Chemical Bonding. Chemical Bonding. Objectives: (Some of these are covered in detail in Lab.)

Size: px
Start display at page:

Download "Chemical Bonding. Chemical Bonding. Objectives: (Some of these are covered in detail in Lab.)"

Transcription

1 Chemical Bonding Objectives: (Some of these are covered in detail in Lab.) Understand and be able to describe the difference between ionic and covalent bonding. Be able to apply the Octet Rule as a basis for bonding. Know the definition of Lattice Energy and be able to calculate Lattice Energy from appropriate thermodynamic quantities (Born-Haber Cycle: Hess s Law). Understand and be able to predict trends in Lattice Energies based on ion size and charge; know how these trends are related to melting points of ionic compounds. Draw Lewis Electron-Dot Structures for small molecules and polyatomic ions when the Octet Rule is satisfied. Know the three common exceptions to the Octet Rule and be able to draw Lewis Structures for molecule and polyatomic ions that violate the rule. Understand covalent bond formation and properties; bond enthalpy (strength) and bond length. Be able to predict relative bond enthalpies and lengths based on atomic size and bond order. Be able to draw resonance structures; understand the concept of resonance and resonance stabilization. Be able to calculate Formal Charge and use Formal Charge as a basis for predicting relative stability of different resonance forms and different orders of attachment of atoms. Understand and be able to describe electronegativity; use electronegativity to predict polarity of bonds and diatomic molecules. Larson-Foothill College 1 Chemical Bonding Octet Rule: Transfer/Sharing of electrons to obtain a complete valence electron shell of 8 electrons (except H has a valence shell of 2 electrons). Ionic Bonding: Transfer of electrons through redox to obtain 8 valance shell electrons. Covalent Bonding: Sharing of electrons to obtain 8 valance shell electrons. (Exceptions where > 8 electrons are found.) Metallic Bonding: Electron-Sea Model (Covered in detail in Chapter 12.) Larson-Foothill College 2

2 Chemical Bond Formation: Covalent - Sharing of Electrons. Covalent bonding: sharing of electrons by orbital overlap. Each atom (except H) obtains an octet of electrons. Consider the formation of methane: C(s) + 2 H2(g) > CH4(g) (8 electrons now surround C) Covalent bonding gives us molecules, individual units of CH4. Covalent compounds exist as discrete molecules. We will show the bonding in covalent molecules using Lewis Structures. Lewis Structures are covered in detail in lab. a) The attractions and repulsions among electrons and nuclei in the hydrogen molecule. (b) Electron distribution in the H2 molecule. The concentration of electron density between the nuclei leads to a net attractive force that constitutes the covalent bond holding the molecule together. Larson-Foothill College 3 Covalent Bonds: Bond Order, Bond Length and Bond Strength Bond order: A single bond is described as having a bond order of 1, a double bond as having a bond order of 2 and a triple bond as having a bond order of three. Single bond: A covalent bond involving one shared electron pair. Triple bond: A covalent bond involving three shared electron pairs. Double bond: A covalent bond involving two shared electron pairs. Bond length: The distance between the nuclei of the atoms involved in a bond. Bond length depends on the size of the bonded atoms and on the bond order. Generally, bond length decreases with a decrease in atomic radii of the bonded atoms and with an increase in bond order. Bond Order:! 1! 2! 3 C C! C=C! C C 1.54Å! 1.34Å! 1.20Å Except for N N, these are average bond lengths. Larson-Foothill College 4

3 Covalent Bonds: Bond Order, Bond Length and Bond Strength Bond enthalpy (energy, strength): The bond enthalpy, D, is the enthalpy change ( H) per mole required to break a bond in the gas phase. Bond enthalpy depends on the two atoms bonding. Bond enthalpy generally increases with decreasing bond length, shorter bonds tend to be stronger. A double bond is stronger than a single bond (between the same two atoms) and a triple bond is stronger than a double. H2(g) > 2 H (g) H = bond enthalpy = 436 kj/mol Bond breaking is always an endothermic process, so bond enthalpies are (+) values. D (kj/mol): 163! 418! 941! (Average) (Average) Larson-Foothill College 5 Average Bond Strengths Larson-Foothill College 6

