Multiplying Fractions by a Whole Number


 Baldwin Stephens
 1 years ago
 Views:
Transcription
1 Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number Overview Number of Instructional Days: 15 (1 day = minutes) Content to be Learned Apply understanding of operations of whole numbers to develop conceptual understanding of multiplying a fraction by a whole number. Multiply a fraction by a whole number using repeated addition. Understand a fraction is a multiple of a unit fraction. Use understanding of fractions as a multiple of a unit fraction to multiply fractions by whole numbers. Solve word problems involving multiplying a fraction by a whole number. Use visual models and equations to represent word problems. Essential Questions How can you use a visual fraction model to express a fraction as a multiple of a unit fraction? For example, 3 (2/5) as 6 (1/5)? How is repeated addition of fractions related to multiplication of fractions? How can you use a visual fraction model and/or equation to represent and solve problems involving multiplication of fractions by a whole number? Mathematical Practices to Be Integrated Make sense of problems and persevere to solve them. Make meaning of a problem and look for entry point to its solution. Use visual models to help conceptualize and solve a problem. Ask, Does this make sense? Look for and express regularity in repeated reasoning. Identify calculations that repeat. (e.g., 1/3 + 1/3 + 1/3 + 1/3 = 4 1/3) Evaluate the reasonableness of an answer. How is multiplying whole numbers like multiplying fractions? How is it different? What is your strategy for solving this word problem? 29
2 Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number (15 days) Written Curriculum Common Core State Standards for Mathematical Content Number and Operations Fractions 3 4.NF 3 Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. 4.NF.4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a. Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 (1/4), recording the conclusion by the equation 5/4 = 5 (1/4). b. Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express 3 (2/5) as 6 (1/5), recognizing this product as 6/5. (In general, n (a/b) = (n a)/b.) c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie? Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 30
3 Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number (15 days) 8 Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y 2)/(x 1) = 3. Noticing the regularity in the way terms cancel when expanding (x 1)(x + 1), (x 1)(x 2 + x + 1), and (x 1)(x 3 + x 2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. Clarifying the Standards Prior Learning In grade 3, students developed an understanding of the meaning and properties of multiplication of whole numbers in preparation for multiplication of fractions by a whole number. Also, they viewed fractions as being built out of unit fractions, or fractions where the numerator is one. Current Learning This is a critical area of instruction in grade 4. Students apply their understanding of multiplication to multiply fractions by whole numbers. Through the use of visual fraction models, they represent a fraction as a multiple of a unit fraction (e.g., 7/6 = 7 1/6). Furthermore, students solve word problems involving multiplication of a fraction by a whole number. Activities should start at the developmental level of instruction and then move to reinforcement activities. Future Learning In grade 5, students will apply their understanding of fractions and fraction models to add and subtract fractions with unlike denominators, including mixed numbers. Fifth graders will multiply fractions by whole numbers, whole numbers by fractions, and fractions by fractions. Students will work to develop fluency in this area, as they make reasonable estimates to assess their answers. As learners multiply fractions, they will see the connection to division of fractions. Additional Findings According to Progressions: 3 5 Number and Operations Fractions, Previously in grade 3, students learned that 3 7 can be represented as the number of objects in 3 groups of 7 objects, and write this as Grade 4 students apply this understanding to fractions, seeing 1/3 + 1/3 + 1/3 + 1/3 + 1/3 as 5 1/3. (p. 7) 31
4 Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number (15 days) 32
