# CAD and Finite Element Analysis

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: Stress Analysis Thermal Analysis Structural Dynamics Computational Fluid Dynamics (CFD) Electromagnetics Analysis...

2 General Approach for FE, 1 Select verification tools analytic, experimental, other fe method, etc. Select element type(s) and degree 3-D solid, axisymmetric solid, thick surface, thin surface, thick curve, thin curve, etc. Understand primary variables (PV) Statics: displacements & (maybe) rotations Thermal: temperature CDF: velocity & pressure

3 General Approach for FE, 2 Understand source (load) items Statics: point, line, surface, and volume forces Thermal: point, line, surface, and volume heat generation Understand secondary variables (SV) Statics: strains, stresses, failure criterion, error Thermal: heat flux, error

4 General Approach for FE, 3 Understand boundary conditions (BC) Essential BC (on PV) Statics: displacement and/or (maybe) rotation Thermal: temperature Natural BC (on SV) Statics: null surface traction vector Thermal: null normal heat flux One or the other at a boundary point.

5 General Approach for FE, 4 Understand reactions at Essential BC Statics: Force at given displacement Moment at given rotation (if active) Thermal: Heat flux at given temperature

6 General Approach for FE, 5 1. Estimate the solution 2. Select an acceptable error (1 %) 3. Mesh the model 4. Solve the model (PV), post-process (SV) 5. Estimate the error A. Unacceptable error: Adapt mesh, go to 3 B. Acceptable error: Validate the analysis

7 FE Mesh (FEM) Crude meshes that look like a part are ok for mass properties but not for FEA. Local error is proportional to product of the local mesh size (h) and the gradient of the secondary variables. PV piecewise continuous polynomials of degree p, and SV are discontinuous polynomials of degree (p-1).

8 FEA Stress Models 3-D Solid, PV: 3 displacements (no rotations), SV: 6 stresses 2-D Approximations Plane Stress (σ zz = 0) PV: 2 displacements, SV: 3 stresses Plane Strain (ε zz = 0) PV: 2 displacements, SV: 3 stresses (and σ zz ) Axisymmetric ( / θ θ = 0) PV: 2 displacements, SV: 4 stresses

9 FEA Stress Models, 2 2-D Approximations Thick Shells, PV: 3 displacements (no rotations), SV: 5 (or 6) stresses Thin Shells, PV: 3 displacements and 3 rotations, SV: 5 stresses (each at top, middle, and bottom surfaces) Plate bending PV: normal displacement, inplane rotation vector, SV: 3 stresses (each at top, middle, and bottom surfaces)

10 FEA Stress Models, 3 1-D Approximations Bars (Trusses), PV: 3 displacements (1 local displacement), SV: 1 axial stress Torsion member, PV: 3 rotations (1 local rotation), SV: 1 torsional stress Beams (Frames), PV: 3 displacements, 3 rotations, SV: local bending and shear stress Thick beam, thin beam, curved beam Pipe element, pipe elbow, pipe tee

11 FEA Accuracy PV are most accurate at the mesh nodes. SV are least accurate at the mesh nodes. (SV are most accurate at the Gauss points) SV can be post-processed for accurate nodal values (and error estimates)

12 Local Error The error at a (non-singular) point is the product of the element size, h, the gradient of the secondary variables, and a constant dependent on the domain shape and boundary conditions. Large gradient points need small h Small gradient points can have large h Plan local mesh size with engineering judgement.

13 Error Estimators Global and element error estimates are often available from mathematical norms of the secondary variables. The energy norm is the most common. It is proven to be asymptotically exact for elliptical problems. Typically want less than 1 % error.

14 Error Estimates Quite good for elliptic problems (thermal, elasticity, ideal flow), Navier-Stokes, etc. Can predict the new mesh size needed to reach the required accuracy. Can predict needed polynomial degree. Require second post-processing pass for localized (element level) smoothing.

15 Primary FEA Assumptions Model geometry Material Properties Failure Criterion, Factor of safety Mesh(s) Element type, size, degree Source (Load) Cases Combined cases, Factors of safety, Coord. Sys. Boundary conditions Coordinate system(s)

16 Primary FEA Matrix Costs Assume sparse banded linear algebra system of E equations, with a half-bandwidth of B. Full system if B = E. Storage required, S = B * E (Mb) Solution Cost, C α B * E 2 (time) Half symmetry: B B/2, E E/2, S S/4, C C/8 Quarter symmetry: B B/4, E E/4, S S/16, C C/64 Eighth symmetry, Cyclic symmetry,...

