Q-Format number representation. Lecture 5 Fixed Point vs Floating Point. How to store Q30 number to 16-bit memory? Q-format notation.

Size: px
Start display at page:

Download "Q-Format number representation. Lecture 5 Fixed Point vs Floating Point. How to store Q30 number to 16-bit memory? Q-format notation."

Transcription

1 Lecture 5 Fixed Point vs Floating Point Objectives: Understand fixed point representations Understand scaling, overflow and rounding in fixed point Understand Q-format Understand TM32C67xx floating point representations Understand relationship between the two in C6x architecture Reference: "What Every Computer cientist hould Know About Floating-Point Arithmetic" by David GoldbergACM Computing urveys 23, 5 (March 1991). Lecture 5 - Fixed point vs Floating point 5-1 Q-Format number representation N-bit fixed point, 2 s complement number is given by: x = b N-1 N 1 N 2 1 N 12 + bn b1 2 + b 2 imaginary binary point Difficult to work with due to possible overflow & scaling problems Often normalise number to some fractional representation (e.g. between ± 1) x = b N-1 1 N 2 N 1 N 12 + bn b1 2 + b 2 imaginary binary point Lecture 5 - Fixed point vs Floating point 5-2 Q-format notation How to store Q3 number to 16-bit memory? Q-format representation: if N=16, 15 bit fractional representation Q15 format Rule: Q m + Q m Q m Q m x Q n Q m+n Assume 16-bit data format, Q15 x Q15 Q3 X Q15 Q15 Q toring Q3 number to 16-bit memory requires rounding or truncation: Q3 Rounding: if r =, round down, r = 1, round up rounding by addition a '1' here 15 r + 1 MPY A3,A4,A6 ; A3 x A4 A6 NOP ; Delay slot K 4h,A6 ; rounding add HR A6,15,A6 ; truncate bottom 15 bits TH A6,*A7 ; A6 mem[a7] Lecture 5 - Fixed point vs Floating point 5-3 Lecture 5 - Fixed point vs Floating point 5-4

2 Avoid overflow with afe add routine in C to avoid overflow - saturation add instruction Always clip to max (or min) possible et bit 9 of the CR register to indicate saturation has occurred Lecture 5 - Fixed point vs Floating point 5-5 Lecture 5 - Fixed point vs Floating point 5-6 ingle Precsion Floating Point number Easy (and lazy) way of dealing with scaling problem 32-bit single precision floating point: single precision x = 8-bit exp s exp bit frac 1. frac MB is sign-bit (same as fixed point) 8-bit exponent in bias-127 integer format (i.e., add 127 to it) 23-bit to represent only the fractional part of the mantissa. The MB of the mantissa is ALWAY 1, therefore it is not stored < x < Double Precision Floating Point number 64-bit double precision floating point: double precision bit exp 52-bit frac Odd register (e.g. A5) Even register (e.g. A4) x s = < exp frac x < MB is sign-bit (same as fixed point) 11-bit exponent in bias-123 integer format (i.e., add 123 to it) 52-bit to represent only the fractional part of the mantissa. The MB of the mantissa is ALWAY 1, therefore it is not stored 38 Lecture 5 - Fixed point vs Floating point 5-7 Lecture 5 - Fixed point vs Floating point 5-8

3 Convert 5.75 to P FP Examples 5.75 to binary: x 2 2 exponent in bias-127 is = 129 = 1 b The fractional part is after we drop the hidden 1 bit. Answer: = 4B8 (hex) Convert.1 to DP FP.1 to binary: (11 repeats) x 2-4 exponent in bias-123 is = 119 = b The fractional part is after we drop the hidden 1 bit and rounding Answer: = 3FB A (hex). Problems of Q-format Wrong Q-format representation will give totally wrong results Even correct use of Q-format notation may reduce precision For this example, Q12 result is totally wrong, and Q8 result is imprecise: Q Q * Q Q Q Lecture 5 - Fixed point vs Floating point 5-9 Lecture 5 - Fixed point vs Floating point 5-1 Data types used by C6x DPs pecial P numbers IEEE floating point standard has a set of special numbers: pecial ign (s) Exponent (e) Fraction (f) Hex Value Decimal + x. - 1 x x3f x4 2. +Inf 255 x7f8 + -Inf xff8 - NaN x 255 Nonzero x7fff FFFF not a number LFPN 254 All 1 s x7f7f FFFF e+38 FPN 1 All s x e-38 Lecture 5 - Fixed point vs Floating point 5-11 Lecture 5 - Fixed point vs Floating point 5-12