4 Using Bond Enthalpies (Energies) to Estimate Hrxn The heat of reaction between covalent molecules can be estimated from bond energies, D. Hrxn = (bond energies broken) - (bond energies formed) Hrxn= (Dreactants) - (Dproducts) = [D(C-H) + D(Cl-Cl)]-[D(C-Cl)+D(H-Cl) 1 2 = [( )-[ ] kj = 104 kj The actual value is kj, so our estimate is close. CH4(g) + Cl2 (g) > CH3Cl (g) + HCl (g) Larson-Foothill College 7 Using Bond Energies to Estimate Hrxn Text Problem 8.73: Ammonia is produced directly from nitrogen and hydrogen by using the Haber process. The chemical reaction is 3 H2(g) + N2(g) > 2 NH3(g) (a) Use bond enthalpies (Table 8.4) to estimate the enthalpy change for the reaction. Is it exothermic or endothermic. (b) Compare the enthalpy change you calculated in (a) to the true enthalpy change as obtained using H f values. Larson-Foothill College 8

5 Using Bond Enthalpies to Calculate Heat of Reaction Text Problem 8.96 An important reaction for the conversion of natural gas to other useful hydrocarbons is the conversion of methane to ethane. In practice, this reaction is carried out in the presence of oxygen, which converts the hydrogen produced to water. Use bond enthalpies (Table 8.4) to estimate ΔH for these two reactions. Why is the conversion of methane to ethane more favorable when oxygen is used? Larson-Foothill College 9 A polar covalent bond is formed when two bonding atoms have a large difference in electronegativity. Electronegativity is a measure of the ability of an atom, when bonded to another atom, to attract electrons to itself. The greater the difference in electronegativity between the atoms the greater the bond polarity. Polar Bonds in Covalent Molecules most electronegative atom becomes partially (-) least electronegative atom becomes partially (+) Larson-Foothill College 10

6 Dipole Moments: µ = Qr The dipole moment of a bond can be calculated by estimating the charge in coulombs, Q, on each atom and the distance between the charge, r in meters. The units of the dipole moment are debyes, D: 1D = 3.34x10 30 C m A relative charge of ±1 (proton and electron) has a value of 1.60x10-19 Coulombs, C Trend: Dipole moments increase with larger charges, i.e., larger difference in electronegativity. (Changes in r are less important.) Arrange the following bonds in order of increasing polarity: N F, Be F and O F Larson-Foothill College 11 Representative Polar Bonds General rules for polar bonds: (You do not need to memorize these.) ( EN = difference in electronegativity) Bond Type EN Nonpolar < 0.3 Weakly Polar Covalent Between 0.3 and 0.5 EN = = 1.8 Polar Covalent 0.5 to 2 Ionic > 2 This computergenerated rendering shows the calculated electron-density distribution on the surface of the F2, HF, and LiF molecules. The regions of relatively low electron density (net positive charge) appear blue, those of relatively high electron density (net negative charge) appear red, and regions that are close to electrically neutral appear green. EN = = 1.2 EN = = 0.8 Larson-Foothill College 12

7 Dipole Moments and Percent Ionic Character Problem: Calculate the effective charge on the hydrogen and chlorine atoms in HCl. Hint: We will need to use the formula: µ = Qr We also need the following information: charge of one electron: 1.60x10 19 C H Cl bond length: 1.27Å HCl Dipole Moment: 1.08 D 1D = 3.34x10 30 C m The more polar a bond is, the greater its percent ionic character. The percent ionic character of a bond can be defined as: charge on bonded atom charge of one electron x 100% Calculate the percent ionic character for HCl. Larson-Foothill College 13 Practice Question Text Problem 8.7: The partial Lewis structure below is for a hydrocarbon molecule. In the full Lewis structure, each carbon atom satisfies the octet rule, and there are no unshared electron pairs in the molecule. The carbon carbon bonds are labeled 1, 2, and 3. a) Determine where the hydrogen atoms are in the molecule. Draw them in. b) Rank the carbon carbon bonds in order of increasing bond length. c) Rank the carbon carbon bonds in order of increasing bond enthalpy. Larson-Foothill College 14