5 Grade 4 Mathematics, Quarter 3, Unit 3.2 Identifying Properties of 2D Figures Overview Number of Instructional Days: 10 (1 day = minutes) Content to be Learned Draw and identify lines, line segments, points, rays, and angles in twodimensional figures. Classify shapes by properties of their lines and angles. Recognize, identify, and draw a line of symmetry for 2D figures. Generate and identify the features of a number or shape pattern that follows a given rule. Draw and identify perpendicular and parallel lines in 2D figures. Identify and recognize right triangles. Essential Questions What is a distinguishing feature of this pattern? What would a pattern look like using this rule? How can you classify a 2D figure based on its lines and angle size? How are angles classified? How are points, lines, line segments, rays, and angles related? Mathematical Practices to Be Integrated Use appropriate tools strategically. Decide which tools are the most helpful. Consider available tools when solving problems. Identify relevant math resources (e.g., information located on a website) and use them to solve problems. Use technology to explore and deepen understanding of concepts. Look for and make use of structure. Look closely to determine a pattern or structure. Step back for an overview and shift perspective. See complicated things as being composed of single objects or several smaller objects. How are right triangles different from other triangles? How do you know if a shape has a line of symmetry? More than one line of symmetry? What is your strategy for identifying and drawing lines of symmetry? 33
6 Grade 4 Mathematics, Quarter 3, Unit 3.2 Identifying Properties of 2D Figures (10 days) Written Curriculum Common Core State Standards for Mathematical Content Geometry 4.G Draw and identify lines and angles, and classify shapes by properties of their lines and angles. 4.G.1 4.G.2 4.G.3 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures. Classify twodimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. Recognize a line of symmetry for a twodimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify linesymmetric figures and draw lines of symmetry. Operations and Algebraic Thinking 4.OA Generate and analyze patterns. 4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule Add 3 and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. Common Core Standards for Mathematical Practice 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. 34
7 Grade 4 Mathematics, Quarter 3, Unit 3.2 Identifying Properties of 2D Figures (10 days) 7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 8 equals the well remembered , in preparation for learning about the distributive property. In the expression x 2 + 9x + 14, older students can see the 14 as 2 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 3(x y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. Clarifying the Standards Prior Learning In grade2, students drew and recognized 2D and 3D (cubes) shapes. In grade 3, students understood different categories of shapes by their attributes through describing, analyzing, and comparing the shapes. For example, when given a rhombus, square, and rectangle, students identified that they can be in the same category because of the number of sides and angles. Students also drew geometric figures and partitioned them into equal parts with equal areas. Learners connected this idea to fractions; as they partitioned a shape, they recognized that each part is a unit fraction of the whole. Current Learning This is an additional cluster. In grade 4, students draw and identify lines, line segments, points, rays, and angles in twodimensional figures. Learners also classify 2D shapes by properties of their lines (parallel and perpendicular) and angles. Additionally, they recognize right triangles. Students can recognize, identify, and draw a line of symmetry in a 2D shape. Activities for symmetry should start at the developmental level. In addition, students generate a number or shape pattern that follows a rule, identifying features that are not explicit in the rule itself. Future Learning In grade 5, students will classify twodimensional figures into categories based on their properties. They will begin to understand that there are subcategories within a category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. Students will use two numerical patterns using two rules. For example, given the rules add 3 and add 6 to 0, what is the relationship between the two resulting number patterns? 35
8 Grade 4 Mathematics, Quarter 3, Unit 3.2 Identifying Properties of 2D Figures (10 days) Additional Findings According to Principals and Standards for School Mathematics, Study of geometry requires thinking and doing. As students sort, build, draw, model, trace, measure, and construct, their capacity to visualize geometric relationships will develop. This requires access to a variety of tools, such as graph paper, rulers, pattern blocks, geoboards, and geometric solids. (p. 165) Additionally, In grades 3 5, they (students) should develop more precise ways to describe shapes, focusing on identifying and describing the shape s properties and learning specialized vocabulary associated with these shapes and properties, (Principals and Standards for School Mathematics, p. 165). According to Principals and Standards for School Mathematics, As they (students) describe shapes, they should understand and use mathematical terms such as parallel, perpendicular, face, edge, vertex, angle, trapezoid, prism, and so forth, to communicate geometric ideas with greater precision. (p. 160) 36
