Fifth Grade. Operations & Algebraic Thinking. Numbers & Operations in Base Ten. Write and interpret numerical expressions. (5.OA.

Save this PDF as:

Size: px
Start display at page:

Download "Fifth Grade. Operations & Algebraic Thinking. Numbers & Operations in Base Ten. Write and interpret numerical expressions. (5.OA."

Transcription

1 Operations & Algebraic Thinking Write and interpret numerical expressions. (5.OA.A) 5.OA.A.1: Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. 5.OA.A.2: Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 (8 + 7). Recognize that 3 ( ) is three times as large as , without having to calculate the indicated sum or product. Analyze patterns and relationships. (5.OA.B) I can use parentheses, brackets, or brackets to group an expression within a multi-step numerical expression. I can evaluate numerical expressions with parentheses, brackets or braces. I can represent a calculation expressed verbally with a numerical expression. I can analyze expressions without solving. 5.OA.B.3: Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. Numbers & Operations in Base Ten Understand the place value system. (5.NBT.A) 5.NBT.A.1: Recognize that in a multidigit number, a digit in one place represents 10 times as much as it I can generate two numerical patterns with the same starting number for two given rules. I can explain the relationship between the two numerical patterns by comparing how each pattern grows or by comparing the relationship between each of the corresponding terms from each pattern. I can form ordered pairs out of corresponding terms from each pattern and graph them on a coordinate plane. I can recognize that each place to the left is 10 times larger in a multi-digit number. I can recognize that each place to the right is 1/10 as much in a multi-digit number. I can represent a calculation expressed

2 represents in the place to its right and 1/10 of what it represents in the place to its left. 5.NBT.A.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use wholenumber exponents to denote powers of NBT.A.3: Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., = (1/10) + 9 (1/100) + 2 (1/1000). b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. 5.NBT.A.4: Use place value understanding to round decimals to any place. Perform operations with multi-digit whole numbers and with decimals to hundredths. (5.NBT.B) 5.NBT.B.5: Fluently multiply multi-digit whole numbers using the standard algorithm. 5.NBT.B.6: Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using verbally with a numerical expression. I can express powers of 10 using wholenumber exponents (e.g., 10 = 10 1, 100 = 10 2 ). I can illustrate and explain a pattern for how the number of zeros of a product when multiplying a whole number by power of 10 relates to the power of 10 (e.g., 500 which is 5 x 100, or 5 x 10 2 has two zeros in its produt.) I can illustrate and explain a pattern for how multiplying or dividing any decimal by a power of 10 relates to the placement of the decimal point (e.g., dividing 15.3 by 100, or , results in where the decimal point in the quotient is 2 places to the left of where it was in the dividend.) I can read and write decimals to the thousandths in word form, base-ten numerals, and expanded form. I can compare two decimals to the thousandths using place value and record the comparison using symbols <, >, or =. I can explain how to use place value and what digits to look at to round decimals to any place. I can use the value of the digit to the right of the place to be rounded to determine whether to round up or down. I can round decimals to any place. I can explain the standard algorithm for multi-digit whole number multiplication. I can use the standard algorithm to multiply multi-digit whole numbers with ease. I can demonstrate division of a whole numbers with four-digit dividends and two-digit divisors using place value, rectangular arrays, area model, and other strategies. I can solve division of a whole numbers

4 Apply and extend previous understandings of multiplication and division to multiply and divide fractions. (5.NF.B) Fifth Grade 5.NF.B.3: Interpret a fraction as division of the numerator by the denominator (a/b = a b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50- pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? 5.NF.B.4: Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product (a/b) q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a q b. For example, use a visual fraction model to show (2/3) 4 = 8/3, and create a story context for this equation. Do the same with (2/3) (4/5) = 8/15. (In general, (a/b) (c/d) = ac/bd.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular I can explain that fractions (a/b) can be represented as a division of the numerator by the denominator (a b) and illustrate why a b can be represented by the fraction a/b. I can solve word problems involving the division of whole numbers and interpret the quotient which could be a whole number, mixed number, or fraction in the context of the problem. I can explain or illustrate my solution strategy using visual fraction models or equations that represent the problem. I can create story contexts for problems involving multiplication of a fractions and a whole number ((a/b) q) or multiplication of two fractions ((a/b) (c/d)) by interpreting mulliplication with fractions in the same way that I would interpret multiplication with whole numbers (e.g, 2/3 4 can be interpreted as, If I need 2/3 cups of sugar for 1 batch of cookies, how much sugar do I need to make 4 batches of cookies? ). I can explain why (a/b q = (a q)/b by using visual models to show that q is partitioned into b equal parts, and a parts of each partition results in (a q)/b. I can explain why (a/b) (c/d) = (a b)/(c d) by using visual models to show that c/d is partitioned into b equal parts, and a parts are needed which results in (a b)/(c d). (e.g., in 2/3 4.5, there is 4/5 of a whole that is partioined into thirds which results in 4/5 looking like 4/15 + 4/15 + 4/15 and two parts are needed (2 4/15 = 8/15)).

