Chapter 16: Confidence intervals


 Melvyn Victor Gordon
 2 years ago
 Views:
Transcription
1 Chapter 16: Confidence intervals Objective (1) Learn how to estimate the errormargin in "proportion" type statistics calculated from a random sample. (2) Learn how to construct confidence intervals. Concept briefs: * Sampling distribution theorem for proportions = When the conditions are met, proportions follow normal model N( p, ), with p=true population parameter, p (1 p)/ n. * Standard Error (SE) = ^p (1 ^p ) / n ( ^p = sampled statistic) * Confidence level = % chosen for constructing confidence interval. * Critical value (z*) = zvalue that corresponds to confidence level chosen. * Margin of error (ME) = z* x SE. It indicates how far ^p may be from true p. * Confidence interval (CI) = ^p ± ME. It gives the interval within which the true value of p lies. * One proportion zinterval = General term for confidence int. for proportions. * Confidence interval tradeoffs: Be aware of effect of confidence level and sample size on margin of error.
2 Confidence Intervals: Concept Summary What is a confidence interval (CI)? It is a numerical range within which the true value of population parameter lies. E.g., (1) The true proportion of students who live offcampus is in the interval [5.8%,19%]. (2) The true mean GPA of students is in the interval [2.90, 3.22]. How accurate are confidence intervals? A CI is estimated based on probability. There is no guarantee that the true value is contained within the CI. However, we can estimate a CI with a very high probability that it contains the true parameter. In fact, we can estimate it to any desired level of probabilistic certainty. E.g., (1) There is a 95% probability that the true proportion of students who live offcampus is in the interval [5.8%,19%]. (2) There is an 80% probability that the true proportion is in the interval [8.2%,16.6%]. What is the margin of error? The width of the CI tells us the margin of error (ME). Technically, the ME is half the width of the confidence interval. How does the width relate to the confidence level? To capture the true parameter with higher probability (i.e., higher confidence level), the CI must be wider. Thus, for example, a 95% CI is always wider than an 80% CI. Therefore, the margin of error always gets bigger with higher confidence level. Two key interpretations of confidence level: (1) It denotes the probability that the true parameter is contained within the CI. (2) It denotes the percentage of all random samples (within the population) that will contain the true parameter within their CI.
3 Illustration: * We survey random sample of 100 students to determine % of EC students who live offcampus. * Suppose our survey estimates this statistic to be 12.4% (so our ^p =0.124). Central Limit Theorem says: If you repeat your study several times with different random samples, and take the mean of all your estimates, you'll get the true value you're seeking (i.e., p). Reality says: What is the best I can do with the statistic calculated from my single study? The goal: Find margin of error in our calculated ^p Issues/problems (1) We don't know true p, so can't get the sampling distribution model. (2) Without p, can't tell how far, or even which direction, ^p is in. ^p p?? p ^p
4 Resolution to problem1 * We know the true sampling distribution would follow the normal model with mean p( 1 p) p and SD. n * Since p is not known, we can't find the mean or SD. * To compromise, we "fudge" the SD and calculate it using ^p instead of p. This is called Standard Error (SE) instead of Standard Deviation (SD). ^p ( 1 SE ^p ). 124( ) E.g: n 100
5 Resolution to problem2 Illustration: 2 * We don't know true p, but we know that 95% of all random samples will give an answer within of this value (provided we know ). * We have a decent approximation for = (SE [^p (1^p ) / n]). * So, we know the true answer must lie (at worst) within ± 2 SE from the sampled result. 2SE = 6.6%. Thus, the true answer is between: % and %. * Confidence interval says: "We are 95% confident that % students who live offcampus is between 5.8% and 19%." Q: Is it possible to get really unlucky & pick a sample outside the 95% that are within 2SE of the true answer?