9 Grade 4 Mathematics, Quarter 3, Unit 3.3 Using Measurements and Data to Solve Problems Overview Number of Instructional Days: 15 (1 day = minutes) Content to be Learned Solve problems involving measurement, including kilometers, meters, centimeters; kilograms, grams; pounds, ounces; milliliters; and hours, minutes, and seconds. Convert measurements from a larger unit to a smaller unit. Record measurements in a twocolumn table. Represent measurement quantities using line diagrams. Express fractions with a denominator of 10 as an equivalent fraction with a denominator of 100. Add fractions with denominators of 10 and 100 by expressing both fractions with a common denominator of 100. Essential Questions How are units of measure within a standard system related? How do you choose the appropriate tool and unit when measuring? How can a twocolumn table be used to represent measurement conversions? What is your strategy for converting a larger unit to a smaller unit? How is this strategy the same for different types of measurement? (length, weight, time, etc.) Mathematical Practices to Be Integrated Model with mathematics. Apply the mathematics they know to solve problems arising in everyday life. Routinely interpret mathematical results in the context of the situation. Reflect on whether results make sense. Attend to precision. Communicate precisely to others. Calculate accurately and efficiently. Give carefully formulated explanations. When would it be important to determine how much time has passed between events in a single day? How are common decimal fractions (e.g., 3/10 and 30/100) alike and different? How can you add two decimal fractions with unlike denominators? 37
10 Grade 4 Mathematics, Quarter 3, Unit 3.3 Using Measurements and Data to Solve Problems (15 days) Written Curriculum Common Core State Standards for Mathematical Content Measurement and Data 4.MD Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. 4.MD.1 4.MD.2 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36),... Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. Number and Operations Fractions 3 4.NF 3 Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100. Understand decimal notation for fractions, and compare decimal fractions. 4.NF.5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/ Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade. Common Core Standards for Mathematical Practice 4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, twoway tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of 38
11 Grade 4 Mathematics, Quarter 3, Unit 3.3 Using Measurements and Data to Solve Problems (15 days) the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. 6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. Clarifying the Standards Prior Learning In grade 3, students developed an understanding of fractions as numbers using unit fractions. They recognized and generated simple equivalent fractions using visual fraction models. Students solved problems involving measurement of intervals of time in minutes. They measured, estimated, and solved onestep problems using liquid volume and mass of objects using grams, kilograms, and liters within the same unit. Current Learning In grade 4, students solve multistep problems involving measurement and conversion of measurements from a larger unit to a smaller unit (e.g., feet to inches, meter to centimeters, dollars to cents). They solve problems involving distances, intervals of time, liquid volumes, and masses of objects. The units of measure that have not been addressed in prior years are cups, pints, quarts, gallons, pounds, ounces, kilometers, milliliters, and seconds. Using measurement conversions, students express fractions with a denominator of 10 as an equivalent fraction with a denominator of 100. Although the term decimal fractions does not appear in the standards after grade 4, students are expected to apply this understanding to all decimal situations in future grades. This provides a solid foundation for decimal notation in the next unit. This is a good place to continue practicing addition and subtraction of whole numbers using the standard algorithm. Remember that students must be fluent by the end of the next quarter. Future Learning Using models and drawings as well as place value strategies, fifth graders will employ decimal notation to add, subtract, multiply, and divide decimals to the hundredths. Students will convert units and use these conversions to solve multistep word problems (e.g., 5 centimeters = 0.05 meter). They will learn that volume is an attribute of a geometric figure and a quantity in measurement. Students will relate this to multiplication and addition. 39