4 pecial DP numbers TM32C67x Internal ystem Architecture Double precision floating point special numbers: pecial Exponent (e) Fraction (f) Hex Value Decimal + x. - x x3ff x4 2. +Inf 247 x7ff + -Inf 247 xfff - NaN 247 Nonzero x7fff FFFF FFFF FFFF not a number LFPN 246 All 1 s x7fef FFFF FFFF FFFF e+38 FPN 1 All s x e-38 External Memory P E R I P H E R A L Regs (A-A15/31) Internal Memory Internal Buses.D1.M1.L1.1 CPU.D2.M2.L2.2 Regs (B-B15/31) Lecture 5 - Fixed point vs Floating point 5-13 Lecture 5 - Fixed point vs Floating point 5-14 Four functional units for each datapath Mapping of instructions to functional units..l.d.m K 2 AND B CLR EXT C K KH AB LDB LDDW. Unit NOT OR ET HL HR HL UB UB2 XOR ZERO ABP ABDP CMPGTP CMPEQP CMPLTP CMPGTDP CMPEQDP CMPLTDP RCPP RCPDP RQRP RQRDP PDP.D Unit (B/H/W) TB (B/H/W) (B/H/W) UB UBAB (B/H/W) ZERO AB AND CMPEQ CMPGT CMPLT LMBD NORM MPY MPYH MPYLH MPYHL.L Unit NOT P OR DP UBP AT UBDP UB INTP UB INTDP UBC PINT XOR DPINT ZERO PRTUNC DPTRUNC DPP.M Unit MPY MPYH MPYP MPYDP MPYI MPYID No Unit Used NOP IDLE Lecture 5 - Fixed point vs Floating point 5-15 Lecture 5 - Fixed point vs Floating point 5-16

5 Detailed internal datapaths Data path A Data path B Lecture 5 - Fixed point vs Floating point 5-17

By the end of the lecture, you should be able to:

By the end of the lecture, you should be able to: Extra Lecture: Number Systems Objectives - To understand: Base of number systems: decimal, binary, octal and hexadecimal Textual information stored as ASCII Binary addition/subtraction, multiplication

More information

Floating Point Numbers. Question. Learning Outcomes. Number Representation - recap. Do you have your laptop here?

Floating Point Numbers. Question. Learning Outcomes. Number Representation - recap. Do you have your laptop here? Question Floating Point Numbers 6.626068 x 10-34 Do you have your laptop here? A yes B no C what s a laptop D where is here? E none of the above Eddie Edwards eedwards@doc.ic.ac.uk https://www.doc.ic.ac.uk/~eedwards/compsys

More information

Integer and Real Numbers Representation in Microprocessor Techniques

Integer and Real Numbers Representation in Microprocessor Techniques Brno University of Technology Integer and Real Numbers Representation in Microprocessor Techniques Microprocessor Techniques and Embedded Systems Lecture 1 Dr. Tomas Fryza 30-Sep-2011 Contents Numerical

More information

1. Convert the following binary exponential expressions to their 'English'

1. Convert the following binary exponential expressions to their 'English' Answers to Practice Problems Practice Problems - Integer Number System Conversions 1. Convert the decimal integer 427 10 into the following number systems: a. 110101011 2 c. 653 8 b. 120211 3 d. 1AB 16

More information

Radix Number Systems. Number Systems. Number Systems 4/26/2010. basic idea of a radix number system how do we count:

Radix Number Systems. Number Systems. Number Systems 4/26/2010. basic idea of a radix number system how do we count: Number Systems binary, octal, and hexadecimal numbers why used conversions, including to/from decimal negative binary numbers floating point numbers character codes basic idea of a radix number system

More information

comp 180 Lecture 21 Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science

comp 180 Lecture 21 Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science IEEE 754 floating-point standard In order to pack more bits into the significant, IEEE 754 makes the leading

More information

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1 Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

More information

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

More information

FLOATING POINT NUMBERS

FLOATING POINT NUMBERS FLOATING POINT NUMBERS Introduction Richard Hayden (with thanks to Naranker Dulay) rh@doc.ic.ac.uk http://www.doc.ic.ac.uk/~rh/teaching or https://www.doc.ic.ac.uk/~wl/teachlocal/arch1 or CATE Numbers:

More information

Data Representation Binary Numbers

Data Representation Binary Numbers Data Representation Binary Numbers Integer Conversion Between Decimal and Binary Bases Task accomplished by Repeated division of decimal number by 2 (integer part of decimal number) Repeated multiplication

More information

Fractional Numbers. Fractional Number Notations. Fixed-point Notation. Fixed-point Notation

Fractional Numbers. Fractional Number Notations. Fixed-point Notation. Fixed-point Notation 2 Fractional Numbers Fractional Number Notations 2010 - Claudio Fornaro Ver. 1.4 Fractional numbers have the form: xxxxxxxxx.yyyyyyyyy where the x es constitute the integer part of the value and the y

More information

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

More information

Integer Numbers. Digital Signal Processor Data Path. Characteristics of Two Complements Representation. Integer Three Bit Representation 000

Integer Numbers. Digital Signal Processor Data Path. Characteristics of Two Complements Representation. Integer Three Bit Representation 000 Integer Numbers Twos Complement Representation Digital Signal Processor Data Path Ingo Sander Ingo@imit.kth.se B=b N-1 b N-2...b 1 b 0 where b i {0,1} b N-1 b N-2... b 1 b 0 Sign Bit Decimal Value D(B)=-b

More information

Introduction to IEEE Standard 754 for Binary Floating-Point Arithmetic

Introduction to IEEE Standard 754 for Binary Floating-Point Arithmetic Introduction to IEEE Standard 754 for Binary Floating-Point Arithmetic Computer Organization and Assembly Languages, NTU CSIE, 2004 Speaker: Jiun-Ren Lin Date: Oct 26, 2004 Floating point numbers Integers:

More information

Quiz for Chapter 3 Arithmetic for Computers 3.10

Quiz for Chapter 3 Arithmetic for Computers 3.10 Date: Quiz for Chapter 3 Arithmetic for Computers 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in RED

More information

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

More information

Chapter 4. Computer Arithmetic

Chapter 4. Computer Arithmetic Chapter 4 Computer Arithmetic 4.1 Number Systems A number system uses a specific radix (base). Radices that are power of 2 are widely used in digital systems. These radices include binary (base 2), quaternary

More information

Bit operations carry* 0110 a 0111 b a+b. 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( )

Bit operations carry* 0110 a 0111 b a+b. 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( ) Bit operations 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( ) 01100 carry* 0110 a 0111 b 01101 a+b * Always start with a carry-in of 0 Did it work? What is a? What is b? What is a+b? What if 8 bits

More information

2.1 Binary Numbers. 2.3 Number System Conversion. From Binary to Decimal. From Decimal to Binary. Section 2 Binary Number System Page 1 of 8

2.1 Binary Numbers. 2.3 Number System Conversion. From Binary to Decimal. From Decimal to Binary. Section 2 Binary Number System Page 1 of 8 Section Binary Number System Page 1 of 8.1 Binary Numbers The number system we use is a positional number system meaning that the position of each digit has an associated weight. The value of a given number

More information

Y = abc = a b c.2 0

Y = abc = a b c.2 0 Chapter 2 Bits, Data Types & Operations Integer Representation Floating-point Representation Other data types Why do Computers use Base 2? Base 10 Number Representation Natural representation for human