8 Chemical Bond Formation: Ionic Ionic bonding: transfer of electrons (through redox) to form ions. For main group elements, the ions form noble gas configurations. The metal is oxidized while a nonmetal is reduced. Na(s) + (1/2)Cl2(g) > [Na + + Cl ] > NaCl(s); H f = kj All ionic compounds are solids at room temperature! The compounds exist as crystal lattices. Uniform solids with a predictable structure. There are no individual NaCl units, each Na + ion is attracted to 6 nearest neighbor Cl ions, and each Cl ion to 6 nearest neighbor Na + ions. Larson-Foothill College 15 Energetics of Ionic Bond Formation Lattice Energy of Ionic Crystals The lattice energy is the energy needed to break apart the solid crystal lattice and form ions in the gas phase. This is always ENDOTHERMIC! NaCl(s) > Na + (g) + Cl (g) Hlattice = +788 kj/mol The lattice energy IS NOT the opposite of H f. For NaCl(s) H f is kj/mol The lattice energy depends on the charge and distance between ions in the solid phase; charge having the greater affect. H Lattice kq 1Q 2 d What are the trends in lattice energy shown above in terms of ion size and ion charge? Lattice energies can be used to predict relative melting point for ionic substances. In general, the greater the lattice energy, the higher the melting point. k is a constant, Q1 and Q2 are the ion charges, and d is the distance between ions in the crystal. Predict the order of melting points for: KCl, CaO, CsCl, CaCl2 and BaO. Larson-Foothill College 16

9 Lattice Energy cannot be easily measured directly. It is calculated using the Born-Haber cycle and Hess Law. 4. Steps in the cycle: 1. Na(s) > Na(g) H f Na(g) = 108 kj (sublimation) 2. 1/2 Cl2(g) > Cl(g) H f Cl(g) = 122 kj (1/2 bond energy) 3. Na(g) > Na + (g) + e IE1(Na) = 496 kj 4. Cl(g) + e > Cl (g) EA(Cl) = -349 kj 5. Na + (g) + Cl (g) > NaCl(s) Hlattice =? 3. Add these 5 steps together: to get step 6, H f NaCl(s): Na(s)+ 1/2 Cl2(g) > NaCl(s) H f NaCl(s)= -411 kj Start at standard states. 1. Using Hess Law and solving for the energy of step 5: 5 = 6 - { } So we have: Hlattice = 5 = -411 kj - { } kj = 788 kj 6. Hlattice = +788 kj NaCl(s) > Na + (g) + Cl (g) End at standard state. Larson-Foothill College 17 Lattice Energy Calculations Using the Born-Haber Cycle Write the appropriate equations and perform the calculations to determine the lattice energy for the crystal CaCl2. Data are as follows: Ca(s) to Ca(g) Hsublimation = 178 kj/mol IE1 Ca(g) = 590 kj/mol IE2 Ca+(g) = 1145 kj/mol Cl2(g) bond energy = 242 kj/mol EA Cl(g) = -349 kj/mol H f CaCl2(s) = -796 kj/mol Answer 2253 kj Larson-Foothill College 18

10 Conceptual Questions Text Problem 8.2: Illustrated below are four ions (A1, A2, Z1 and Z2), showing their relative ionic radii. The ions shown in red carry a 1+ charge, and those shown in blue carry a 1 charge. (a) Would you expect to find an ionic compound of formula A1A2 Explain. (b) Which combination of ions leads to the ionic compound having the largest lattice energy? (c) Which combination of ions leads to the ionic compound having the smallest lattice energy? Text Problem 8.4: The orbital diagram below shows the highest energy electrons for a 2+ ion of an element. a) What is the element? b) What is the electron configuration of an atom of this element? Larson-Foothill College 19 Conceptual Questions Text Problem 8.27: Energy is required to remove two electrons from Ca to form Ca 2+ and is also required to add two electrons to O to form O 2. Why, then, is CaO stable relative to the free elements? Question: Given that lattice energy increases as ionic charge increases, explain why compounds such as NaO, where Na is +2, or BaCl, where Cl is 2, do not form. Larson-Foothill College 20

11 The following slides are for reference. The details regarding Lewis Structures are covered in lab. Therefore, little regular lecture time will be allotted to this topic and these slides will not be discussed during lecture. However, questions regarding Lewis Structures will be included on the lecture exam covering Chapter 8 material. Larson-Foothill College 21 Molecules and Ions With the Same Lewis Structures Isoelectronic = same electron arrangement Text Note: This table is NOT from our text book. Note: These three can be drawn with an expanded octet that minimizes formal charges; thus a more stable structure. Expanded octet structures tend to be consistent with the known bond orders. Larson-Foothill College 22