12 Grade 4 Mathematics, Quarter 3, Unit 3.3 Using Measurements and Data to Solve Problems (15 days) Additional Findings According to Principals and Standards for School Mathematics, Students should gain facility in expressing measurements in equivalent forms. They use their knowledge of relationships between units and their understanding of multiplicative situations to make conversions, such as expressing 150 centimeters and 1.5 meters or 3 feet as 36 inches, (p. 172) According to Progressions: 3 5 Number and Operations, Fractions with denominators of 10 and 100, called decimal fractions, arise naturally when students convert between dollars and cents, and have more fundamental importance, developed in grade 5, in the base 10 system. For example, because there are 10 dimes in a dollar, 3 dimes is 3/10 of a dollar, and it is also 30/100 of a dollar, because it is 30 cents, and there are 100 cents in a dollar. Such reasoning provides a concrete context for the fraction equivalence: 3/10 = 3 10/10 10 = 30/100 Students learn to add decimal fractions by converting them to fractions with the same denominator they can interpret this as saying that 3 dimes together with 27 cents make 57 cents: 3/ /100 = 30/ /100 = 57/100 (p. 8) 40
Math Common Core Standards Fourth Grade
Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement
More informationCommon Core Standards for Mathematics Grade 4 Operations & Algebraic Thinking Date Taught
Operations & Algebraic Thinking Use the four operations with whole numbers to solve problems. 4.OA.1. Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement that 35
More informationDivision with Whole Numbers and Decimals
Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers
More informationBPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K5) 1
Grade 4 Key Areas of Focus for Grades 35: Multiplication and division of whole numbers and fractionsconcepts, skills and problem solving Expected Fluency: Add and subtract within 1,000,000 Module M1:
More informationCOMMON CORE STATE STANDARDS FOR MATHEMATICS 35 DOMAIN PROGRESSIONS
COMMON CORE STATE STANDARDS FOR MATHEMATICS 35 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving
More informationMathUSee Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade
MathUSee Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade The fourthgrade standards highlight all four operations, explore fractions in greater detail, and
More informationPA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*
Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More information4TH GRADE FIRST QUARTER MATHEMATICS STANDARDS. Vocabulary. answers using mental computation and estimation strategies including rounding.
4TH GRADE FIRST QUARTER MATHEMATICS STANDARDS Critical Area: Developing understanding and fluency with multidigit multiplication, and developing understanding of dividing to find quotients involving multidigit
More informationFourth Grade Math Standards and "I Can Statements"
Fourth Grade Math Standards and "I Can Statements" Standard  CC.4.OA.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and
More informationProgressing toward the standard
Report Card Language: add, subtract, multiply, and/or divide to solve multistep word problems. CCSS: 4.OA.3 Solve multistep work problems posed with whole numbers and having wholenumber answers using
More informationA Correlation of. to the. Common Core State Standards for Mathematics Grade 4
A Correlation of to the Introduction envisionmath2.0 is a comprehensive K6 mathematics curriculum that provides the focus, coherence, and rigor required by the CCSSM. envisionmath2.0 offers a balanced
More informationVocabulary, Signs, & Symbols product dividend divisor quotient fact family inverse. Assessment. Envision Math Topic 1
1st 9 Weeks Pacing Guide Fourth Grade Math Common Core State Standards Objective/Skill (DOK) I Can Statements (Knowledge & Skills) Curriculum Materials & Resources/Comments 4.OA.1 4.1i Interpret a multiplication
More informationProblem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationUnit 1: Place value and operations with whole numbers and decimals
Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students
More informationMeasurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve realworld and mathematical
More informationStandards for Mathematical Practice: Commentary and Elaborations for 6 8
Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:
More informationProblem of the Month: Once Upon a Time
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More information1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,
More informationGrades K6. Correlated to the Common Core State Standards
Grades K6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for
More informationClassworks Common Core Transition Guide. South Carolina 4th Grade Mathematics
Classworks Common Core Transition Guide South Carolina 4th Mathematics OFFICIALLY ENDORSED Classworks Common Core Transition Guide  BETA Making The Transition With the increased rigor, the transition
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More informationYearataGlance: 5 th Grade
September: UNIT 1 Place Value Whole Numbers Fluently multiply multidigit numbers using the standard algorithm Model long division up to 2 digit divisors Solve real world word problems involving measurement
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationMathematics. Mathematical Practices
Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with
More informationDescribing and Solving for Area and Perimeter
Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 810 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and
More informationMathematics Grade 5 Year in Detail (SAMPLE)
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 Whole number operations Place value with decimals Add and Subtract Decimals Add and Subtract Fractions Multiply and Divide Decimals
More informationEvaluation Tool for Assessment Instrument Quality
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
More informationCOURSE OF STUDY UNIT PLANNING GUIDE
COURSE OF STUDY UNIT PLANNING GUIDE FOR: MATHEMATICS GRADE LEVEL: FOURTH GRADE PREPARED BY: TERESA KELLY AND TRACY BUCKLEY B.O.E. ADOPTED AUGUST 20, 2015 REVISED AUGUST 2015 ALIGNED TO THE 2014 NJCCCS
More informationExcel Math Fourth Grade Standards for Mathematical Practice
Excel Math Fourth Grade Standards for Mathematical Practice The Common Core State Standards for Mathematical Practice are integrated into Excel Math lessons. Below are some examples of how we include these
More informationISAT Mathematics Performance Definitions Grade 4
ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourthgrade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers
More informationCCSS Mathematics Implementation Guide Grade 5 2012 2013. First Nine Weeks
First Nine Weeks s The value of a digit is based on its place value. What changes the value of a digit? 5.NBT.1 RECOGNIZE that in a multidigit number, a digit in one place represents 10 times as much
More informationMAFS: Mathematics Standards GRADE: K
MAFS: Mathematics Standards GRADE: K Domain: COUNTING AND CARDINALITY Cluster 1: Know number names and the count sequence. CODE MAFS.K.CC.1.1 Count to 100 by ones and by tens. MAFS.K.CC.1.2 MAFS.K.CC.1.3
More informationProblem of the Month: Perfect Pair
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationConcepts of Elementary Mathematics Enduring Understandings & Essential Questions
Concepts of Elementary Mathematics & First through Fourth Grade Content Areas: Numbers and Operations Algebra Geometry Measurement Data Analysis and Probability Above all, students should feel enchanted
More information1 BPS Math Year at a Glance (Adapted from A Story of Units Curriculum Maps in Mathematics P5)
Grade 5 Key Areas of Focus for Grades 35: Multiplication and division of whole numbers and fractionsconcepts, skills and problem solving Expected Fluency: Multidigit multiplication Module M1: Whole
More informationProblem of the Month: Double Down
Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationPerformance Assessment Task Which Shape? Grade 3. Common Core State Standards Math  Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
More informationFourth Grade Unit 1 Whole Numbers, Place Value, and Rounding Computation
Fourth Grade Unit 1 Whole Numbers, Place Value, and Rounding Computation Unit 1  Whole Numbers, Place Value and Rounding in Computation MCC4.OA.1 Interpret a multiplication equation as a comparison,
More informationOverview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series
Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
More informationOverview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
More informationGeometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
More informationr the COR Common Core State Standards Learning Pathways
BUI LT fo COM r the MON COR E 2015 2016 Common Core State Standards Learning Pathways Table of Contents Grade 3...3 Grade 4...8 Grade 5... 13 Grade 6... 18 Grade 7...26 Grade 8...32 Algebra Readiness...36
More informationMathematical Practices
The New Illinois Learning Standards for Mathematics Incorporating the Common Core Mathematical Practices Grade Strand Standard # Standard K12 MP 1 CC.K12.MP.1 Make sense of problems and persevere in
More informationBuilding number sense and place value and money understanding
Unit: 1 Place Value, Money, and Sense s to be mastered in this unit: 3.N.1 Skip count by 25 s, 50 s, 100 s to 1,000 3.N.2 Read and write whole numbers to 1,000 place 3.N.3 Compare and order numbers to
More informationCharlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
More informationVoyager Sopris Learning Vmath, Levels CI, correlated to the South Carolina College and CareerReady Standards for Mathematics, Grades 28
Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156159 Module 4: Lesson 7: 220223 2. Reason both contextually
More information3rd Grade Texas Mathematics: Unpacked Content
3rd Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must
More informationOverview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices
Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with
More informationProblem of the Month: On Balance
Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationGrade 5 Common Core State Standard
2.1.5.B.1 Apply place value concepts to show an understanding of operations and rounding as they pertain to whole numbers and decimals. M05.AT.1.1.1 Demonstrate an understanding that 5.NBT.1 Recognize
More informationMaths Level Targets. This booklet outlines the maths targets for each sublevel in maths from Level 1 to Level 5.