More information

Floating-point computation

Floating-point computation Real values and floating point values Floating-point representation IEEE 754 standard representation rounding special values Floating-point computation 1 Real values Not all values can be represented exactly

More information

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal 2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

More information

Number Systems and. Data Representation

Number Systems and. Data Representation Number Systems and Data Representation 1 Lecture Outline Number Systems Binary, Octal, Hexadecimal Representation of characters using codes Representation of Numbers Integer, Floating Point, Binary Coded

More information

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

More information

TECH. Arithmetic & Logic Unit. CH09 Computer Arithmetic. Number Systems. ALU Inputs and Outputs. Binary Number System

TECH. Arithmetic & Logic Unit. CH09 Computer Arithmetic. Number Systems. ALU Inputs and Outputs. Binary Number System CH09 Computer Arithmetic CPU combines of ALU and Control Unit, this chapter discusses ALU The Arithmetic and Logic Unit (ALU) Number Systems Integer Representation Integer Arithmetic Floating-Point Representation

More information

Number Systems & Encoding

Number Systems & Encoding Number Systems & Encoding Lecturer: Sri Parameswaran Author: Hui Annie Guo Modified: Sri Parameswaran Week2 1 Lecture overview Basics of computing with digital systems Binary numbers Floating point numbers

More information

Bits, Data Types, and Operations. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Bits, Data Types, and Operations. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell Bits, Data Types, and Operations University of Texas at Austin CS3H - Computer Organization Spring 2 Don Fussell How do we represent data in a computer? At the lowest level, a computer is an electronic

More information

Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

More information

Number Representation

Number Representation Number Representation Number System :: The Basics We are accustomed to using the so-called decimal number system Ten digits ::,,,3,4,5,6,7,8,9 Every digit position has a weight which is a power of Base

More information

Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

After adjusting the expoent value of the smaller number have

After adjusting the expoent value of the smaller number have 1 (a) Provide the hexadecimal representation of a denormalized number in single precision IEEE 754 notation. What is the purpose of denormalized numbers? A denormalized number is a floating point number

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x

More information

Recall that in base 10, the digits of a number are just coefficients of powers of the base (10):

Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));

This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30)); Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated

More information

198:211 Computer Architecture

198:211 Computer Architecture 198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book 1 Computer Architecture What do computers do? Manipulate stored

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Chap 3 Data Representation

Chap 3 Data Representation Chap 3 Data Representation 3-11 Data Types How to representation and conversion between these data types? 3-11 Data Types : Number System Radix : Decimal : radix 10 Binary : radix 2 3-11 Data Types : Number

More information

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1 Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

More information

Chapter II Binary Data Representation

Chapter II Binary Data Representation Chapter II Binary Data Representation The atomic unit of data in computer systems is the bit, which is actually an acronym that stands for BInary digit. It can hold only 2 values or states: 0 or 1, true

More information

Restoring division. 2. Run the algorithm Let s do 0111/0010 (7/2) unsigned. 3. Find remainder here. 4. Find quotient here.

Restoring division. 2. Run the algorithm Let s do 0111/0010 (7/2) unsigned. 3. Find remainder here. 4. Find quotient here. Binary division Dividend = divisor q quotient + remainder CS/COE447: Computer Organization and Assembly Language Given dividend and divisor, we want to obtain quotient (Q) and remainder (R) Chapter 3 We

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals with PLD Programming Floyd Chapter 2 29 Pearson Education Decimal Numbers The position of each digit in a weighted number system is assigned a weight based on the base or radix of

More information

COMP2121: Microprocessors and Interfacing

COMP2121: Microprocessors and Interfacing Interfacing Lecture 3: Number Systems (I) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2005 Overview Positional notation Decimal, hexadecimal and binary One complement Two s complement

More information

Binary Representation and Computer Arithmetic

Binary Representation and Computer Arithmetic Binary Representation and Computer Arithmetic The decimal system of counting and keeping track of items was first created by Hindu mathematicians in India in A.D. 4. Since it involved the use of fingers

More information

1. Number Representation

1. Number Representation CSEE 3827: Fundamentals of Computer Systems, Spring 2011 1. Number Representation Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/ Contents (H&H 1.3-1.4,