12 Oxoacids and their Lewis Structures (Acidic H always bonded to an O atom!) Note: This table is NOT from our text book. Many of these oxoacids can also be written with expanded octets that minimize formal charges; their expanded octet structures are generally considered more stable. Expanded octet structures tend to be consistent with the known bond orders. Larson-Foothill College 23 Resonance Structures Resonance structures have the same connectivity of the atoms but a different arrangement of the bonding electrons. Ozone, O3 In ozone, the double bond can be placed either on the left or right. Neither is preferred so both resonance structures contribute equally to the electron arrangement of ozone. Notice the bond lengths are equivalent in ozone. This indicates only one type of bond is present in the molecule, not a single and a double bond. Furthermore, the individual single and double bonds do not resonate back and forth as shown by the two Lewis Structures. The true structure is a resonance hybrid where the double bond is shared between more that two atoms. The resulting structure is more stable than one where the double bond is localized between just two atoms. The molecule is said to be resonance stabilized. What are the bond orders in ozone and in the nitrate ion? Larson-Foothill College 24

13 Examples of Resonance Structures Benzene has two resonance structures; thus, it is resonance stabilized. For inequivalent resonance forms, formal charge can be used to predict the most stable form: Question: Based on the formal charges shown above, what do you predict for the bond orders of the N C and C S bonds in NCS? Larson-Foothill College 25 Octet Rule Exceptions; Odd Number of Electrons A few molecules or polyatomic ions have an odd number of valence electrons, thus the octet rule cannot be satisfied for all atoms in the molecule or ion; pairing all electrons is impossible. In these cases, consideration of formal charges can help determine the preferred Lewis Structure. Examples: NO2 and ClO2 Larson-Foothill College 26

14 Octet Rule Exceptions; Fewer than Eight Valance Electrons (Boron, B, is one example.) Boron usually only has six (6) electrons in its outer shell when bonding. However, boron will accept another pair of electrons to make a fourth bond to complete the octet. We could complete the octet around boron by forming a double bond. In so doing, we see that there are three equivalent resonance structures. These three resonance structures force a fluorine atom to share additional electrons with the boron atom, which is inconsistent with the high electronegativity of fluorine. In fact, the formal charges tell us that this is an unfavorable situation. Larson-Foothill College 27 Octet Rule Exceptions: Greater then Eight Outer Electrons All these elements have a d sublevel in their valence shell (3d, 4d, etc.) to use in bonding. Notice row 2 elements, B, C, N, O and F CANNOT do this (no 2d orbitals!!) Note: This table is NOT from our text book. Larson-Foothill College 28

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

We will not be doing these type of calculations however, if interested then can read on your own

We will not be doing these type of calculations however, if interested then can read on your own Chemical Bond Lattice Energies and Types of Ions Na (s) + 1/2Cl 2 (g) NaCl (s) ΔH= -411 kj/mol Energetically favored: lower energy Like a car rolling down a hill We will not be doing these type of calculations

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

Exam 2 Chemistry 65 Summer 2015. Score:

Exam 2 Chemistry 65 Summer 2015. Score: Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of

More information

Worksheet 14 - Lewis structures. 1. Complete the Lewis dot symbols for the oxygen atoms below

Worksheet 14 - Lewis structures. 1. Complete the Lewis dot symbols for the oxygen atoms below Worksheet 14 - Lewis structures Determine the Lewis structure of 2 oxygen gas. 1. omplete the Lewis dot symbols for the oxygen atoms below 2. Determine the number of valence electrons available in the

More information

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 Multiple Choice Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o 2. VALENT BNDING, TET RULE, PLARITY, AND BASI TYPES F FRMULAS LEARNING BJETIVES To introduce the basic principles of covalent bonding, different types of molecular representations, bond polarity and its

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Lewis Dot Structures of Atoms and Ions

Lewis Dot Structures of Atoms and Ions Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Order of Filling Subshells

Order of Filling Subshells Bonding: General Concepts Ionic Bonds Sections 13.2-13.6 Covalent Bonds Section 13.7 Covalent Bond Energy & Chemical Reactions Section 13.8-13.9 Lewis Structures Sections 13.10-13.12 VSEPR Theory Section

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+ Chapter 9 Tro 1. Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? A) 1s 2 2s

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

More information

Thermodynamics of Crystal Formation

Thermodynamics of Crystal Formation Thermodynamics of Crystal Formation! All stable ionic crystals have negative standard enthalpies of formation, ΔH o f, and negative standard free energies of formation, ΔG o f. Na(s) + ½ Cl 2 (g) NaCl(s)