17 Symmetry and Anti-symmetry Use symmetry states for the maximum accuracy at the least cost in stress and thermal problems. Cut the object with symmetry planes (or surfaces) and apply new boundary conditions (EBC or NBC) to account for the removed material.

18 Symmetry (Anti-symmetry) Requires symmetry of the geometry and material properties. Requires symmetry (anti-symmetry) of the source terms. Requires symmetry (anti-symmetry) of the essential boundary conditions.

19 Structural Model Symmetry Zero displacement normal to surface Zero rotation vector tangent to surface Anti-symmetry Zero displacement vector tangent to surface Zero rotation normal to surface

20 Thermal Model Symmetry Zero gradient normal to surface (insulated surface, zero heat flux) Anti-symmetry Average temperature on surface known

21 Local Singularities All elliptical problems have local radial gradient singularities near re-entrant corners in the domain. u = r p f(θ) u/ r = r (p-1) f(θ) Radius, r Strength, p = π/c Re-entrant, C Corner: p = 2/3, weak Crack: p = 1/2, strong u/ r as r 0

22 Stress Analysis Verification, 1 Prepare initial estimates of deflections, reactions and stresses. Eyeball check the deflected shape and the principal stress vectors.

23 Stress Analysis Verification, 2 The stresses often depend only on the shape of the part and are independent of the material properties. You must also verify the displacements which almost always depend on the material properties.

24 Stress Analysis Verification, 3 The reaction resultant forces and/or moments are equal and opposite to the actual applied loading. For pressures or tractions remember to compare their integral (resultant) to the solution reactions. Reactions can be obtained at elements too.

25 Stress Analysis Verification, 4 Compare displacements, reactions and stresses to initial estimates. Investigate any differences. Check maximum error estimates, if available in the code.

26 Thermal Analysis Verification, 1 Prepare initial estimates of the temperatures, reaction flux, and heat flux vectors. Eyeball check the temperature contours and the heat flux vectors. Temperature contours should be perpendicular to an insulated boundary.

27 Thermal Analysis Verification, 2 The temperatures often depend only on the shape of the part. Verify the heat flux magnitudes which almost always depend on the material properties.

28 Thermal Analysis Verification, 3 The reaction resultant nodal heat fluxes are equal and opposite to the applied heat fluxes. For distributed heat fluxes remember to compare their integral (resultant) to the solution reactions. Reactions can be obtained at elements too.

29 Thermal Analysis Verification, 4 Compare temperatures, reactions and heat flux vectors to initial estimates. Investigate any differences. Check maximum error estimates, if available in the code.

### FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT

### CAE -Finite Element Method

16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

### CAE -Finite Element Method

16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)

### Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

### The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

### An Overview of the Finite Element Analysis

CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

### Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

### Finite Element Method

16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture

### COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

### Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

### ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

### 3 Concepts of Stress Analysis

3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements.

### Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

### The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

### MATERIAL NONLINEAR ANALYSIS. using SolidWorks 2010 Simulation

MATERIAL NONLINEAR ANALYSIS using SolidWorks 2010 Simulation LM-ST-1 Learning Module Non-Linear Analysis What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and

### Begin creating the geometry by defining two Circles for the spherical endcap, and Subtract Areas to create the vessel wall.

ME 477 Pressure Vessel Example 1 ANSYS Example: Axisymmetric Analysis of a Pressure Vessel The pressure vessel shown below is made of cast iron (E = 14.5 Msi, ν = 0.21) and contains an internal pressure

### Course in. Nonlinear FEM

Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

### Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

### Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

### (Seattle is home of Boeing Jets)

Dr. Faeq M. Shaikh Seattle, Washington, USA (Seattle is home of Boeing Jets) 1 Pre Requisites for Today s Seminar Basic understanding of Finite Element Analysis Working Knowledge of Laminate Plate Theory

### Feature Commercial codes In-house codes

A simple finite element solver for thermo-mechanical problems Keywords: Scilab, Open source software, thermo-elasticity Introduction In this paper we would like to show how it is possible to develop a

### AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS

AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS By: Eduardo DeSantiago, PhD, PE, SE Table of Contents SECTION I INTRODUCTION... 2 SECTION II 1-D EXAMPLE... 2 SECTION III DISCUSSION...

### Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

### 820446 - ACMSM - Computer Applications in Solids Mechanics

Coordinating unit: 820 - EUETIB - Barcelona College of Industrial Engineering Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering Academic year: Degree: 2015 BACHELOR'S

### Finite Elements for 2 D Problems

Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

CosmosWorks Centrifugal Loads (Draft 4, May 28, 2006) Introduction This example will look at essentially planar objects subjected to centrifugal loads. That is, loads due to angular velocity and/or angular

### Reliable FE-Modeling with ANSYS

Reliable FE-Modeling with ANSYS Thomas Nelson, Erke Wang CADFEM GmbH, Munich, Germany Abstract ANSYS is one of the leading commercial finite element programs in the world and can be applied to a large

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

### TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

### Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

### INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

### Technology of EHIS (stamping) applied to the automotive parts production

Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

### Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

### FEA Good Modeling Practices Issues and examples. Finite element model of a dual pinion gear.

FEA Good Modeling Practices Issues and examples Finite element model of a dual pinion gear. Finite Element Analysis (FEA) Good modeling and analysis procedures FEA is a powerful analysis tool, but use

### Validation of Simulation Results Through Use of DIC Techniques

Validation of Simulation Results Through Use of DIC Techniques Brian Croop and Daniel Roy, DatapointLabs + technical center for materials a DatapointLabs affiliate Materials Testing Data Infrastructure

### Pre-requisites 2012-2013

Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

### METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

### Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

### 4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

### Burst Pressure Prediction of Pressure Vessel using FEA

Burst Pressure Prediction of Pressure Vessel using FEA Nidhi Dwivedi, Research Scholar (G.E.C, Jabalpur, M.P), Veerendra Kumar Principal (G.E.C, Jabalpur, M.P) Abstract The main objective of this paper

### Tower Cross Arm Numerical Analysis

Chapter 7 Tower Cross Arm Numerical Analysis In this section the structural analysis of the test tower cross arm is done in Prokon and compared to a full finite element analysis using Ansys. This is done

### ABAQUS Tutorial. 3D Modeling

Spring 2011 01/21/11 ABAQUS Tutorial 3D Modeling This exercise intends to demonstrate the steps you would follow in creating and analyzing a simple solid model using ABAQUS CAE. Introduction A solid undergoes

### Review Finite Element Modeling

Strctral Dynamic Modeling Techniqes & Modal Analysis Methods [ M ] [ K ] n [ M ] n a [ K ] a [ ω ] [ E a ] Review Finite Element Modeling Peter Avitabile Mechanical Engineering Department University of

### Benchmark Tests on ANSYS Parallel Processing Technology

Benchmark Tests on ANSYS Parallel Processing Technology Kentaro Suzuki ANSYS JAPAN LTD. Abstract It is extremely important for manufacturing industries to reduce their design process period in order to

### Commercial CFD Software Modelling

Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be

### 1.5 0.5 -4-3 -2-1 0 1 2-0.5 -1.5

Introduction Application of a bearing load (or pin load ) is a frequently encountered situation. There are many ways to simulate this boundary condition through multipoint constraints, regular constraints,

### Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description This exercise consists of an analysis of an electronics component cooling design using fins: All

### ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO INDUSTRIAL Título del proyecto: MODELING CRACKS WITH ABAQUS Pablo Sanchis Gurpide Pamplona, 22 de Julio del

### Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).

Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering

### Introduction to CFD Analysis

Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

### Unit 6 Plane Stress and Plane Strain

Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations

### Deflections. Question: What are Structural Deflections?

Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

### CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION K.K. Choi, V. Ogarevic, J. Tang, and Y.H. Park Center for Computer-Aided Design College of Engineering The

### OpenFOAM Optimization Tools

OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

### Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

### 4.3 Draft 5/27/04 2004 J.E. Akin 1

4. Draft 5/7/04 004 J.E. Akin Chapter INTRODUCTION. Finite Element Methods The goal of this text is to introduce finite element methods from a rather broad perspective. We will consider the basic theory

### FEA Analysis of a Caliper Abutment Bracket ME 404

FEA Analysis of a Caliper Abutment Bracket ME 404 Jesse Doty March 17, 2008 Abstract As braking forces are applied at the wheel of an automobile, those forces must be transmitted to the suspension of the

### Introduction, Method of Sections

Lecture #1 Introduction, Method of Sections Reading: 1:1-2 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding

### Finite Element Simulation of Simple Bending Problem and Code Development in C++

EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL

### SAFIR A software for modelling. to the fire

SAFIR A software for modelling the behaviour of structure subjected to the fire Jean-Marc Franssen jm.franssen@ulg.ac.be University of Liege SAFIR Introduction Basic theory of thermal calculations Three

### Simulation of Residual Stresses in an Induction Hardened Roll

2.6.4 Simulation of Residual Stresses in an Induction Hardened Roll Ludwig Hellenthal, Clemens Groth Walzen Irle GmbH, Netphen-Deuz, Germany CADFEM GmbH, Burgdorf/Hannover, Germany Summary A heat treatment

### Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

### Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783

Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial

### POLITECNICO DI TORINO. Engineering Faculty Master s Degree in Aerospace Engineering. Final Thesis

POLITECNICO DI TORINO Engineering Faculty Master s Degree in Aerospace Engineering Final Thesis DETECTION AND ANALYSIS OF BARELY VISIBLE IMPACT DAMAGE AND ITS PROGRESSION ON A COMPOSITE OVERWRAPPED PRESSURE

### Pushing the limits. Turbine simulation for next-generation turbochargers

Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for

### THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

### Using Finite Element software post processing graphics capabilities to enhance interpretation of Finite Element analyses results

Using Finite Element software post processing graphics capabilities to enhance interpretation of Finite Element analyses results Cyrus K. Hagigat College of Engineering The University of Toledo Session

### Structural Integrity Analysis

Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

### Programming the Finite Element Method

Programming the Finite Element Method FOURTH EDITION I. M. Smith University of Manchester, UK D. V. Griffiths Colorado School of Mines, USA John Wiley & Sons, Ltd Contents Preface Acknowledgement xv xvii

### CHAPTER 4 4 NUMERICAL ANALYSIS

41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

### * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

### Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

### Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

### FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM

International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 45 51, Article ID: IJMET_07_02_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

### Unit 21 Influence Coefficients

Unit 21 Influence Coefficients Readings: Rivello 6.6, 6.13 (again), 10.5 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Have considered the vibrational behavior of

### = the relative displacement of P 2 with respect to P 1 Breaking that relative displacement into its components, we have

EM 44: ompatibility Equations 1 STRAIN OMATIBILITY EQUATIONS onsider a body with displacements at points 1 and given by u 1 and u, respectively, as shown in Figure 1: 1 u 1 u Figure 1 Let = u u 1 = the

### Dynamic Load and Stress Analysis of a Crankshaft

27-1-28 Dynamic Load and Stress Analysis of a Crankshaft Farzin H. Montazersadgh and Ali Fatemi The University of Toledo Copyright 27 SAE International ABSTRACT In this study a dynamic simulation was conducted

### ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket

H. Kim FEA Tutorial 1 ABAQUS/CAE Tutorial: Analysis of an Aluminum Bracket Hyonny Kim last updated: August 2004 In this tutorial, you ll learn how to: 1. Sketch 2D geometry & define part. 2. Define material

### Piezoelectric Simulations

Piezoelectric Simulations Outline Overview Examples Relevant Products Useful Features Overview Industries Using Piezoelectric Devices Aerospace Oil & Gas Automotive Piezoelectric Devices MEMS Acoustics

### ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

### A quadrilateral 2-D finite element based on mixed interpolation of tensorial

A quadrilateral 2-D finite element based on mixed interpolation of tensorial components Eduardo N. Dvorkin and Sara I. Vassolo* Instituto de Materiales y Estructuras, Facultad de Ingenieria, Universidad

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Piston Ring. Problem:

Problem: A cast-iron piston ring has a mean diameter of 81 mm, a radial height of h 6 mm, and a thickness b 4 mm. The ring is assembled using an expansion tool which separates the split ends a distance

### NIST Technical Note 1828 Software Independent Data Mapping Tool for Structural Fire Analysis

NIST Technical Note 1828 Software Independent Data Mapping Tool for Structural Fire Analysis Dilip K. Banerjee NIST Technical Note 1828 Software Independent Data Mapping Tool for Structural Fire Analysis

### Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

### The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

### Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of

### OCR LEVEL 3 CAMBRIDGE TECHNICALS IN ENGINEERING UNIT 12. Cambridge TECHNICALS UNIT MECHANICAL SIMULATION AND MODELLING F/506/7278

Cambridge TECHNICALS OCR LEVEL 3 CAMBRIDGE TECHNICALS IN ENGINEERING UNIT 12 F/506/7278 GUIDED LEARNING HOURS: 60 MECHANICAL SIMULATION AND MODELLING UNIT VERSION 2 Oxford Cambridge and RSA LEVEL 3 UNIT

### Trace Layer Import for Printed Circuit Boards Under Icepak

Tutorial 13. Trace Layer Import for Printed Circuit Boards Under Icepak Introduction: A printed circuit board (PCB) is generally a multi-layered board made of dielectric material and several layers of