6 True ^p Confidence Interval Recipe Objective: You have a sampled proportion ^p. You want to predict the range in which the true proportion p lies. Step0: Identify the sample proportion ^p, if you haven't already. Step1: Determine confidence level you want for your prediction. (e.g., 90%). Step2: Find critical value (z*) for this confidence level. Step3: Verify conditions for theorem; find SE= ^p (1 ^p ) / n. Step4: Find margin of error: ME = z* x SE. Step5: Find the confidence interval: ^p ME p +ME. Step6: Write a sentence (or two) that states and interprets your CI. Points to note: (1) Confidence intervals always involve a tradeoff between margin of error & level of confidence. (2) If you want higher confidence, you buy this by increasing the margin of error (think of this as "margin of safety"). E.g., for 100% confidence, the margin of safety must also be 100%. (3) The only way to get high confidence with smaller margins of error is to find a way to decrease SE. The only way to do that is by increasing sample size. (4) There is an important technical name for this confidence interval: One proportion zinterval
7 How to find critical z* values: More examples Objective: For confidence level of x %, we want to find zvalue that encloses the central x % of the std. normal model. Example1: z* for 80% confidence level Confidence level=80%: Lookup zvalue for area=90%. Thus, z* = % 10% 10% Example2: z* for 90% confidence level Confidence level=90%: Lookup zvalue for area=95%. Thus, z* = % 5% 5% Example3: z* for 98% confidence level Confidence level=98%: Lookup zvalue for area=99%. Thus, z* = % 1% 1%
8 Exercise 30, pg. 448 Strategy for (b): * For newspaper: ^p = 0.53, n = 1200; Want 95% confidence; To find z* lookup standard normal table for 97.5% area > z*=1.96 Check conditions: random, independent, sufficiently large SE = ( )/ 1200 = X (calculate this value yourself!) ME = 1.96 X Confidence interval: X to X. * For statistics class: ^p = 0.54, n = 450; Confidence level and z* same; Check conditions; SE = ( )/ 450 = Y (calculate this value yourself!) ME = 1.96 Y Confidence interval: Y to Y. Answers: Newspaper CI: [0.5018, ] OR 50.18% to 55.82% Statistics class: [0.4939, ] OR 49.39% to 58.61% Exercise 38, pg. 448 Strategy: (a) Find z* for 98% confidence level (i.e., lookup zscore for 99% area). Question wants ME=0.05. This requires: 0.05 = z* x SE. You know z*, so you can find SE [Check your answer: SE=0.0215]. Take worst case scenario (i.e., largest SE happens for ^p =0.5). Use SE = 0. 5 ( )/ n to find n. > n = 0.5 (10.5) / SE 2. [Answer: n ~ 543] (b) Very similar strategy. Get answers: SE=0.0129, n ~ 1503.
Statistical Inference
Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this
More informationConstructing and Interpreting Confidence Intervals
Constructing and Interpreting Confidence Intervals Confidence Intervals In this power point, you will learn: Why confidence intervals are important in evaluation research How to interpret a confidence
More information5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
More informationSocial Studies 201 Notes for November 19, 2003
1 Social Studies 201 Notes for November 19, 2003 Determining sample size for estimation of a population proportion Section 8.6.2, p. 541. As indicated in the notes for November 17, when sample size is
More informationAn interval estimate (confidence interval) is an interval, or range of values, used to estimate a population parameter. For example 0.476<p<0.
Lecture #7 Chapter 7: Estimates and sample sizes In this chapter, we will learn an important technique of statistical inference to use sample statistics to estimate the value of an unknown population parameter.
More informationWeek 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
More informationConfidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
More informationExpected values, standard errors, Central Limit Theorem. Statistical inference
Expected values, standard errors, Central Limit Theorem FPP 1618 Statistical inference Up to this point we have focused primarily on exploratory statistical analysis We know dive into the realm of statistical
More informationObjectives. 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) CI)
Objectives 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) Statistical confidence (CIS gives a good explanation of a 95% CI) Confidence intervals. Further reading http://onlinestatbook.com/2/estimation/confidence.html
More informationLecture 19: Chapter 8, Section 1 Sampling Distributions: Proportions
Lecture 19: Chapter 8, Section 1 Sampling Distributions: Proportions Typical Inference Problem Definition of Sampling Distribution 3 Approaches to Understanding Sampling Dist. Applying 689599.7 Rule
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Practice problems  chapter 121 and 2 proportions for inference  Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide
More informationPoint and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
More informationSimple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
More informationHomework 5 Solutions
Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces
More informationTwosample inference: Continuous data
Twosample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with twosample inference for continuous data As
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationGrowingKnowing.com 2011
GrowingKnowing.com 2011 GrowingKnowing.com 2011 1 Estimates We are often asked to predict the future! When will you complete your team project? When will you make your first million dollars? When will
More informationExtending Hypothesis Testing. pvalues & confidence intervals
Extending Hypothesis Testing pvalues & confidence intervals So far: how to state a question in the form of two hypotheses (null and alternative), how to assess the data, how to answer the question by
More informationConfidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
More informationChapter 7 Review. Confidence Intervals. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 7 Review Confidence Intervals MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Suppose that you wish to obtain a confidence interval for
