PRESENTED BY THE NUMEROLOGIST Mathematics, Grade 9. Welcome to today s topic Parts of Listen & Learn. Presentation, questions, Q&A

Size: px
Start display at page:

Download "PRESENTED BY THE NUMEROLOGIST Mathematics, Grade 9. Welcome to today s topic Parts of Listen & Learn. Presentation, questions, Q&A"

Transcription

1 Number Sense and Numeration PRESENTED BY THE NUMEROLOGIST Mathematics, Grade 9 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping NOT the Chat Room Your questions Satisfaction Meter 1

2 What you will learn After viewing this presentation, you will be able to explain the rate of change concepts (constant rate of change, meaning of rate of change) explain the connection between rate of change and slope Agenda Background and importance Definition Exploring Constant Applying in an equation Recap 2

3 Agenda Background and importance Definition Exploring Constant Applying in an equation Recap Background Rates of Change are all around us. Slope of a hill Pitch of a roof Slant of a ramp Velocity of a car Price per unit Hourly wage 3

4 Importance Indicates how one variable changes with respect to another variable. Examples: Speed 10 km/h, Pitch of roof, Slope of a hill 6% grade Used in many different subjects: Physics, Chemistry, Biology, Economics, Computer Science Focus Question m 5 m/s You are in a plane, on your way to Cuba. Can t wait to get to the beach! The plane is at a height of m and is beginning its descent. It falls 5 m/s. To know when it s going to land, you need to know the rate of change and constant. Use the following lesson to help you solve this problem. 4

5 Agenda Background and importance Definition Exploring Constant Applying in an equation Recap Definition The change in one variable relative to the change in another. On a graph, the slope of a line represents rate of change. Example: Travel 10 m in 5 seconds : 5

6 Definition : Slope The steepness of a line can be determined by looking at the value of the rate of change. Example: 10 m/s is steeper than 2 m/s red line: 10 m/s The larger the blue line: 2 m/s magnitude of the rate of change, the steeper the line. Agenda Background and importance Definition Exploring Constant Applying in an equation Recap 6

7 Exploring Constant : The rate remains the same throughout the situation. Constant Rate = straight line Exploring Constant : To calculate the rate of change: Change in height Change in length Change in rise Change in run This is the slope. 7

8 Exploring Constant : Change in rise Change in run 2 s 6 m Measure the rise 14 8 = 6 m Measure the run 3 1 = 2 s Exploring Constant : Change in rise Change in run 2 s 6 m 6 m = 3 m/s 2 s 8

9 Exploring Constant : What is the rate of change (slope)? a) 1 m/s b) m/s c) m/s Exploring Constant : What is the rate of change (slope)? 4 m 3 s a) 1 m/s b) m/s c) m/s Positive slope: increasing line (rising from left to right) 9

10 Exploring Constant : What is the rate of change (slope)? a) 2 m/s b) 2 m/s c) m/s Exploring Constant : 2 s - 4 m What is the rate of change (slope)? a) 2 m/s b) 2 m/s c) m/s Negative slope: decreasing line (falling from left to right) 10

11 Agenda Background and importance Definition Exploring Constant Applying in an equation Recap Exploring Applying : Example: Shawn visits Rent-Me Car Rentals. The equation, C = 3k + 50, represents the cost for Shawn to rent a car. (k = distance in kilometres, C = total cost in dollars) a) What is the rate of change? b) What does the rate of change represent? 11

12 Exploring Applying : Example: Shawn visits Rent-Me Car Rentals. The equation, C = 3k + 50, represents the cost for Shawn to rent a car. (k = distance in kilometres, C = total cost in dollars) a) What is the rate of change? b) What does the rate of change represent? Exploring Applying : Example: Shawn visits Rent-Me Car Rentals. The equation, C = 3k + 50, represents the cost for Shawn to rent a car. (k = distance in kilometres, C = total cost in dollars) a) What is the rate of change? $3 per km b) What does the rate of change represent? 12

13 Exploring Applying : Slope= $3/km 6 ($) Look at the solution as shown on a graph. The rate of change (slope) is $3 per km. 2 km Exploring Applying : Example: Shawn visits Rent-Me Car Rentals. The equation, C = 3k + 50, represents the cost for Shawn to rent a car. (k = distance in kilometres, C = total cost in dollars) a) What is the rate of change? b) What does the rate of change represent? 13

14 Exploring Applying : Example: Shawn visits Rent-Me Car Rentals. The equation, C = 3k + 50, represents the cost for Shawn to rent a car. (k = distance in kilometres, C = total cost in dollars) b) What does the rate of change represent? The price per kilometre is $3. As the number of kilometres increases, the total cost changes. Agenda Background and importance Definition Exploring Constant Applying in an equation Recap 14

