2.004 Dynamics and Control II Spring 2008
|
|
|
- Jocelyn Phillips
- 9 years ago
- Views:
Transcription
1 MIT OpenCourseWare Dynamics and Control II Spring 008 For information about citing these materials or our Terms of Use, visit:
2 O A Reading: Massachusetts Institute of Technology Department of Mechanical Engineering Nise: Secs (pp ).004 Dynamics and Control II Spring Term 008 Lecture Second-Order System Response Characteristics (contd.). Percent Overshoot F A = O I A F L A H I D O I I 6 = F I? E = H O H A I F I A O I A F M? I M The height of the first peak of the response, expressed as a percentage of the steady-state response. At the time of the peak y(t p ) and since y ss = %OS = y peak y ss 00 y ss y peak = y(t p ) = + e (ζπ/ ζ ) %OS = e (ζπ/ ζ ) 00. Note that the percent overshoot depends only on ζ. Conversely we can find ζ to give a specific percent overshoot from the above: ln (%OS/00) ζ = π + ln (%OS/00) copyright c D.Rowell 008
3 Example Find the damping ratio ζ that will generate a 5% overshoot in the step response of a second-order system. Using the above formula ln (%OS/00) ζ = ln(0.05) = = 0.69 π + ln (%OS/00) π + ln (0.05) Example Find the location of the poles of a second-order system with a damping ratio ζ = 0.707, and find the corresponding overshoot. The complex conjugate poles line on a pair of radial lines at an angle θ = cos = 45 from the negative real axis. The percentage overshoot is e (ζπ/ ζ ) %OS = 00 e (0.707π/ 0.5) = 00 = 4.3% ( 5%) The value ζ =.707 = / is a commonly used specification for system design and represents a compromise between overshoot and rise time.. Settling Time The most common definition for the settling time T s is the time for the step response y step (t) to reach and stay within % of the steady-state value y ss. A conservative estimate can be found from the decay envelope, that is by finding the time for the envelope to decay to less than % of its initial value, e ζω nt ζ < 0.0 giving or ln(0.0 ζ ) T s = ζω n 4 T s ζωn for ζ.
4 N N I Example 3 Find (i) the pole locations for a system under feedback control that has a peak time T p = 0.5 sec, and a 5% overshoot. Find the settling time T s for this system. From Example we take the desired damping ratio ζ = Then π T p = = 0.5 s ω n ζ so that π π ω n = = = 8.88rad/s. T p ζ The pole locations are shown A I E H F A F I E E I & & & M I F = A & & & $ & $ & " # $ & & & & Then p, p ( π ) = 8.88 cos ± j8.88 sin 4 = 6.8 ± j6.8 ( π ) 4 The indicated settling time T s from the approximate formula is 4 4 T s = = 0.64 s. ζωn Note that in this case ζ does not meet the criterion ζ and the full expression ln(.0 ζ ) ln(.0 0.5) T s = = ζω n gives a slightly larger value. = 0.68 s 3
5 Higher Order Systems For systems with three or more poles, the system be analyzed as a parallel combination of first- and second-order blocks, where complex conjugate poles are combined into a single second-order block with real coefficients, using partial fractions. The total system output is then the superposition of the individual blocks. Example 4 Express the system 5 G(s) = (s + )(s + s + 5) as a parallel combination of first- and second-order blocks. G(s) = 5 A Bs + C = + (s + )(s + s + 5) s + s + s + 5 = 5 5 s + 4 s + 4 s + s + 5 using partial fractions. The system is described by the following block diagram K # " I O # " I I # and the response to an input u(t) may be found as the (signed) sum of the responses of the two blocks. 3 Some Fundamental Properties of Linear Systems 3. The Principle of Superposition For a linear system at rest at time t = 0, if the response to an input u(t) = f(t) is y f (t), and the response to a second input u(t) = g(t) is y g (t), then the response to an input that is a linear combination of f(t) and g(t), that is where a and b are constants is u(t) = af(t) + bg(t) y(t) = ay f (t) + by g (t). 4
6 A I H 3. The Derivative Property For a linear system at rest at time t = 0, if the response to an input u(t) = f(t) is y f (t), then the response to an input that is the derivative of f(t), that is df u(t) = is dy f y(t) =. B / I O E F E A B 3.3 The Integral Property For a linear system at rest at time t = 0, if the response to an input u(t) = f(t) is y f (t), then the response to an input that is the integral of f(t), that is t u(t) = f(t) is y(t) = 0 0 t y f (t). B / I O E F E A I / I Example 5 We can use the derivative and integral properties to find the impulse and ramp responses from the step response. We have E A C H = E K E A C H = E E B B A H A E = E B B A H A E = E E E A E A therefore y δ (t) = d y step (t) t y r (t) = y step (t) 0 5