More information

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

More information

CPE 323 Data Types and Number Representations

CPE 323 Data Types and Number Representations CPE 323 Data Types and Number Representations Aleksandar Milenkovic Numeral Systems: Decimal, binary, hexadecimal, and octal We ordinarily represent numbers using decimal numeral system that has 10 as

More information

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

More information

Approximation Errors in Computer Arithmetic (Chapters 3 and 4)

Approximation Errors in Computer Arithmetic (Chapters 3 and 4) Approximation Errors in Computer Arithmetic (Chapters 3 and 4) Outline: Positional notation binary representation of numbers Computer representation of integers Floating point representation IEEE standard

More information

CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

More information

4 Operations On Data

4 Operations On Data 4 Operations On Data 4.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, students should be able to: List the three categories of operations performed on

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 9 Computer Arithmetic Arithmetic & Logic Unit Performs arithmetic and logic operations on data everything that we think of as computing. Everything else in

More information

Simulation & Synthesis Using VHDL

Simulation & Synthesis Using VHDL Floating Point Multipliers: Simulation & Synthesis Using VHDL By: Raj Kumar Singh - B.E. (Hons.) Electrical & Electronics Shivananda Reddy - B.E. (Hons.) Electrical & Electronics BITS, PILANI Outline Introduction

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

More information

Assessment. CS % coursework, 80% exam (2 hours) CS % exam (2 hours) The coursework is now released on Blackboard.

Assessment. CS % coursework, 80% exam (2 hours) CS % exam (2 hours) The coursework is now released on Blackboard. CS10510 & CS20410 CS10510 - Further Mathematics for Computer Science CS20410 - The Advanced Mathematics Driving License for Computer Science Module content at CS10510 and CS20410 or reachable through Blackboard.

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

quotient = dividend / divisor, with a remainder Given dividend and divisor, we want to obtain quotient (Q) and remainder (R)

quotient = dividend / divisor, with a remainder Given dividend and divisor, we want to obtain quotient (Q) and remainder (R) Binary division quotient = dividend / divisor, with a remainder dividend = divisor quotient + remainder Given dividend and divisor, we want to obtain quotient (Q) and remainder (R) We will start from our

More information

Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.

Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x. ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.

More information

Presented By: Ms. Poonam Anand

Presented By: Ms. Poonam Anand Presented By: Ms. Poonam Anand Know the different types of numbers Describe positional notation Convert numbers in other bases to base 10 Convert base 10 numbers into numbers of other bases Describe the

More information

Verilog Review and Fixed Point Arithmetics. Overview

Verilog Review and Fixed Point Arithmetics. Overview Verilog Review and Fixed Point Arithmetics CSE4210 Winter 2012 Mokhtar Aboelaze based on slides by Dr. Shoab A. Khan Overview Floating and Fixed Point Arithmetic System Design Flow Requirements and Specifications

More information

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

More information

MIPS floating-point arithmetic

MIPS floating-point arithmetic MIPS floating-point arithmetic Floating-point computations are vital for many applications, but correct implementation of floating-point hardware and software is very tricky. Today we ll study the IEEE

More information

CSCI 230 Class Notes Binary Number Representations and Arithmetic

CSCI 230 Class Notes Binary Number Representations and Arithmetic CSCI 230 Class otes Binary umber Representations and Arithmetic Mihran Tuceryan with some modifications by Snehasis Mukhopadhyay Jan 22, 1999 1 Decimal otation What does it mean when we write 495? How

More information

Data types. lecture 4

Data types. lecture 4 Data types lecture 4 Information in digital computers is represented using binary number system. The base, i.e. radix, of the binary system is 2. Other common number systems: octal (base 8), decimal (base

More information

Fixed-Point Arithmetic

Fixed-Point Arithmetic Fixed-Point Arithmetic Fixed-Point Notation A K-bit fixed-point number can be interpreted as either: an integer (i.e., 20645) a fractional number (i.e., 0.75) 2 1 Integer Fixed-Point Representation N-bit