15 Exploring in an Equation: Savneet joins a gym. It costs $45 to join, and then $20 per month. An equation needs two parts; one that is constant, the other that varies. To determine the rate of change, find the part of the relationship that varies. Determine the constant (the part that does not change). Exploring in an Equation: Savneet joins a gym. It costs $45 to join, and then $20 per month. 1. To determine the rate of change, find the value that depends on a changing variable. a) $45 b) $20 per month 15

16 Exploring in an Equation: Savneet joins a gym. It costs $45 to join, and then $20 per month. 1. To determine the rate of change, find the value that depends on a changing variable. a) $45 b) $20 per month depends on number of months (m) Exploring in an Equation: Savneet joins a gym. It costs $45 to join, and then $20 per month. 2. Determine the constant (the part that does not change). a) $45 b) $20 per month 16

17 Exploring in an Equation: Savneet joins a gym. It costs $45 to join, and then $20 per month. 2. Determine the constant (the part that does not change). a) $45 b) $20 per month Exploring in an Equation: Savneet joins a gym. It costs $45 to join, and then $20 per month. Put everything together. The equation becomes C = 20m + 45, where m is the number of months and C is the total cost. 17

18 Agenda Background and importance Definition Exploring Constant Applying in an equation Recap Recap 1. The rate of change = slope 2. Decreasing slope negative Increasing slope positive 3. Rate of change depends on changing variables 4. Equation is made up of two parts: a) rate of change, and b) constant 18

19 Recap Answering the Focus Question Height (m) m Time (s) Slope = 5 m/s 2000 A plane began its descent at m. It fell 5 m/s. 1. Find the rate of change. a) m b) 5 m/s c) 5 m/s Recap Answering the Focus Question Height (m) m Slope = 5 m/s Time (s) 2000 A plane began its descent at m. It fell 5 m/s. 1. Find the rate of change. a) m b) 5 m/s c) 5 m/s Altitude of plane decreasing over time, therefore slope is negative. 19

20 Recap Answering the Focus Question Height (m) m Time (s) Slope = 5 m/s 2000 A plane began its descent at m. It fell 5 m/s. 2. Determine the constant. a) m b) 5 m/s c) 5 m/s Recap Answering the Focus Question Height (m) m Time (s) Slope = 5 m/s 2000 A plane began its descent at m. It fell 5 m/s. 2. Determine the constant. a) m b) 5 m/s c) 5 m/s Initial height is m. 20

21 Recap Answering the Focus Question A plane began its descent at m. It fell 5 m/s Height (m) Time (s) Slope = 5 m/s Create an equation to represent the plane s descent. a) D = 5s b) D = 5s c) D = 5s d) D = 5s Recap Answering the Focus Question A plane began its descent at m. It fell 5 m/s Height (m) Time (s) Slope = 5 m/s Create an equation to represent the plane s descent. a) D = 5s b) D = 5s c) D = 5s d) D = 5s Notice the sign on each value. Put together the slope and initial value. s represents time in seconds. 21

22 Resources NCTM examples/chap6/6.2/index.htm 22

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

Effects of changing slope or y-intercept

Effects of changing slope or y-intercept Teacher Notes Parts 1 and 2 of this lesson are to be done on the calculator. Part 3 uses the TI-Navigator System. Part 1: Calculator Investigation of changing the y-intercept of an equation In your calculators

More information

ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES

ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES ENTRANCE EXAMINATION FOR THE BACHELOR OF ENGINEERING DEGREE PROGRAMMES INSTRUCTIONS The Entrance Examination consists of three parts: Problem Solving (Part 1), Questions on Motivation (Part ), English

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1 Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws

Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

Multiplying and Dividing Listen & Learn PRESENTED BY MATHMANIAC Mathematics, Grade 8

Multiplying and Dividing Listen & Learn PRESENTED BY MATHMANIAC Mathematics, Grade 8 Number Sense and Numeration Integers Multiplying and Dividing PRESENTED BY MATHMANIAC Mathematics, Grade 8 Integers Multiplying and Dividing Introduction Welcome to today s topic Parts of Presentation,

More information

2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance 2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Listen and Learn PRESENTED BY MATHEMAGICIAN Mathematics, Grade 7

Listen and Learn PRESENTED BY MATHEMAGICIAN Mathematics, Grade 7 Number Sense and Numeration Integers Adding and Subtracting Listen and Learn PRESENTED BY MATHEMAGICIAN Mathematics, Grade 7 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