More information

1.2 CLASSICAL THEORIES OF CHEMICAL BONDING

1.2 CLASSICAL THEORIES OF CHEMICAL BONDING 1. CLASSICAL TEORIES OF CEMICAL BONDING simply memorizing them. We ll consider some of the organic chemistry that is industrially important. Finally, we ll examine some of the beautiful applications of

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department

More information

A PREVIEW & SUMMMARY of the 3 main types of bond:

A PREVIEW & SUMMMARY of the 3 main types of bond: Chemical Bonding Part 1 Covalent Bonding Types of Chemical Bonds Covalent Bonds Single Polar Double NonPolar Triple Ionic Bonds Metallic Bonds Other Bonds InterMolecular orces first A PREVIEW & SUMMMARY

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79 Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,

More information

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8 HOMEWORK CHEM 107 Chapter 3 Compounds Putting Particles Together 3.1 Multiple-Choice 1) How many electrons are in the highest energy level of sulfur? A) 2 B) 4 C) 6 D) 8 2) An atom of phosphorous has how

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond

More information

Ionic Bonds. Chapter 8 Chemical Bonds (+VSEPR from Chapter 9) Li Be B C N O F Ne delocalized electron sea. 3. Introduction. Types of Chemical Bonds

Ionic Bonds. Chapter 8 Chemical Bonds (+VSEPR from Chapter 9) Li Be B C N O F Ne delocalized electron sea. 3. Introduction. Types of Chemical Bonds hapter 8: hemical Bonds (+ VSEPR) hapter bjectives: hapter 8 hemical Bonds (+VSEPR from hapter 9) Understand the principal types of chemical bonds. Understand the properties of ionic and molecular compounds.

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

Structure, Polarity & Physical Properties

Structure, Polarity & Physical Properties tructure, Polarity & Physical Properties upplemental packet handouts 92-96 I. Lewis structure, stability, and bond energies A. ydrogen, oxygen, and nitrogen are present in the atmosphere as diatomic molecular

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHE 1401 - Fall 2013 - Chapter 8 Homework 8 (Chapter 8: Basic concepts of chemical bonding) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Of

More information

Introduction to Chemistry. Course Description

Introduction to Chemistry. Course Description CHM 1025 & CHM 1025L Introduction to Chemistry Course Description CHM 1025 Introduction to Chemistry (3) P CHM 1025L Introduction to Chemistry Laboratory (1) P This introductory course is intended to introduce

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment. Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

More information

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 UNIT I: (CHAPTER 1-Zumdahl text) The Nature of Science and Chemistry 1. Explain why knowledge of chemistry is central to

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

WRITING CHEMICAL FORMULA

WRITING CHEMICAL FORMULA WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.

More information

DCI for Electronegativity. Data Table:

DCI for Electronegativity. Data Table: DCI for Electronegativity Data Table: Substance Ionic/covalent EN value EN Value EN NaCl ionic (Na) 0.9 (Cl) 3.0 2.1 KBr (K) 0.8 (Br) 2.8 MgO (Mg) 1.2 (O) 3.5 HCl (H) 2.1 (Cl) 3.0 HF (H) 2.1 (F) 4.0 Cl

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

Chemistry 11 Some Study Materials for the Final Exam

Chemistry 11 Some Study Materials for the Final Exam Chemistry 11 Some Study Materials for the Final Exam Prefix Abbreviation Exponent giga G 10 9 mega M 10 6 kilo k 10 3 hecto h 10 2 deca da 10 1 deci d 10-1 centi c 10-2 milli m 10-3 micro µ 10-6 nano n

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution Oxides; acidic, basic, amphoteric Classification of oxides - oxide

More information

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

More information

20.2 Chemical Equations

20.2 Chemical Equations All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more

More information

Formal Charges. Step 2. Assign the formal charge to each atom. Formal charge is calculated using this formula: H O H H

Formal Charges. Step 2. Assign the formal charge to each atom. Formal charge is calculated using this formula: H O H H Formal harges Discussion: Ions bear a positive or negative charge. If the ion is polyatomic (is constructed of more than on atom), we might ask which atom(s) of the ion carry the charge? Knowledge of charge

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

(b) Formation of calcium chloride:

(b) Formation of calcium chloride: Chapter 2: Chemical Compounds and Bonding Section 2.1: Ionic Compounds, pages 22 23 1. An ionic compound combines a metal and a non-metal joined together by an ionic bond. 2. An electrostatic force holds

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information