5 areas. 5.NF.B.5) Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence a/b = (n a)/(n b) to the effect of multiplying a/b by 1. 5.NF.B.6: Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. 5.NF.B.7: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 1 a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for (1/3) 4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) 4 = 1/12 because (1/12) 4 = 1/3. I can use unit fraction squares to prove the area of rectangles with fractional side lengths. I can determine the area of rectangles with fractional side lengths by multiplying the side lengths. I can interpret the relationship between the size of the factors to the size of the product. I can explain why multiplying a given number by a number or fraction greater than 1 results in a product greater than the given number. I can explain why multiplying a given number by a fraction less than 1 results in a product less than the given number. I can explain multiplication as scaling (to enlarge or reduce) using visual model. I can multiply a given fraction by 1 (e.g., 2/2 or 5/5) to find an equivalent fraction (e.g., 3/4 2/2 = 6/8). I can solve real world problems involving multiplication of fractions and mixed numbers and interpret the product in the context of the problem. I can explain or illustrate my solution strategy using visual fraction models or equations that represent the problem. I can create story contexts for problems involving division of a unit fraction by a whole number (1/b n) or division of a whole number by a unit fraction (n 1/b) by interpreting division with fractions in the same way that I would interpret division with whole numbers (e.g., 1/3 4 can be interpreted as, How big would each piece be if I had to share a 1/3 slice of pizza with 4 people? ) I can solve real word problems involving division of unit fractions by non-zero

6 b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for 4 (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 (1/5) = 20 because 20 (1/5) = 4. c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins? Measurement & Data Convert like measurement units within a given measurement system. (5.MD.A) 5.MD.A.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. whole numbers and division of whole numbers by unit fractions, and interpret the quotient in the context of the problem. I can explain or illustrate my solution strategy using visual fraction models or equations that represent the problem. I can convert (change) measurement units within the same measurement system (e.g., 24 inches to 2 feet). I can solve multi-step word problems using measurement conversions. Represent and interpret data. (5.MD.B) 5.MD.B.2: Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. I can create a line plot with a given set of unit fraction measurements. I can solve problems using data on line plots.

7 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. (5.MD.C) Fifth Grade 5.MD.C.3: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. 5.MD.C.4: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. 5.MD.C.5: Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. I can identify volume as an attribute of a solid figure. I can recognize that a cube with 1 unit side length is one cubic unit of volume. I can explain a process fro finding the volume of a solid figure by filling it with unit cubes without gaps and overlaps. I can measure the volume of a hollow three-dimensional figure by filling it with unit cubes without gaps and counting the number of unit squares. I can use unit cubes to determine the volume of a rectangular prism. I can explain multiplication of the area of the base (l w = b) by the height (b h = V) will result in the volume. I can relate finding the product of three numbers to finding volume and relate both to the associative property of multiplication. I can use the formulas to determine the volume of rectangular prisms. I can decompose an irregular figure into non-overlapping rectangular prisms and find the volume of the irregular figure by finding the sum of the volumes of each of the decomposed prisms. I can solve real world problems involving volume. b. Apply the formulas V = l w h and V = b h for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

8 c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve real world problems. Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. (5.G.A) 5.G.A.1: Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y- coordinate). 5.G.A.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. Classify two-dimensional figures into categories based on their properties. (5.G.B) 5.G.B.3: Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles I can construct a coordinate systems with two intersecting perpendicular lines and recognize that the intersection is called the origin and it is the point where 0 lies on each of the lines. I can recognize that the horizontal axis is generally labeled as the x-axis, and the vertical axis is generally labeled as the y-axis. I can identify an ordered pair (3,2) as an x-coordinate followed by a y- coordinate. I can explain the relationship between the ordered pair and the location on the coordinate plan. I can determine when a mathematical problem has a set of ordered pairs. I can graph points in the first quadrant of a coordinate plane using a set of ordered pairs. I can relate the coordinate values of any graphed point to the context of the problem. I can classify two-dimensional figures by their attributes. I can explain two-dimensional attributes can belong to several twodimensional figures. I can identify subcategories using twodimensional attributes.