Chapter 2 Solutions. 4. We find the average velocity from

Chapter 2 Solutions. 4. We find the average velocity from Chapter 2 Solutions 4. We find the aerage elocity from = (x 2 x 1 )/(t 2 t 1 ) = ( 4.2 cm 3.4 cm)/(6.1 s 3.0 s) = 2.5 cm/s (toward x). 6. (a) We find the elapsed time before the speed change from speed

More information

Example 1. Rise 4. Run 6. 2 3 Our Solution

Example 1. Rise 4. Run 6. 2 3 Our Solution . Graphing - Slope Objective: Find the slope of a line given a graph or two points. As we graph lines, we will want to be able to identify different properties of the lines we graph. One of the most important

More information

Solving Special Systems of Linear Equations

Solving Special Systems of Linear Equations 5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

More information

SCALAR VS. VECTOR QUANTITIES

SCALAR VS. VECTOR QUANTITIES SCIENCE 1206 MOTION - Unit 3 Slideshow 2 SPEED CALCULATIONS NAME: TOPICS OUTLINE SCALAR VS. VECTOR SCALAR QUANTITIES DISTANCE TYPES OF SPEED SPEED CALCULATIONS DISTANCE-TIME GRAPHS SPEED-TIME GRAPHS SCALAR

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Calculating the Surface Area of a Cylinder

Calculating the Surface Area of a Cylinder Calculating the Measurement Calculating The Surface Area of a Cylinder PRESENTED BY CANADA GOOSE Mathematics, Grade 8 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

Lesson 2.15: Physical Science Speed, Velocity & Acceleration

Lesson 2.15: Physical Science Speed, Velocity & Acceleration Weekly Focus: Reading for Comprehension Weekly Skill: Numeracy Skills in Science Lesson Summary: This week students will continue reading for comprehension with reading passages on speed, velocity, and

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Algebra EOC Practice Test #2

Algebra EOC Practice Test #2 Class: Date: Algebra EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following lines is perpendicular to the line y =

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Name Class Date. Pulley. Wedge

Name Class Date. Pulley. Wedge CHAPTER 13 2 Simple Machines SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: What are simple machines? What simple machines are in the lever family? What simple

More information

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Force and Motion: Ramp It Up

Force and Motion: Ramp It Up Force and Motion: Grade Level: 4-5 Time: 3 class periods By: Carrie D. Perry (Bedford County Public Schools) Overview After watching an engaging video on Olympic alpine skiers, students then participate

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

More information

Freely Falling Bodies & Uniformly Accelerated Motion

Freely Falling Bodies & Uniformly Accelerated Motion Physics Trinity Valley School Page 1 Lesson 24 Galileo, Freely Falling Bodies & Uniformly Accelerated Motion Galileo argued that a freely falling body is undergoing uniform acceleration. Its speed is increasing

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Linear functions Increasing Linear Functions. Decreasing Linear Functions

Linear functions Increasing Linear Functions. Decreasing Linear Functions 3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described

More information

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h).

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Revised Pages PART ONE Mechanics CHAPTER Motion Along a Line 2 Despite its enormous mass (425 to 9 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Since the top speed

More information

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.

Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer. Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

Lesson 4: Solving and Graphing Linear Equations

Lesson 4: Solving and Graphing Linear Equations Lesson 4: Solving and Graphing Linear Equations Selected Content Standards Benchmarks Addressed: A-2-M Modeling and developing methods for solving equations and inequalities (e.g., using charts, graphs,

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *8270368766* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MATHEMATICS 0580/11 Paper 1 (Core) October/November 2012 Candidates answer on the

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus

Teaching & Learning Plans. Arithmetic Sequences. Leaving Certificate Syllabus Teaching & Learning Plans Arithmetic Sequences Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

More information

Charts, Tables, and Graphs

Charts, Tables, and Graphs Charts, Tables, and Graphs The Mathematics sections of the SAT also include some questions about charts, tables, and graphs. You should know how to (1) read and understand information that is given; (2)

More information

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2.

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2. ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for

More information

Acquisition Lesson Plan for the Concept, Topic or Skill---Not for the Day

Acquisition Lesson Plan for the Concept, Topic or Skill---Not for the Day Acquisition Lesson Plan Concept: Linear Systems Author Name(s): High-School Delaware Math Cadre Committee Grade: Ninth Grade Time Frame: Two 45 minute periods Pre-requisite(s): Write algebraic expressions

More information

Average rate of change

Average rate of change Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In

More information

Freely Falling Objects

Freely Falling Objects Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

Rubber Band Race Car

Rubber Band Race Car Rubber Band Race Car Physical Science Unit Using LEGO Mindstorms NXT Copyright 2009 by Technically Learning 1 of 17 Overview: Through a series of hands-on activities, students will design a rubber band