More information

Binary Numbers Again. Binary Arithmetic, Subtraction. Binary, Decimal addition

Binary Numbers Again. Binary Arithmetic, Subtraction. Binary, Decimal addition Binary Numbers Again Recall than N binary digits (N bits) can represent unsigned integers from 0 to 2 N -1. 4 bits = 0 to 15 8 bits = 0 to 255 16 bits = 0 to 65535 Besides simply representation, we would

More information

Numerical Matrix Analysis

Numerical Matrix Analysis Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, blomgren.peter@gmail.com Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

Lecture 4 Representing Data on the Computer. Ramani Duraiswami AMSC/CMSC 662 Fall 2009

Lecture 4 Representing Data on the Computer. Ramani Duraiswami AMSC/CMSC 662 Fall 2009 Lecture 4 Representing Data on the Computer Ramani Duraiswami AMSC/CMSC 662 Fall 2009 x = ±(1+f) 2 e 0 f < 1 f = (integer < 2 52 )/ 2 52-1022 e 1023 e = integer Effects of floating point Effects of floating

More information

Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD). Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

Two s Complement Arithmetic

Two s Complement Arithmetic Two s Complement Arithmetic We now address the issue of representing integers as binary strings in a computer. There are four formats that have been used in the past; only one is of interest to us. The

More information

Fixed-point Representation of Numbers

Fixed-point Representation of Numbers Fixed-point Representation of Numbers Fixed Point Representation of Numbers Sign-and-magnitude representation Two s complement representation Two s complement binary arithmetic Excess code representation

More information

Unit 2: Number Systems, Codes and Logic Functions

Unit 2: Number Systems, Codes and Logic Functions Unit 2: Number Systems, Codes and Logic Functions Introduction A digital computer manipulates discrete elements of data and that these elements are represented in the binary forms. Operands used for calculations

More information

Lecture 5, Representation of Fractions & Floating Point Numbers

Lecture 5, Representation of Fractions & Floating Point Numbers Computer Science 210 Computer Systems 1 Lecture Notes Lecture 5, Representation of Fractions & Floating Point Numbers Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University

More information

Numbering Systems. InThisAppendix...

Numbering Systems. InThisAppendix... G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal

More information

A Library of Parameterized Floating Point Modules and Their Use

A Library of Parameterized Floating Point Modules and Their Use A Library of Parameterized Floating Point Modules and Their Use Pavle Belanović and Miriam Leeser Dept of Electrical and Computer Engineering Northeastern University Boston, MA, 02115, USA {pbelanov,mel}@ece.neu.edu

More information

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

More information

Chapter 4. Binary Data Representation and Binary Arithmetic

Chapter 4. Binary Data Representation and Binary Arithmetic Christian Jacob Chapter 4 Binary Data Representation and Binary Arithmetic 4.1 Binary Data Representation 4.2 Important Number Systems for Computers 4.2.1 Number System Basics 4.2.2 Useful Number Systems

More information

CSE 1400 Applied Discrete Mathematics Conversions Between Number Systems

CSE 1400 Applied Discrete Mathematics Conversions Between Number Systems CSE 400 Applied Discrete Mathematics Conversions Between Number Systems Department of Computer Sciences College of Engineering Florida Tech Fall 20 Conversion Algorithms: Decimal to Another Base Conversion

More information

ELET 7404 Embedded & Real Time Operating Systems. Fixed-Point Math. Chap. 9, Labrosse Book. Fall 2007

ELET 7404 Embedded & Real Time Operating Systems. Fixed-Point Math. Chap. 9, Labrosse Book. Fall 2007 ELET 7404 Embedded & Real Time Operating Systems Fixed-Point Math Chap. 9, Labrosse Book Fall 2007 Fixed-Point Math Most low-end processors, such as embedded processors Do not provide hardware-assisted

More information

Computer is a binary digital system. Data. Unsigned Integers (cont.) Unsigned Integers. Binary (base two) system: Has two states: 0 and 1

Computer is a binary digital system. Data. Unsigned Integers (cont.) Unsigned Integers. Binary (base two) system: Has two states: 0 and 1 Computer Programming Programming Language Is telling the computer how to do something Wikipedia Definition: Applies specific programming languages to solve specific computational problems with solutions

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

Switching Circuits & Logic Design

Switching Circuits & Logic Design Switching Circuits & Logic Design Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2013 1 1 Number Systems and Conversion Babylonian number system (3100 B.C.)

