 Homework - Structure and Bonding Problems 1-20 Mandatory

Chapter 01 Homework - Structure and Bonding Problems 1-20 Mandatory 1. Give the ground-state electron configuration for carbon (atomic number 6). 1s 2 2px 1 2py 1 or 1s 2 2p 2 2. Give the ground-state electron configuration for fluorine (atomic number 9). 1s 2 2px 2 2py

More information

3.4 Covalent Bonds and Lewis Structures

3.4 Covalent Bonds and Lewis Structures 3.4 Covalent Bonds and Lewis Structures The Lewis Model of Chemical Bonding In 1916 G. N. Lewis proposed that atoms combine in order to achieve a more stable electron configuration. Maximum stability results

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

What Are the Shapes of Molecules?

What Are the Shapes of Molecules? Lab 7 Name What Are the Shapes of Molecules? Pre-Lab Assignment Read the entire lab handout. There is no written pre-lab assignment for this lab. Learning Goals Derive the Lewis structure of a covalent

More information

5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom?

5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom? 1. For the following compounds draw the Lewis Structure and determine: (a) The # of Bonding Pairs (b) The # of Lone pairs (c) The electron domain shape (d) The molecular shape (e) Hybridization (f) Whether

More information

AP* Bonding & Molecular Structure Free Response Questions page 1

AP* Bonding & Molecular Structure Free Response Questions page 1 AP* Bonding & Molecular Structure ree Response Questions page 1 (1) AP is a registered trademark of the ollege Board. The ollege Board was not involved in the production of and does not endorse this product.

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

PREDICTING MOLECULAR SHAPE AND POLARITY USING VSEPR THEORY

PREDICTING MOLECULAR SHAPE AND POLARITY USING VSEPR THEORY EXPERIMENT 2 PREDICTING MOLECULAR SHAPE AND POLARITY USING VSEPR THEORY Materials Needed Molecular model kit. Textbook Reading Smith, chapter 3.10-3.12 Background In this lab, you will practice your understanding

More information

CH101/105, GENERAL CHEMISTRY LABORATORY

CH101/105, GENERAL CHEMISTRY LABORATORY CH101/105, GENERAL CHEMITRY LABORATORY LABORATORY LECTURE 5 EXPERIMENT 5: LEWI TRUCTURE AND MOLECULAR HAPE Lecture topics I. LEWI TRUCTURE a) calculation of the valence electron numbers; b) choosing the

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

1.15 Bonding in Methane and Orbital Hybridization

1.15 Bonding in Methane and Orbital Hybridization 1.15 Bonding in Methane and Orbital Hybridization Structure of Methane tetrahedral bond angles = 109.5 bond distances = 110 pm but structure seems inconsistent with electron configuration of carbon Electron

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and

More information

Principal energy levels are divided into sublevels following a distinctive pattern, shown in Table 5.1 below.

Principal energy levels are divided into sublevels following a distinctive pattern, shown in Table 5.1 below. 56 Chapter 5: Electron Configuration, Lewis Dot Structure, and Molecular Shape Electron configuration. The outermost electrons surrounding an atom (the valence electrons) are responsible for the number

More information

Chapter 3 Molecular Shape and Structure

Chapter 3 Molecular Shape and Structure Key oncepts hapter 3 Molecular Shape and Structure The VSEPR Model (Sections 3.1 3.3) molecular formula, structural formula, space-filling model, ball-and-stick model, bond angle, valence-shell electron-pair

More information

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion A covalent bond is a bond formed due to a sharing of electrons. Lewis structures provide a description

More information

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.

More information

Lesson 3. Chemical Bonding. Molecular Orbital Theory

Lesson 3. Chemical Bonding. Molecular Orbital Theory Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

Visualizing Molecular Orbitals: A MacSpartan Pro Experience

Visualizing Molecular Orbitals: A MacSpartan Pro Experience Introduction Name(s) Visualizing Molecular Orbitals: A MacSpartan Pro Experience In class we have discussed Lewis structures, resonance, VSEPR, hybridization and molecular orbitals. These concepts are

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

PRACTICE PROBLEMS, CHAPTERS 1-3

PRACTICE PROBLEMS, CHAPTERS 1-3 PRATIE PRBLEMS, APTERS 1-3 (overed from h. 3: Alkane and Alkyl alide nomenclature only) 1. The atomic number of boron is 5. The correct electronic configuration of boron is: A. 1s 2 2s 3 B. 1s 2 2p 3.

More information

CHEMISTRY 113 EXAM 4(A)

CHEMISTRY 113 EXAM 4(A) Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

More information

EXAM 4 CH (Blackstock) November 30, 2006

EXAM 4 CH (Blackstock) November 30, 2006 EXAM 4 CH101.004 (Blackstock) November 30, 2006 Student name (print): honor pledge: 1. Which of these choices is the general electron configuration for the outermost electrons of elements in the alkaline

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

CHEM 101 Exam 4. Page 1

CHEM 101 Exam 4. Page 1 CEM 101 Exam 4 Form 1 (White) November 30, 2001 Page 1 Section This exam consists of 8 pages. When the exam begins make sure you have one of each. Print your name at the top of each page now. Show your

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) NCEA Level 2 Chemistry (91164) 2015 page 1 of 7 Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence Statement Q Evidence

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Additional practice problems, Exam 4 (Chapters 9, 10, 12, and maybe 13) 10/30/2006

Additional practice problems, Exam 4 (Chapters 9, 10, 12, and maybe 13) 10/30/2006 Additional practice problems, Exam 4 (Chapters 9, 10, 12, and maybe 13) 10/30/2006 The practice sheet is intended to be only one part of your preparations for the quiz. Expect to see problems and questions

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions Molecular Shape and Polarity 4.2 molecule is a discrete chemical entity, in which atoms are held together by the electrostatic attractions of covalent bonds. In previous chemistry courses, you used Lewis

More information

Two hydrogen atoms join together to attain the helium Noble gas configuration by sharing electrons and form a molecule.

Two hydrogen atoms join together to attain the helium Noble gas configuration by sharing electrons and form a molecule. Lecture Simple Molecular Orbitals - Sigma and Pi Bonds in Molecules 1 An atomic orbital is located on a single atom. When two (or more) atomic orbitals overlap to make a bond we can change our perspective

More information

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each) CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum

More information