Maths Level Targets This booklet outlines the maths targets for each sublevel in maths from Level 1 to Level 5. Expected National Curriculum levels for the end of each year group are: Year 1 Year 2 Year
More informationMathematics Scope and Sequence, K8
Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count
More informationGlencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 33, 58 84, 87 16, 49
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 68 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
More informationMaths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.
Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100
More informationOverview. Essential Questions. Precalculus, Quarter 2, Unit 2.4 Interpret, Solve, and Graph Inverse Trigonometric Functions
Trigonometric Functions Overview Number of instruction days: 3 5 (1 day = 53 minutes) Content to Be Learned Use restricted domains in order to construct inverse Use inverse trigonometric functions to solve
More informationHigh School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
More informationEveryday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of 6 GradeLevel Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
More informationPerformance Assessment Task Gym Grade 6. Common Core State Standards Math  Content Standards
Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of breakeven point to
More informationEveryday Mathematics GOALS
Copyright Wright Group/McGrawHill GOALS The following tables list the GradeLevel Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
More informationMinnesota Academic Standards
A Correlation of to the Minnesota Academic Standards Grades K6 G/M204 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley
More informationProblem of the Month: Cutting a Cube
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationPearson Algebra 1 Common Core 2015
A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).
More informationof surface, 569571, 576577, 578581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
More informationOverview. Essential Questions. Grade 7 Mathematics, Quarter 3, Unit 3.3 Area and Circumference of Circles. Number of instruction days: 3 5
Area and Circumference of Circles Number of instruction days: 3 5 Overview Content to Be Learned Develop an understanding of the formulas for the area and circumference of a circle. Explore the relationship
More informationThe symbols indicate where the topic is first introduced or specifically addressed.
ingapore Math Inc. cope and equence U: U.. Edition : ommon ore Edition : tandards Edition : ommon ore tandards 1 2 3 4 5 Reviews in ommon ore Edition cover just the unit whereas those in U.. and tandards
More informationChapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter A. Elementary
Elementary 111.A. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter A. Elementary Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code,
More informationEVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 35 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
More informationnumerical place value additional topics rounding off numbers power of numbers negative numbers addition with materials fundamentals
Math Scope & Sequence fundamentals number sense and numeration of the decimal system Count to 10 by units Associate number to numeral (110) KN 1 KN 1 KN 2 KN 2 Identify odd and even numbers/numerals and
More informationDimensional Analysis is a simple method for changing from one unit of measure to another. How many yards are in 49 ft?
HFCC Math Lab NAT 05 Dimensional Analysis Dimensional Analysis is a simple method for changing from one unit of measure to another. Can you answer these questions? How many feet are in 3.5 yards? Revised
More informationArizona s College and Career Ready Standards Mathematics Kindergarten Standards Placemat
Arizona s College and Career Ready Standards Mathematics Kindergarten Standards Placemat 1. Representing and comparing whole numbers, initially with sets of objects Students use numbers, including written
More informationMath  5th Grade. two digit by one digit multiplication fact families subtraction with regrouping
Number and Operations Understand division of whole numbers N.MR.05.01 N.MR.05.02 N.MR.05.03 Understand the meaning of division of whole numbers with and without remainders; relate division to and to repeated
More informationMath syllabus Kindergarten 1
Math syllabus Kindergarten 1 Number strand: Count forward and backwards to 10 Identify numbers to 10 on a number line Use ordinal numbers first (1 st ) to fifth (5 th ) correctly Recognize and play with
More informationMATHEMATICS  SCHEMES OF WORK
MATHEMATICS  SCHEMES OF WORK For Children Aged 7 to 12 Mathematics Lessons Structure Time Approx. 90 minutes 1. Remind class of last topic area explored and relate to current topic. 2. Discuss and explore
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More informationQuarter One: AugustOctober
Quarter One: AugustOctober (Chapters 1 3, 56, 10) August  December Quarterly Addition facts with sums through 20 General Math Content 1. Write sums through 20. 1. Choose and enter the appropriate answer.