More information2.0 Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table
2.0 Lesson Plan Answer Questions 1 Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 2. Summary Statistics Given a collection of data, one needs to find representations
More informationConfidence Intervals for Coefficient Alpha
Chapter 818 Confidence Intervals for Coefficient Alpha Introduction Coefficient alpha, or Cronbach s alpha, is a measure of the reliability of a test consisting of k parts. The k parts usually represent
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationAP * Statistics Review
AP * Statistics Review Confidence Intervals Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationCoefficient of Determination
Coefficient of Determination The coefficient of determination R 2 (or sometimes r 2 ) is another measure of how well the least squares equation ŷ = b 0 + b 1 x performs as a predictor of y. R 2 is computed
More informationMargin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Student Outcomes Students use data from a random sample to estimate a population proportion. Students calculate and interpret margin of error in
More informationSampling Distribution of a Sample Proportion
Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given
More informationConfidence Intervals for Cpk
Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process
More informationSection 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities
Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and
More informationChapter 5: Normal Probability Distributions  Solutions
Chapter 5: Normal Probability Distributions  Solutions Note: All areas and zscores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that
More informationNeed for Sampling. Very large populations Destructive testing Continuous production process
Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4
More informationStat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a tdistribution as an approximation
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationThe Standard Normal distribution
The Standard Normal distribution 21.2 Introduction Massproduced items should conform to a specification. Usually, a mean is aimed for but due to random errors in the production process we set a tolerance
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationAP STATISTICS (WarmUp Exercises)
AP STATISTICS (WarmUp Exercises) 1. Describe the distribution of ages in a city: 2. Graph a box plot on your calculator for the following test scores: {90, 80, 96, 54, 80, 95, 100, 75, 87, 62, 65, 85,
More informationMATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample
MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of
More informationConfidence level. Most common choices are 90%, 95%, or 99%. (α = 10%), (α = 5%), (α = 1%)
Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated
More informationConfidence Intervals
Section 6.1 75 Confidence Intervals Section 6.1 C H A P T E R 6 4 Example 4 (pg. 284) Constructing a Confidence Interval Enter the data from Example 1 on pg. 280 into L1. In this example, n > 0, so the
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationConfidence intervals
Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More information! x sum of the entries
3.1 Measures of Central Tendency (Page 1 of 16) 3.1 Measures of Central Tendency Mean, Median and Mode! x sum of the entries a. mean, x = = n number of entries Example 1 Find the mean of 26, 18, 12, 31,
More informationConfidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
More informationIntroduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters  they must be estimated. However, we do have hypotheses about what the true
More informationCALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 15 scale to 0100 scores When you look at your report, you will notice that the scores are reported on a 0100 scale, even though respondents
More informationChapter Study Guide. Chapter 11 Confidence Intervals and Hypothesis Testing for Means
OPRE504 Chapter Study Guide Chapter 11 Confidence Intervals and Hypothesis Testing for Means I. Calculate Probability for A Sample Mean When Population σ Is Known 1. First of all, we need to find out the
More informationStatistics Review Solutions
Statistics Review Solutions 1. Katrina must take five exams in a math class. If her scores on the first four exams are 71, 69, 85, and 83, what score does she need on the fifth exam for her overall mean
More informationSimple Inventory Management
Jon Bennett Consulting http://www.jondbennett.com Simple Inventory Management Free Up Cash While Satisfying Your Customers Part of the Business Philosophy White Papers Series Author: Jon Bennett September
More informationTwosample hypothesis testing, I 9.07 3/09/2004
Twosample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given
More informationBasic Statistics. Probability and Confidence Intervals
Basic Statistics Probability and Confidence Intervals Probability and Confidence Intervals Learning Intentions Today we will understand: Interpreting the meaning of a confidence interval Calculating the
More informationMATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6
MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the PepsiCola Co. is interested
More informationSampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions
Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about
More informationPresentation of data
2 Presentation of data Using various types of graph and chart to illustrate data visually In this chapter we are going to investigate some basic elements of data presentation. We shall look at ways in
More informationLecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
More informationChapter 7  Practice Problems 2
Chapter 7  Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the requested value. 1) A researcher for a car insurance company
More informationMath 140 (4,5,6) Sample Exam II Fall 2011
Math 140 (4,5,6) Sample Exam II Fall 2011 Provide an appropriate response. 1) In a sample of 10 randomly selected employees, it was found that their mean height was 63.4 inches. From previous studies,