More information

Useful Number Systems

Useful Number Systems Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

More information

1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12

1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 C5 Solutions 1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 To Compute 0 0 = 00000000 To Compute 1 Step 1. Convert 1 to binary 00000001 Step 2. Flip the bits 11111110

More information

Number Representation and Arithmetic in Various Numeral Systems

Number Representation and Arithmetic in Various Numeral Systems 1 Number Representation and Arithmetic in Various Numeral Systems Computer Organization and Assembly Language Programming 203.8002 Adapted by Yousef Shajrawi, licensed by Huong Nguyen under the Creative

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-470/570: Microprocessor-Based System Design Fall 2014.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-470/570: Microprocessor-Based System Design Fall 2014. REVIEW OF NUMBER SYSTEMS Notes Unit 2 BINARY NUMBER SYSTEM In the decimal system, a decimal digit can take values from to 9. For the binary system, the counterpart of the decimal digit is the binary digit,

More information

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic: Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

More information

Chapter 2 Numeric Representation.

Chapter 2 Numeric Representation. Chapter 2 Numeric Representation. Most of the things we encounter in the world around us are analog; they don t just take on one of two values. How then can they be represented digitally? The key is that

More information

Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic

Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oon.org Acknowledgements

More information

IEEE floating point numbers. Floating-Point Representation and Approximation. floating point numbers with base 10. Errors

IEEE floating point numbers. Floating-Point Representation and Approximation. floating point numbers with base 10. Errors EE103 (Shinnerl) Floating-Point Representation and Approximation Errors Cancellation Instability Simple one-variable examples Swamping IEEE floating point numbers floating point numbers with base 10 floating

More information

Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

More information

SAMPLE. Computer Science. Essential Maths Skills. for AS/A-level. Gavin Craddock and Victoria Ellis

SAMPLE. Computer Science. Essential Maths Skills. for AS/A-level. Gavin Craddock and Victoria Ellis Essential Maths Skills for AS/A-level Computer Science Gavin Craddock and Victoria Ellis Series Editor Heather Davis Educational Consultant with Cornwall Learning Contents The listed content is assessed

More information

Representation of Floating Point Numbers in

Representation of Floating Point Numbers in Representation of Floating Point Numbers in Single Precision IEEE 754 Standard Value = N = (-1) S X 2 E-127 X (1.M) 0 < E < 255 Actual exponent is: e = E - 127 sign 1 8 23 S E M exponent: excess 127 binary

More information

Summary. Description. Mosaic Industries. Conversion of HEX ASCII Floating Point Number to Binary IEEE Format APPLICATION NOTE MI-AN-050

Summary. Description. Mosaic Industries. Conversion of HEX ASCII Floating Point Number to Binary IEEE Format APPLICATION NOTE MI-AN-050 Mosaic Industries Conversion of HEX ASCII Floating Point Number to Binary IEEE Format APPLICATION NOTE MI-AN-050 Summary The following explains how to convert a HEX ASCII floating point number to binary

More information

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano

More information

NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120

NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120 NUMBER REPRESENTATIONS IN THE COMPUTER for COSC 120 First, a reminder of how we represent base ten numbers. Base ten uses ten (decimal) digits: 0, 1, 2,3, 4, 5, 6, 7, 8, 9. In base ten, 10 means ten. Numbers

More information

Floating point package user s guide By David Bishop (dbishop@vhdl.org)

Floating point package user s guide By David Bishop (dbishop@vhdl.org) Floating point package user s guide By David Bishop (dbishop@vhdl.org) Floating-point numbers are the favorites of software people, and the least favorite of hardware people. The reason for this is because

More information

Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1

Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1 Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal

More information