More informationGeorgia Standards of Excellence 20152016 Mathematics
Georgia Standards of Excellence 20152016 Mathematics Standards GSE Coordinate Algebra K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
More informationNEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
More information1A: Understand numbers, ways of representing numbers, relationships among numbers, and number systems.
NCTM STANDARD 1: Numbers and Operations Kindergarten Grade 2 1A: Understand numbers, ways of representing numbers, relationships among numbers, and number systems. Kindergarten Grade One Grade Two 1. Count
More information*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.
Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review
More informationMEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.
MEASUREMENTS A measurement includes a number and a unit. 3 feet 7 minutes 12 gallons Standard units of measurement have been established to simplify trade and commerce. TIME Equivalences between units
More informationTopic 1: Understanding Addition and Subtraction
Topic 1: Understanding Addition and Subtraction 11: Writing Addition Number Sentences Essential Understanding: Parts of a whole is one representation of addition. Addition number sentences can be used
More information#1 Make sense of problems and persevere in solving them.
#1 Make sense of problems and persevere in solving them. 1. Make sense of problems and persevere in solving them. Interpret and make meaning of the problem looking for starting points. Analyze what is
More information1) Make Sense and Persevere in Solving Problems.
Standards for Mathematical Practice in Second Grade The Common Core State Standards for Mathematical Practice are practices expected to be integrated into every mathematics lesson for all students Grades
More informationVolume of Rectangular Prisms Objective To provide experiences with using a formula for the volume of rectangular prisms.
Volume of Rectangular Prisms Objective To provide experiences with using a formula for the volume of rectangular prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts
More informationREVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.
More informationConverting Units of Measure Measurement
Converting Units of Measure Measurement Outcome (lesson objective) Given a unit of measurement, students will be able to convert it to other units of measurement and will be able to use it to solve contextual
More information4th Grade Common Core Math Vocabulary
4th Grade Common Core Math Vocabulary a.m. A time between 12:00 midnight and 12:00 noon. acute angle An angle with a measure less than 90. acute triangle A triangle with no angle measuring 90º or more.
More informationIllinois State Standards Alignments Grades Three through Eleven
Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other
More informationCarroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) AugustSeptember (12 days) Unit #1 : Geometry
Carroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) Common Core and Research from the CCSS Progression Documents Geometry Students learn to analyze and relate categories
More informationFlorida Department of Education Curriculum Framework
Florida Department of Education Curriculum Framework July 2014 Program Title: Adult Basic Education (ABE) Program Type: Adult Basic Education Mathematics Career Cluster: N/A ADULT GENERAL EDUCATION Program
More informationTopic: 1  Understanding Addition and Subtraction
8 days / September Topic: 1  Understanding Addition and Subtraction Represent and solve problems involving addition and subtraction. 2.OA.1. Use addition and subtraction within 100 to solve one and twostep
More informationGrade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
More informationIndicator 2: Use a variety of algebraic concepts and methods to solve equations and inequalities.
3 rd Grade Math Learning Targets Algebra: Indicator 1: Use procedures to transform algebraic expressions. 3.A.1.1. Students are able to explain the relationship between repeated addition and multiplication.
More informationKnowing and Using Number Facts
Knowing and Using Number Facts Use knowledge of place value and Use knowledge of place value and addition and subtraction of twodigit multiplication facts to 10 10 to numbers to derive sums and derive
More informationMath. MCC5.OA.1 Use parentheses, brackets, or braces in. these symbols. 11/5/2012 1
MCC5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. 11/5/2012 1 MCC5.OA.2 Write simple expressions that record calculations with numbers,
More informationGrade 2 Math Expressions Vocabulary Words
Grade 2 Math Expressions Vocabulary Words Unit 1, Book 1 Understanding Addition and Subtraction OSPI word: number pattern, place value, value, whole number Link to Math Expression Online Glossary for some
More informationNumeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
More information