7 For example, consider with step response b G(s) = s + a b ( e at ). y step = a The impulse response is d y δ (t) = y step (t) = be at, and the ramp response is t b ( ( )) e at y r (t) = y step (t) = t + 0 a a 4 The Effect of Zeros on the System Response Consider a system with a transfer function: G(s) = K N(s) = K sm + b m s m + + b s + b 0. D(s) s n + a n s n + + a s + a 0 N(s), which defines the system zeros, is associated with the RHS of the differential equation, while D(s) is derived from the LHS of the differential equation. Therefore N(s) does not affect the homogeneous response of the system. We can draw G(s) as cascaded blocks in two forms: K I N, I O or K, I L I O In this case we consider the all-pole sys tem /D(s) to be excited by u(t) di rectly to generate x(t), and the out put is formed as a superposition of the derivatives of v(t) In this case we consider the all-pole system /D(s) to be excited by x(t), which is a superposition of the derivatives of u(t) m x(t) = K d k u b k k k=0 m y(t) = K b k d k v k k=0 6
8 N N I Example 6 Find the step response of s + 0 G(s) =. s + s + 5 Splitting up the transfer function N(s) = s + 0, D(s) = s + s + 5 and ω n = 5, and ζ = / 5. I F = A Method : For the case, K I N, I O if u(t) = u s (t), the unit-step function du x(t) = + 0u = δ(t) + 0u s (t) and for the all-pole system /D(s) y step (t) = ( ) e t cos(t) e t sin(t) 5 y δ (t) = e t sin(t). For the complete system y(t) = y δ (t) + 0y step (t) = e t cos(t) e t sin(t) Method : For the case, 7
9 K, I L I O from above the step-response to the all-pole system /D(s) is ( ) v(t) = e t cos(t) e t sin(t) 5 and the system output is dv y(t) = + 0v 0 ( ) = e t sin(t) + e t cos(t) sin(t) 5 = e t cos(t) e t sin(t) which is the same as found in Method. 8
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
Second Order Systems
Second Order Systems Second Order Equations Standard Form G () s = τ s K + ζτs + 1 K = Gain τ = Natural Period of Oscillation ζ = Damping Factor (zeta) Note: this has to be 1.0!!! Corresponding Differential
G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).
Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +
Lecture 5 Rational functions and partial fraction expansion
S. Boyd EE102 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper rational functions
Review of First- and Second-Order System Response 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First- and Second-Order System Response 1 1 First-Order Linear System Transient
2.161 Signal Processing: Continuous and Discrete Fall 2008
MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Partial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Sensor Performance Metrics
Sensor Performance Metrics Michael Todd Professor and Vice Chair Dept. of Structural Engineering University of California, San Diego [email protected] Email me if you want a copy. Outline Sensors as dynamic
The integrating factor method (Sect. 2.1).
The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable
Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
3 Signals and Systems: Part II
3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)
Applications of Second-Order Differential Equations
Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.
x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -
3.1 State Space Models
31 State Space Models In this section we study state space models of continuous-time linear systems The corresponding results for discrete-time systems, obtained via duality with the continuous-time models,
EE 402 RECITATION #13 REPORT
MIDDLE EAST TECHNICAL UNIVERSITY EE 402 RECITATION #13 REPORT LEAD-LAG COMPENSATOR DESIGN F. Kağan İPEK Utku KIRAN Ç. Berkan Şahin 5/16/2013 Contents INTRODUCTION... 3 MODELLING... 3 OBTAINING PTF of OPEN
Complex Eigenvalues. 1 Complex Eigenvalues
Complex Eigenvalues Today we consider how to deal with complex eigenvalues in a linear homogeneous system of first der equations We will also look back briefly at how what we have done with systems recapitulates
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
PID Controller Tuning: A Short Tutorial
PID Controller Tuning: A Short Tutorial Jinghua Zhong Mechanical Engineering, Purdue University Spring, 2006 Outline This tutorial is in PDF format with navigational control. You may press SPACE or, or
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )
34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using
NETWORK STRUCTURES FOR IIR SYSTEMS. Solution 12.1
NETWORK STRUCTURES FOR IIR SYSTEMS Solution 12.1 (a) Direct Form I (text figure 6.10) corresponds to first implementing the right-hand side of the difference equation (i.e. the eros) followed by the left-hand
Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple
PID Control. Chapter 10
Chapter PID Control Based on a survey of over eleven thousand controllers in the refining, chemicals and pulp and paper industries, 97% of regulatory controllers utilize PID feedback. Desborough Honeywell,
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Solutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
= δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.
ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated
ORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
Student name: Earlham College. Fall 2011 December 15, 2011
Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
Higher Order Equations
Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.
12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*
+ v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure
r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)
Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply.
Motor Control Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Operator Input CPU digital? D/A, PWM analog voltage Power supply Amplifier linear,
Techniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration
Sample Problems. Practice Problems
Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x
ROUTH S STABILITY CRITERION
ECE 680 Modern Automatic Control Routh s Stability Criterion June 13, 2007 1 ROUTH S STABILITY CRITERION Consider a closed-loop transfer function H(s) = b 0s m + b 1 s m 1 + + b m 1 s + b m a 0 s n + s
Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
Lecture L6 - Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
SECTION 19 CONTROL SYSTEMS
Christiansen-Sec.9.qxd 6:8:4 6:43 PM Page 9. The Electronics Engineers' Handbook, 5th Edition McGraw-Hill, Section 9, pp. 9.-9.3, 5. SECTION 9 CONTROL SYSTEMS Control is used to modify the behavior of
A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved
A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)
DRAFT. Further mathematics. GCE AS and A level subject content
Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed
Lecture 7 Circuit analysis via Laplace transform
S. Boyd EE12 Lecture 7 Circuit analysis via Laplace transform analysis of general LRC circuits impedance and admittance descriptions natural and forced response circuit analysis with impedances natural
Content. Professur für Steuerung, Regelung und Systemdynamik. Lecture: Vehicle Dynamics Tutor: T. Wey Date: 01.01.08, 20:11:52
1 Content Overview 1. Basics on Signal Analysis 2. System Theory 3. Vehicle Dynamics Modeling 4. Active Chassis Control Systems 5. Signals & Systems 6. Statistical System Analysis 7. Filtering 8. Modeling,
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
Bending Stress in Beams
936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
Matlab and Simulink. Matlab and Simulink for Control
Matlab and Simulink for Control Automatica I (Laboratorio) 1/78 Matlab and Simulink CACSD 2/78 Matlab and Simulink for Control Matlab introduction Simulink introduction Control Issues Recall Matlab design
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
6 Systems Represented by Differential and Difference Equations
6 Systems Represented by ifferential and ifference Equations An important class of linear, time-invariant systems consists of systems represented by linear constant-coefficient differential equations in
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Chapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
1.2 Second-order systems
1.2. SECOND-ORDER SYSTEMS 25 if the initial fluid height is defined as h() = h, then the fluid height as a function of time varies as h(t) = h e tρg/ra [m]. (1.31) 1.2 Second-order systems In the previous
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS
COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were introduced 3. Complex numbers, Euler s formula 3 4. Homogeneous differential equations 8 5.
Homework #1 Solutions
MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
Graphical Integration Exercises Part Four: Reverse Graphical Integration
D-4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley
Σ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:
Feedback Amplifiers: One and Two Pole cases Negative Feedback: Σ _ a f There must be 180 o phase shift somewhere in the loop. This is often provided by an inverting amplifier or by use of a differential
ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1
19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS
DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding
Eigenvalues, Eigenvectors, and Differential Equations
Eigenvalues, Eigenvectors, and Differential Equations William Cherry April 009 (with a typo correction in November 05) The concepts of eigenvalue and eigenvector occur throughout advanced mathematics They
Separable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
Recognizing Types of First Order Differential Equations E. L. Lady
Recognizing Types of First Order Differential Equations E. L. Lady Every first order differential equation to be considered here can be written can be written in the form P (x, y)+q(x, y)y =0. This means
14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
Transistor amplifiers: Biasing and Small Signal Model
Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT
x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
Version 1.0. klm. General Certificate of Education June 2010. Mathematics. Pure Core 3. Mark Scheme
Version.0 klm General Certificate of Education June 00 Mathematics MPC Pure Core Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together with the relevant questions, by
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
Solving DEs by Separation of Variables.
Solving DEs by Separation of Variables. Introduction and procedure Separation of variables allows us to solve differential equations of the form The steps to solving such DEs are as follows: dx = gx).
Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1
Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1 Solutions to Assignment #4 Wednesday, October 21, 1998 Reading Assignment:
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties
ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to
So far, we have looked at homogeneous equations
Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy
ECE 3510 Final given: Spring 11
ECE 50 Final given: Spring This part of the exam is Closed book, Closed notes, No Calculator.. ( pts) For each of the time-domain signals shown, draw the poles of the signal's Laplace transform on the
MODELING FIRST AND SECOND ORDER SYSTEMS IN SIMULINK
MODELING FIRST AND SECOND ORDER SYSTEMS IN SIMULINK First and second order differential equations are commonly studied in Dynamic courses, as they occur frequently in practice. Because of this, we will
with functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style
Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have
Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)
V cos (wt θ) V sin (wt θ) by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Vector
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
9 Fourier Transform Properties
9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.