More information

The Basics of Physics with Calculus. AP Physics C

The Basics of Physics with Calculus. AP Physics C The Basics of Physics with Calculus AP Physics C Pythagoras started it all 6 th Century Pythagoras first got interested in music when he was walking past a forge and heard that the sounds of the blacksmiths'

More information

PART2Machines. Measuring Work on a Cart on an. Inclined Plane 102. Inclined Plane 104. Inquiry 12.1 Using Pulleys To Do Work 112

PART2Machines. Measuring Work on a Cart on an. Inclined Plane 102. Inclined Plane 104. Inquiry 12.1 Using Pulleys To Do Work 112 TERRY G. MCCREA/SMITHSONIAN INSTITUTION PART2Machines LESSON 11 The Inclined Plane 100 Inquiry 11.1 Inquiry 11.2 Measuring Forces on a Cart on an Inclined Plane 102 Measuring Work on a Cart on an Inclined

More information

Muscle Mania and Healthy Heart Gym

Muscle Mania and Healthy Heart Gym Muscle Mania and Healthy Heart Gym Allie Algebra and her friend Carly Coefficient wanted to get in shape. Allie Algebra joined the Muscle Mania Gym. To get a membership to the Muscle Mania Gym she had

More information

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

The Utah Basic Skills Competency Test Framework Mathematics Content and Sample Questions

The Utah Basic Skills Competency Test Framework Mathematics Content and Sample Questions The Utah Basic Skills Competency Test Framework Mathematics Content and Questions Utah law (53A-1-611) requires that all high school students pass The Utah Basic Skills Competency Test in order to receive

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Elasticity. I. What is Elasticity?

Elasticity. I. What is Elasticity? Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

Graphing: Slope-Intercept Form

Graphing: Slope-Intercept Form Graphing: Slope-Intercept Form A cab ride has an initial fee of $5.00 plus $0.20 for every mile driven. Let s define the variables and write a function that represents this situation. We can complete the

More information

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4. Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations

More information

4. Answer c. The index of nominal wages for 1996 is the nominal wage in 1996 expressed as a percentage of the nominal wage in the base year.

4. Answer c. The index of nominal wages for 1996 is the nominal wage in 1996 expressed as a percentage of the nominal wage in the base year. Answers To Chapter 2 Review Questions 1. Answer a. To be classified as in the labor force, an individual must be employed, actively seeking work, or waiting to be recalled from a layoff. However, those

More information

Florida Building Code 2004 SECTION 1009 STAIRWAYS AND HANDRAILS

Florida Building Code 2004 SECTION 1009 STAIRWAYS AND HANDRAILS Florida Building Code 2004 SECTION 1009 STAIRWAYS AND HANDRAILS 1009.1 Stairway width. The width of stairways shall be determined as specified in Section 1005.1, but such width shall not be less than 44

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 26, 2004 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 26, 2004 1:15 to 4:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Monday, January 26, 2004 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your name and the

More information

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT) Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram

More information

Physics 590 Homework, Week 6 Week 6, Homework 1

Physics 590 Homework, Week 6 Week 6, Homework 1 Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

NJ ASK PREP. Investigation: Mathematics. Paper Airplanes & Measurement. Grade 3 Benchmark 3 Geometry & Measurement

NJ ASK PREP. Investigation: Mathematics. Paper Airplanes & Measurement. Grade 3 Benchmark 3 Geometry & Measurement S E C T I O N 4 NJ ASK PREP Mathematics Investigation: Paper Airplanes & Measurement Grade 3 Benchmark 3 Geometry & Measurement This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs

More information

Creating a Concept-Based Unit for the 9-12 Mathematics Classroom

Creating a Concept-Based Unit for the 9-12 Mathematics Classroom Creating a Concept-Based Unit for the 9-12 Mathematics Classroom October 29, 2009 NCCTM Mathematics Conference Presented By Carmella Fair NC Department of Public Instruction Secondary Mathematics Consultant

More information

8.9 Intersection of Lines and Conics

8.9 Intersection of Lines and Conics 8.9 Intersection of Lines and Conics The centre circle of a hockey rink has a radius of 4.5 m. A diameter of the centre circle lies on the centre red line. centre (red) line centre circle INVESTIGATE &

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

Pennsylvania System of School Assessment

Pennsylvania System of School Assessment Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

More information

Science Project. Ideal Trajectory of Air Pump Rockets

Science Project. Ideal Trajectory of Air Pump Rockets Science Project Ideal Trajectory of Air Pump Rockets Physics Lopez Island High School March 3, 2014 Fletcher Moore Abstract This experiment uses model air rockets to test the ideal trajectory a rocket

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

Physical Quantities and Units

Physical Quantities and Units Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

AP Calculus AB 2005 Free-Response Questions

AP Calculus AB 2005 Free-Response Questions AP Calculus AB 25 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information