9 have four right angles and squares are rectangles, so all squares have four right angles. 5.G.B.4: Classify two-dimensional figures in a hierarchy based on properties. I can group together all shapes that share a single property, and then among these shapes, group together those that share a second property, and then among these group together those that share a third property, etc. The Standards for Mathematical Practice The standards for mathematical practice are really about teaching students to think and act like mathematicians and problem solvers: 1. Make sense of problems and persevere in solving them. What it means: Understand the problem, find a way to attack it, and work until it is done. Basically, you will find practice standard #1 in every math problem, every day. The hardest part is pushing students to solve tough problems by applying what they already know and to monitor themselves when problem-solving. 2. Reason abstractly and quantitatively What it means: Get ready for the words contextualize and decontextualize. If students have a problem, they should be able to break it apart and show it symbolically, with pictures, or in any way other than the standard algorithm. Conversely, if students are working a problem, they should be able to apply the math work to the situation. 3. Construct viable arguments and critique the reasoning of others. What it means: Be able to talk about math, using mathematical language, to support or oppose the work of others. 4. Model with mathematics. What it means: Use math to solve real-world problems, organize data, and understand the world around you. 5. Use appropriate tools strategically. What it means: Students can select the appropriate math tool to use and use it correctly to solve problems. In the real world, no one tells you that it is time to use the meter stick instead of the protractor. 6. Attend to precision What it means: Students speak and solve mathematics with exactness and meticulousness. 7. Look for and make use of structure

10 What it means: Find patterns and repeated reasoning that can help solve more complex problems. For young students this might be recognizing fact families, inverses, or the distributive property. As students get older, they can break apart problems and numbers into familiar relationships. 8. Look for and express regularity in repeated reasoning. What it means: Keep an eye on the big picture while working out the details of the problem. You don t want kids that can solve the one problem you ve given them; you want students who can generalize their thinking. To hear an explanation of the importance of these standards for mathematical practices, watch this video from the Hunt Institute:

Mathematics. Mathematical Practices

Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

Grade 5 Common Core State Standard

2.1.5.B.1 Apply place value concepts to show an understanding of operations and rounding as they pertain to whole numbers and decimals. M05.A-T.1.1.1 Demonstrate an understanding that 5.NBT.1 Recognize

September: UNIT 1 Place Value Whole Numbers Fluently multiply multi-digit numbers using the standard algorithm Model long division up to 2 digit divisors Solve real world word problems involving measurement

1 BPS Math Year at a Glance (Adapted from A Story of Units Curriculum Maps in Mathematics P-5)

Grade 5 Key Areas of Focus for Grades 3-5: Multiplication and division of whole numbers and fractions-concepts, skills and problem solving Expected Fluency: Multi-digit multiplication Module M1: Whole

Mathematics Grade 5 Year in Detail (SAMPLE)

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 Whole number operations Place value with decimals Add and Subtract Decimals Add and Subtract Fractions Multiply and Divide Decimals

Math. MCC5.OA.1 Use parentheses, brackets, or braces in. these symbols. 11/5/2012 1

MCC5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. 11/5/2012 1 MCC5.OA.2 Write simple expressions that record calculations with numbers,

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving

CCSS Mathematics Implementation Guide Grade 5 2012 2013. First Nine Weeks

First Nine Weeks s The value of a digit is based on its place value. What changes the value of a digit? 5.NBT.1 RECOGNIZE that in a multi-digit number, a digit in one place represents 10 times as much

GRADE 5 SKILL VOCABULARY MATHEMATICAL PRACTICES Evaluate numerical expressions with parentheses, brackets, and/or braces.

Common Core Math Curriculum Grade 5 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS Operations and Algebraic Thinking 5.0A What can affect the relationship between numbers? round decimals? compare decimals? What

Grade 5 Math PA Core Standards - CC.2: PA Core: Mathematics. Eligible Content

Grade 5 Math PA Core Standards - CC.2: PA Core: Mathematics Eligible Content Standard Area - CC.2.1: Numbers and Operations Standard - CC.2.1.5.B.1: Apply place value to show an understanding of operations

4TH GRADE FIRST QUARTER MATHEMATICS STANDARDS. Vocabulary. answers using mental computation and estimation strategies including rounding.