More informationSTATISTICS 8 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS Correct answers are in bold italics.. This scenario applies to Questions 1 and 2: A study was done to compare the lung capacity of coal miners
More informationMind on Statistics. Chapter 10
Mind on Statistics Chapter 10 Section 10.1 Questions 1 to 4: Some statistical procedures move from population to sample; some move from sample to population. For each of the following procedures, determine
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationPART 7: LESSON D: There are Five Ways to Monitor Employee Performance
PART 7: LESSON D: There are Five Ways to Monitor Employee Performance Key Points There are five ways to monitor employee performance: (#1) Watch employees work. (#2) Ask for an account. (#3) Help employees
More informationWhen σ Is Known: Recall the Mystery Mean Activity where x bar = 240.79 and we have an SRS of size 16
8.3 ESTIMATING A POPULATION MEAN When σ Is Known: Recall the Mystery Mean Activity where x bar = 240.79 and we have an SRS of size 16 Task was to estimate the mean when we know that the situation is Normal
More information6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
More informationConfidence Intervals (Review)
Intro to Hypothesis Tests Solutions STATUB.0103 Statistics for Business Control and Regression Models Confidence Intervals (Review) 1. Each year, construction contractors and equipment distributors from
More informationChapter 8 Section 1. Homework A
Chapter 8 Section 1 Homework A 8.7 Can we use the largesample confidence interval? In each of the following circumstances state whether you would use the largesample confidence interval. The variable
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More informationLecture 2: Discrete Distributions, Normal Distributions. Chapter 1
Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:304:30, Wed 45 Bring a calculator, and copy Tables
More informationAugust 2012 EXAMINATIONS Solution Part I
August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Final Exam Spring 2008 DeMaio Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the given degree of confidence and sample data to construct
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationLesson 7 ZScores and Probability
Lesson 7 ZScores and Probability Outline Introduction Areas Under the Normal Curve Using the Ztable Converting Zscore to area area less than z/area greater than z/area between two zvalues Converting
More information, has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.
BA 275 Review Problems  Week 9 (11/20/0611/24/06) CD Lessons: 69, 70, 1620 Textbook: pp. 520528, 111124, 133141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationConfidence Intervals for Spearman s Rank Correlation
Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence
More informationSuppose we want to compare the average effectiveness of two treatments in a completely randomized experiment. In this case, the parameters µ 1
AP Statistics: 10.2: Comparing Two Means Name: Suppose we want to compare the average effectiveness of two treatments in a completely randomized experiment. In this case, the parameters µ 1 and µ 2 are
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationMath 251, Review Questions for Test 3 Rough Answers
Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,
More informationSamples and Populations Confidence Intervals Hypotheses Onesided vs. twosided Statistical Significance Error Types. Statistiek I.
Statistiek I Sampling John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistieki/ John Nerbonne 1/42 Overview 1 Samples and Populations 2 Confidence Intervals 3 Hypotheses
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationChris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationReview. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
More information**Unedited Draft** Arithmetic Revisited Lesson 4: Part 3: Multiplying Mixed Numbers
. Introduction: **Unedited Draft** Arithmetic Revisited Lesson : Part 3: Multiplying Mixed Numbers As we mentioned in a note on the section on adding mixed numbers, because the plus sign is missing, it
More informationSENSITIVITY ANALYSIS AND INFERENCE. Lecture 12
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More information= 2.0702 N(280, 2.0702)
Name Test 10 Confidence Intervals Homework (Chpt 10.1, 11.1, 12.1) Period For 1 & 2, determine the point estimator you would use and calculate its value. 1. How many pairs of shoes, on average, do female
More informationManual. How large a Sample do we need SRS STRAT.xls. Guido Lüchters September 2006
Manual How large a Sample do we need SRS STRAT.xls Guido Lüchters September 2006 File: How large a Sample do we need SRS STRAT.doc Last save: Friday, 8. September 2006 How large a Sample do we need SRS
More informationThe sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
More information6.2. PERCENT FORMULA MODULE 6. PERCENT
6.2 Percent Formula In this lesson, we will learn 3 types of percent problems, and use 3 methods to solve each type of problems. You can choose your favorite method. It would be great if you can use all
More informationLesson 17: Margin of Error When Estimating a Population Proportion
Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information
More informationA) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777
Math 210  Exam 4  Sample Exam 1) What is the pvalue for testing H1: µ < 90 if the test statistic is t=1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that
More informationAn Introduction to Sampling
An Introduction to Sampling Sampling is the process of selecting a subset of units from the population. We use sampling formulas to determine how many to select because it is based on the characteristics
More informationCalculate and interpret confidence intervals for one population average and one population proportion.
Chapter 8 Confidence Intervals 8.1 Confidence Intervals 1 8.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Calculate and interpret confidence intervals for one
More information