4TH GRADE FIRST QUARTER MATHEMATICS STANDARDS Critical Area: Developing understanding and fluency with multi-digit multiplication, and developing understanding of dividing to find quotients involving multi-digit

A Correlation of. to the. Common Core State Standards for Mathematics Grade 4

A Correlation of to the Introduction envisionmath2.0 is a comprehensive K-6 mathematics curriculum that provides the focus, coherence, and rigor required by the CCSSM. envisionmath2.0 offers a balanced

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

Order of Operations and Algebraic Thinking

Ohio s New Learning Standards 5 th Grade Gifted Math Vocabulary: Order of Operations and Algebraic Thinking ü Brackets-mathematic symbols that show what operation goes first in the order of operations

Common Core Standards for Mathematics Grade 4 Operations & Algebraic Thinking Date Taught

Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.OA.1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35

Math Common Core Standards Fourth Grade

Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

MAFS: Mathematics Standards GRADE: K Domain: COUNTING AND CARDINALITY Cluster 1: Know number names and the count sequence. CODE MAFS.K.CC.1.1 Count to 100 by ones and by tens. MAFS.K.CC.1.2 MAFS.K.CC.1.3

5 th Grade Common Core State Standards. Flip Book

5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at

Voyager Sopris Learning Vmath, Levels C-I, correlated to the South Carolina College- and Career-Ready Standards for Mathematics, Grades 2-8

Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156-159 Module 4: Lesson 7: 220-223 2. Reason both contextually

Division with Whole Numbers and Decimals

Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers

Fourth Grade Math Standards and "I Can Statements"

Fourth Grade Math Standards and "I Can Statements" Standard - CC.4.OA.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and

Vocabulary, Signs, & Symbols product dividend divisor quotient fact family inverse. Assessment. Envision Math Topic 1

1st 9 Weeks Pacing Guide Fourth Grade Math Common Core State Standards Objective/Skill (DOK) I Can Statements (Knowledge & Skills) Curriculum Materials & Resources/Comments 4.OA.1 4.1i Interpret a multiplication

Arizona s College and Career Ready Standards Mathematics Kindergarten Standards Placemat

Arizona s College and Career Ready Standards Mathematics Kindergarten Standards Placemat 1. Representing and comparing whole numbers, initially with sets of objects Students use numbers, including written

Classworks Common Core Transition Guide. South Carolina 4th Grade Mathematics

Classworks Common Core Transition Guide South Carolina 4th Mathematics OFFICIALLY ENDORSED Classworks Common Core Transition Guide - BETA Making The Transition With the increased rigor, the transition

Just want the standards alone? You can find the standards alone at

5 th Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade The fourth-grade standards highlight all four operations, explore fractions in greater detail, and

BPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K-5) 1

Grade 4 Key Areas of Focus for Grades 3-5: Multiplication and division of whole numbers and fractions-concepts, skills and problem solving Expected Fluency: Add and subtract within 1,000,000 Module M1:

Vocabulary Cards and Word Walls Revised: June 29, 2011

Vocabulary Cards and Word Walls Revised: June 29, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education,

5 th Grade Texas Mathematics: Unpacked Content

5 th Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student

Mathematics. Mathematical Practices

Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

Excel Math Fourth Grade Standards for Mathematical Practice

Excel Math Fourth Grade Standards for Mathematical Practice The Common Core State Standards for Mathematical Practice are integrated into Excel Math lessons. Below are some examples of how we include these

DRAFT. Grade 5 Mathematics Item Specifications

DRAFT Grade 5 Mathematics Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions

Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.

Summary of Changes for Mathematics Standards Kindergarten Grade 8

CCGPS for Mathematics were revised. The revised standards were adopted on January 15, 2015. This Grade Level Strand Standard Kindergarten Counting and Cardinality CCK.CC.4 CCK.CC.5 Number and Operations

Grade 6 Mathematics Performance Level Descriptors

Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this

Progressing toward the standard

Report Card Language: add, subtract, multiply, and/or divide to solve multi-step word problems. CCSS: 4.OA.3 Solve multistep work problems posed with whole numbers and having whole-number answers using

Arizona s College and Career Ready Standards Mathematics

Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples Third Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June

COURSE OF STUDY UNIT PLANNING GUIDE

COURSE OF STUDY UNIT PLANNING GUIDE FOR: MATHEMATICS GRADE LEVEL: FOURTH GRADE PREPARED BY: TERESA KELLY AND TRACY BUCKLEY B.O.E. ADOPTED AUGUST 20, 2015 REVISED AUGUST 2015 ALIGNED TO THE 2014 NJCCCS

Florida Department of Education Adult General Education Curriculum Framework

Florida Department of Education Adult General Education Curriculum Framework Program Title Program Number 9900000 Course Title Course Number 9900001 CIP Number 1532010200 Grade Equivalent 0.0 8.9 Grade

Mathematics Colorado Academic S T A N D A R D S Colorado Academic Standards in Mathematics and The Common Core State Standards for Mathematics On December 10, 2009, the Colorado State Board of Education

5 th Grade Math. ELG 5.MD.C Understand concepts of volume and relate volume to multiplication and to addition. Vertical Progression: 3 rd Grade

Vertical Progression: 3 rd Grade 4 th Grade 5 th Grade 3.MD.C Geometric measurement: understanding concepts of area and relate area to multiplication and to addition. o 3.MD.C.5 Recognize area as an attribute

PUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION ELEMENTARY MATH GRADE 2 MATH IN FOCUS

PUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION ELEMENTARY MATH GRADE 2 MATH IN FOCUS Length of Course: Term Elective / Required: Required Schools: Elementary Student Eligibility:

Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

Carroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) Unit #4 : Division of Whole Numbers and Measurement

Background Information and Research By fifth grade, students should understand that division can mean equal sharing or partitioning of equal groups or arrays. They should also understand that it is the

Math - 5th Grade. two digit by one digit multiplication fact families subtraction with regrouping

Number and Operations Understand division of whole numbers N.MR.05.01 N.MR.05.02 N.MR.05.03 Understand the meaning of division of whole numbers with and without remainders; relate division to and to repeated

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

Unit 1: Place value and operations with whole numbers and decimals

Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students

Graphic Organizers SAMPLES

This document is designed to assist North Carolina educators in effective instruction of the new Common Core State and/or North Carolina Essential Standards (Standard Course of Study) in order to increase

Mathematical Practices

The New Illinois Learning Standards for Mathematics Incorporating the Common Core Mathematical Practices Grade Strand Standard # Standard K-12 MP 1 CC.K-12.MP.1 Make sense of problems and persevere in

Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

6 th Grade Math. Understand ratio concepts and use ratio reasoning to solve problems.

6 th Grade Math Understand ratio concepts and use ratio reasoning to solve problems. 6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.

Common Core Standards for Fantasy Sports Worksheets. Page 1

Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting

Georgia Standards of Excellence Grade Level Curriculum Overview. Mathematics. GSE Fifth Grade

Georgia Standards of Excellence Grade Level Curriculum Overview Mathematics GSE Fifth Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.

Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

1. Tell the volume of each solid figure made of 1-inch cubes. Specify the correct unit of measure.

NYS COMMON CORE MATHEMATICS CURRICULUM Mid-Module Assessment TaskLesson 5 5 Name Date 1. Tell the volume of each solid figure made of 1-inch cubes. Specify the correct unit of measure. a. b. 2. Jack found

The symbols indicate where the topic is first introduced or specifically addressed.

ingapore Math Inc. cope and equence U: U.. Edition : ommon ore Edition : tandards Edition : ommon ore tandards 1 2 3 4 5 Reviews in ommon ore Edition cover just the unit whereas those in U.. and tandards

Mathematics Common Core Sample Questions

New York State Testing Program Mathematics Common Core Sample Questions Grade5 The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and

CCSS-M Critical Areas: Kindergarten

CCSS-M Critical Areas: Kindergarten Critical Area 1: Represent and compare whole numbers Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

Building Conceptual Understanding and Fluency Through Games

GRADE 5 Building Conceptual Understanding and Fluency Through Games FOR THE COMMON CORE STATE STANDARDS IN MATHEMATICS PUBLIC SCHOOLS OF NORTH CAROLINA State Board of Education Department of Public Instruction

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

NCTM Curriculum Focal Points and, Grade 5 NCTM Curriculum Focal Points for Grade 5 Number and Operations and Algebra: Developing an understanding of and fluency with division of whole numbers Students

PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

Topic: 1 - Understanding Addition and Subtraction

8 days / September Topic: 1 - Understanding Addition and Subtraction Represent and solve problems involving addition and subtraction. 2.OA.1. Use addition and subtraction within 100 to solve one- and two-step

Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Kindergarten Describe and compare measurable attributes. Classify objects and count

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter A. Elementary

Elementary 111.A. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter A. Elementary Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code,

Maths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.

Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100

1) Make Sense and Persevere in Solving Problems.

Standards for Mathematical Practice in Second Grade The Common Core State Standards for Mathematical Practice are practices expected to be integrated into every mathematics lesson for all students Grades

MACMILLAN/McGRAW-HILL. MATH CONNECTS and IMPACT MATHEMATICS WASHINGTON STATE MATHEMATICS STANDARDS. ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs)

MACMILLAN/McGRAW-HILL MATH CONNECTS and IMPACT MATHEMATICS TO WASHINGTON STATE MATHEMATICS STANDARDS ESSENTIAL ACADEMIC LEARNING REQUIREMENTS (EALRs) And GRADE LEVEL EXPECTATIONS (GLEs) / Edition, Copyright

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

3rd Grade Texas Mathematics: Unpacked Content

3rd Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

Knowing and Using Number Facts

Knowing and Using Number Facts Use knowledge of place value and Use knowledge of place value and addition and subtraction of two-digit multiplication facts to 10 10 to numbers to derive sums and derive

Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

Mississippi Assessment Program (MAP) Mathematics, Grades 3-8. Blueprint Interpretive Guide. August 2015. Carey M. Wright, Ed.D.

Mississippi Assessment Program (MAP) Mathematics, Grades 3-8 Blueprint Interpretive Guide August 2015 Carey M. Wright, Ed.D. State Superintendent of Education Mississippi Assessment Program Mathematics,

4 th Grade Mathematics Unpacked Content

4 th Grade Mathematics Unpacked Content This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these

CCGPS Curriculum Map. Mathematics. 7 th Grade

CCGPS Curriculum Map Mathematics 7 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Unit 1 Operations with Rational Numbers a b

Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

Everyday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration

CCSS EDITION Overview of -6 Grade-Level Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting

Author(s): Hope Phillips

Title: Fish Aquarium Math *a multi-day lesson Real-World Connection: Grade: 5 Author(s): Hope Phillips BIG Idea: Volume Designing and building aquariums includes mathematical concepts including, but not

A Correlation of to the Minnesota Academic Standards Grades K-6 G/M-204 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley

Everyday Mathematics GOALS

Copyright Wright Group/McGraw-Hill GOALS The following tables list the Grade-Level Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the

Mathematics Scope and Sequence, K-8

Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K-8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

Grade 6 Mathematics Common Core State Standards

Grade 6 Mathematics Common Core State Standards Standards for Mathematical Practice HOW make sense of problems, persevere in solving them, and check the reasonableness of answers. reason with and flexibly

ISAT Mathematics Performance Definitions Grade 4

ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourth-grade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers

Unit Essential Question: When do we need standard symbols, operations, and rules in mathematics? (CAIU)

Page 1 Whole Numbers Unit Essential : When do we need standard symbols, operations, and rules in mathematics? (CAIU) M6.A.3.2.1 Whole Number Operations Dividing with one digit (showing three forms of answers)

Mathematics. Curriculum Content for Elementary School Mathematics. Fulton County Schools Curriculum Guide for Elementary Schools

Mathematics Philosophy Mathematics permeates all sectors of life and occupies a well-established position in curriculum and instruction. Schools must assume responsibility for empowering students with

Fourth Grade- Unit 1- Whole Numbers, Place Value, and Rounding Computation

Fourth Grade- Unit 1- Whole Numbers, Place Value, and Rounding Computation Unit 1 - Whole Numbers, Place Value and Rounding in Computation MCC4.OA.1 Interpret a multiplication equation as a comparison,

CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

Second Grade Math Standards and I Can Statements

Second Grade Math Standards and I Can Statements Standard CC.2.OA.1 Use addition and subtraction within 100 to solve one and two-step word problems involving situations of adding to, taking from, putting

Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

Common Core State Standards for Mathematics Accelerated 7th Grade

A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting