Physics 107 Problem 2.5 O. A. Pringle. Physics 107 Problem 2.6 O. A. Pringle

Size: px
Start display at page:

Download "Physics 107 Problem 2.5 O. A. Pringle. Physics 107 Problem 2.6 O. A. Pringle"

Transcription

1 Phyi 07 Problem 2.5 O. A. Pringle := h := := := h = Joule Note I had to et the zero tolerane here. e := ev <-> joule onverion ator ev := e ev =.776 ev Phyi 07 Problem 2.6 O. A. Pringle := h h := := h ev := ev e := := ev e h = Hz 22 := o := := = meter in nanometer, nm := 0 9 nm = Phyi 07 Problem 2.7 O. A. Pringle h := photon energy := h Power i energy per time. Photon per eond i energy per time divided by energy per photon. P:= 0 3 P n := n = photon per eond Note that a long a I keep everything in mk unit, the unit automatially work out OK.

2 Phyi 07 Problem 2.8 O. A. Pringle h := := 0 8 := := photon := h photon = N := photon N = 3.07 The eye an detet 3 o thee photon. Note again that unit work out OK i we tik with the mk ytem. Phyi 07 Problem 2.9 O. A. Pringle (a) How many photon all per eond on eah quare meter o the earth' urae diretly aing the un? h := photon := 50 4 on eah quare meter: P := a in problem 2.5, per eond i power divided by energy n = photon/ n := P h photon (b) What i the power output o the un, and how many photon per eond doe it emit? The power per area at a radiu o.5x0 m i given a.4x0 3 W/m 2. To anwer the irt part, jut multiply the power per area by the area o a phere o the given radiu. r :=.5 0 A:= 4 π r 2 P un := PA P un = watt N := P un h photon N = photon per eond emitted by the un () How many photon per ubi meter are there near the earth? := will need thi in a minute Thi i mainly a unit onverion problem. Look at the unit. := volume := volume denity := ρ := n 2 volume meter peed m 2 area ρ = photon per ubi meter 2

3 Phyi 07 Problem 2.0 O. A. Pringle t := P := 0.5 := h := := The energy o a pule i the power time the time. pule := Pt The o photon in the pule i the energy o the pule divided by the energy o a photon. N := 0 := pule h N = Phyi 07 Problem 2. O. A. Pringle The equation to ue i K max := h h 0 h := energie will ome out in ev i I ue h := in thee unit 0 := K max :=.5 Solve or K max + h 0 h = here' the requeny; not neeary, jut wanted to look at it := = Thi i a wavelength o 80 nm. Phyi 07 Problem 2.2 O. A. Pringle h := will give K in ev We are given the ollowing: 0 := Simply plug thee into equation 2. K max := h h 0 K max =.656 ev 3

4 The equation we will ue i Phyi 07 Problem 2.3 O. A. Pringle K max := h h 0 where h := will give u energie in ev Beaue =h and =/, longer wavelength o light have lower energie. Thi problem i equivalent to aking "what i the minimum requeny o light that will aue photoeletron to be emitted rom odium." That minimum requeny i jut the threhold requeny or odium, whih an be ound rom the work untion. φ := 2.3 ev, rom table 2. := Thi i jut the minimun energy needed to produe a photoeletron, o φ := h 0 or φ 0 := 0 = Hz h The maximum wavelength i jut, uing 0 := 0 0 = meter, or 540 nm (to get Beier' anwer, ue =2.998x0 8 and h=4.36x0-5 ) What will the maximum kineti energy o the photoeletron be i 200-nm light all on a odium urae? Thi i jut like problem 2.0, exept we are given wavelength intead o requenie. 0 = alulated above := h h K max := K max = 3.9eV 0 Phyi 07 Problem 2.4 O. A. Pringle Thi ound triky but really in't. Light inident on the ball will aue photoeletron to be emitted. The ball will aquire a poitive harge and thereore an eletrial potential a the eletron are emitted. When work untion plu the potential o the ball equal the energy o the inident light, no more eletron will be emitted. For ilver φ := 4.7 ev Plank' ontant h := ev* requeny o inident light: := := = Hz In word: inident energy=v+φ V:= h φ V =.5Volt 4

5 Phyi 07 Problem 2.5 O. A. Pringle The.5 mw (milliwatt) give the energy per unit time in the inident light beam. P := joule/ 400-nm tell u the photon energy. h := I'll work in mk unit here. := := h photon := photon = joule per photon Dividing the power (energy per time) by the energy o a photon (energy per photon) give u the o photon per eond inident on the ell. P N := photon N = photon per eond Only 0. perent o thee photon produe photoeletron, o the n produing photoeletron i N n := 000 n = eletron produed per eond Thi n i atually the urrent, but we hould expre it in the more amiliar unit o oulomb e := oulomb per eletron I:= n e I = oulomb per eond, or amp Phyi 07 Problem 2.6 O. A. Pringle a) Find the extintion voltage, that i, the retarding voltage at whih the photoeletron urrent diappear. The extintion voltage our when the retarding voltage plu the work untion equal the photoeletron energy. φ + ev ext := h Thi i an energy equation. The energy o an h := := φ := 2.50 e eletron aquire when it pae through a voltage equal to the extintion voltage i ev ext. := ( h φ) V ext := e V ext = volt b) Find the peed o the atet photoeletron. The mot energeti eletron will appear when V.ext=0, i.e., ( ) h φ K max := expre energy in ev or omparion with part a) e K max = eletron volt; ye, the ame a in part a xperiene hould tell u that 0.6 ev i nonrelativiti; we will do a nonrelativiti alulation, and i the peed i too great, go bak and do a relativiti alulation. K max 2 m 2 := eletron v max e :=

6 K max := K max e onvert to Joule! m eletron := K max v max := 2 m eletron v max = mall enough to be nonrelativiti Phyi 07 Problem 2.7 O. A. Pringle We are given light o requenie. and.2, and the maximum kineti energie K. and K.2 whih they produe. We want to ind the experimental value or h and φ. h := K + φ Remember, the little quare mean thee are ymboli equation only. h 2 := K 2 + φ It' very eay to olve thee imultaneouly or h. h := K + φ h 2 := K 2 φ ( ) h 2 := K K 2 h := K K 2 2 In a ouple o line, I'm going to opy thi ymboli equation (F2), pate it below (F4), and turn it "on" with "eq". Now plug in K :=.97 K 2 := 0.52 := := K K 2 Thi value i in unit o ev*. h := h = You an eaily onvert it to J*. 2 Now ue the value or h to olve either equation at the tart or φ. Ue Cut and Pate (F2 and F4) again. Now olve or φ. h := K + φ φ := h K φ = 3.00 Sine h i in ev*, unit o φ are ev Phyi 07 Problem 2.8 O. A. Pringle To olve thi, imply take the equation K max := h φ and olve it or h. K max :=.7 φ := 5.4 6

7 := := K max + φ h := h = ev* 5 The atual value o h in thee unit i 4.36x0-5. δ := Phyi 07 Problem 2.5 O. A. Pringle GM 2 R In mk unit, G := M := R := := := the wavelength o the light give the requeny o the light δ GM 2 R δ = The new requeny i le than the original requeny, o I'm going to work thi problem the traightorward brute trength way. Nothing triky, but it involve onverion bak and orth between and. You might ave ome time by doing the algebra irt on paper. prime := δ Now alulate the new wavelength: prime := prime prime = The red hit i the amount by whih the wavelength hanged: δ := prime δ = meter Or δ= nm. 7

8 Phyi 07 Problem 2.52 O. A. Pringle Thi i jut problem 2-5 with dierent. I will ue my 2-5 olution diretly here. In mk unit, G := M := R := := := the wavelength o the light give the requeny o the light GM δ 2 δ =.39 0 R The new requeny i le than the original requeny, o prime := δ Now alulate the new wavelength: prime := prime prime = The red hit i the amount by whih the wavelength hanged: δ := prime δ =.58 0 meter 0 Or δ=0.6 nm. Phyi 07 Problem 2.54 O. A. Pringle Find the Shwarzhild radiu o the un. G := M := := G M R S := 2 R S = meter I the un had le than thi radiu, it would be a blak hole. 8

9 Phyi 07 ( Gm M) U := R and m tart with a kineti energy o mv^2/2, o our initial total energy i ( Gm M) + R Ater m ha jut eaped rom M, m ha ued up all o it kineti energy in eaping, o it kineti energy i zero. I m had exatly enough energy to jut eape, it won't have eaped until it reahed a ditane o r=. At r= the gravitational potential energy i zero (/r=0 there), o the total energy i zero. Thereore ( Gm M) + R 2 m v2 = "Divide both ide by m, and olve or v to get v := 2G M R Problem m v2 O. A. Pringle The gravitational potential energy U relative to ininity o a body o ma m at a ditane R rom the enter o a body o ma M i U=-GmM/R. (a) I R i the radiu o the body o ma M, ind the eape peed v.e o the body (preumably Beier mean the body o ma m), whih i the minimum peed needed to leave it permanently. To eape, the "body o ma m" mut have enough kineti energy to overome the gravitational attration o the body o ma M. Let me all m the mall body and M the large body. The mall body tart at the urae o the large body, where the gravitational potential energy i (b) Obtain a ormula or the Shwarzhild radiu o the body by etting v.e=, the peed o light, and olving or r. := 2G M R Square both ide, olve or R to get R := 2G M 2 9

A Primer on Dimensions and Units

A Primer on Dimensions and Units 1 Dienion v Unit A Prier on Dienion and Unit Glen Thornrot Mehanial Enineerin Departent Cal Poly State Univerity, San Lui Obipo Nearly every enineerin proble you will enounter will involve dienion: the

More information

Session #3: Homework Solutions

Session #3: Homework Solutions Session #3: Homework s Problem #1 From a standard radio dial, determine the maximum and minimum wavelengths ( max and min ) for broadasts on the (a) AM band (b) FM band =, min = ; max = max min AM FM 3

More information

Physics 111. Exam #1. January 24, 2014

Physics 111. Exam #1. January 24, 2014 Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.

More information

6. Friction, Experiment and Theory

6. Friction, Experiment and Theory 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

Doppler Effect. wavelength

Doppler Effect. wavelength Dopple Eet The Dopple Eet i the hange in the obeed equeny o a oue due to the elatie motion between the oue and the eeie. The elatie motion that aet the obeed equeny i only the motion in the Line-O-Sight

More information

THE UNIVERSITY OF THE STATE OF NEW YORK THE STATE EDUCATION DEPARTMENT ALBANY, NY

THE UNIVERSITY OF THE STATE OF NEW YORK THE STATE EDUCATION DEPARTMENT ALBANY, NY P THE UNIVERSITY OF THE STATE OF NEW YORK THE STATE EDUCATION DEPARTMENT ALBANY, NY 4 Referene Tables for Physial Setting/PHYSICS 006 Edition List of Physial Constants Name Symbol Value Universal gravitational

More information

Incline and Friction Examples

Incline and Friction Examples Incline and riction Eample Phic 6A Prepared b Vince Zaccone riction i a force that oppoe the motion of urface that are in contact with each other. We will conider 2 tpe of friction in thi cla: KINETIC

More information

Physics 43 HW 3 Serway Chapter 39 & Knight Chapter 37

Physics 43 HW 3 Serway Chapter 39 & Knight Chapter 37 Physis 43 HW 3 Serway Chapter 39 & Knight Chapter 37 Serway 7 th Edition Chapter 39 Problems: 15, 1, 5, 57, 60, 65 15. Review problem. An alien ivilization oupies a brown dwarf, nearly stationary relative

More information

12.4 Problems. Excerpt from "Introduction to Geometry" 2014 AoPS Inc. Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES

12.4 Problems. Excerpt from Introduction to Geometry 2014 AoPS Inc.  Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES HTER 1. IRLES N NGLES Excerpt from "Introduction to Geometry" 014 os Inc. onider the circle with diameter O. all thi circle. Why mut hit O in at leat two di erent point? (b) Why i it impoible for to hit

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

Involute-Evolute Curve Couples in the Euclidean 4-Space

Involute-Evolute Curve Couples in the Euclidean 4-Space Int J Open Problem Compt Math Vol o June 9 Involute-volute Curve Couple in the ulidean -Spae min Özyılmaz Süha Yılmaz ge Univerity Faulty of Siene Dept of Math ornova-izmir urkey Dokuz ylül Univerity ua

More information

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,

More information

Sound Waves: Doppler Effect

Sound Waves: Doppler Effect Sound Wae: oppler Eect oppler Shit: I either the detector or the ource o i moing, or i both are moing, then the emitted requency,, o the ource and the detected requency, ob, are dierent. I both the ource

More information

Lecture 13 Phonons: thermal properties

Lecture 13 Phonons: thermal properties Leture 1 Phonon: thermal propertie Lattie ontribution to the thermal propertie of olid, in -D Aim: Thermal propertie of a rytalline olid: Heat apaity: Debye treatment T law for low temperature heat apaity

More information

Lesson 33: Photoelectric Effect

Lesson 33: Photoelectric Effect Lesson 33: Photoelectric Effect Hertz Experiment Heinrich Hertz was doing experiments in 1887 to test some of Maxwell's theories of EMR. One of the experiments involved using a coil of wire as a receiver

More information

Solution of the Heat Equation for transient conduction by LaPlace Transform

Solution of the Heat Equation for transient conduction by LaPlace Transform Solution of the Heat Equation for tranient conduction by LaPlace Tranform Thi notebook ha been written in Mathematica by Mark J. McCready Profeor and Chair of Chemical Engineering Univerity of Notre Dame

More information

The Branching Factor of Regular Search Spaces

The Branching Factor of Regular Search Spaces The Branhing Fator of Regular Searh Spae Stefan Edelkamp Intitut für Informatik Am Flughafen 17 79110 Freiburg edelkamp@informatik.uni-freiburg.de Rihard E. Korf Computer Siene Department Univerity of

More information

1.3 Complex Numbers; Quadratic Equations in the Complex Number System*

1.3 Complex Numbers; Quadratic Equations in the Complex Number System* 04 CHAPTER Equations and Inequalities Explaining Conepts: Disussion and Writing 7. Whih of the following pairs of equations are equivalent? Explain. x 2 9; x 3 (b) x 29; x 3 () x - 2x - 22 x - 2 2 ; x

More information

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. 6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

More information

db, dbm, dbw db 10 log (x) where x is unitless! For example, amplifier gain is a unitless value!

db, dbm, dbw db 10 log (x) where x is unitless! For example, amplifier gain is a unitless value! 2/15/2005 db.doc 1/9 db, dbm, dbw Decibel (db), is a specific function that operates on a unitless parameter: db log (x) where x is unitless! Q: A unitless parameter! What good is that!? A: Many values

More information

On Reference RIAA Networks by Jim Hagerman

On Reference RIAA Networks by Jim Hagerman On eference IAA Network by Jim Hagerman You d think there would be nothing left to ay. Everything you need to know about IAA network ha already been publihed. However, a few year back I came acro an intereting

More information

Work, Energy & Power. AP Physics B

Work, Energy & Power. AP Physics B ork, Energy & Power AP Physics B There are many dierent TYPES o Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed more speciically by using the term ORK() ork = The Scalar

More information

ESCI 340 Physical Meteorology Cloud Physics Lesson 2 Formation of Cloud Droplets

ESCI 340 Physical Meteorology Cloud Physics Lesson 2 Formation of Cloud Droplets ESCI 40 Phyical Meteorology Cloud Phyic Leon 2 Formation of Cloud Droplet Reference: A Short Coure in Cloud Phyic, Roger and Yau Reading: Roger and Yau, Chapter 6 The objective of thi leon are: 1) Undertand

More information

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets) Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy

More information

CASE STUDY ALLOCATE SOFTWARE

CASE STUDY ALLOCATE SOFTWARE CASE STUDY ALLOCATE SOFTWARE allocate caetud y TABLE OF CONTENTS #1 ABOUT THE CLIENT #2 OUR ROLE #3 EFFECTS OF OUR COOPERATION #4 BUSINESS PROBLEM THAT WE SOLVED #5 CHALLENGES #6 WORKING IN SCRUM #7 WHAT

More information

IMPORTANT: Read page 2 ASAP. *Please feel free to email (longo.physics@gmail.com) me at any time if you have questions or concerns.

IMPORTANT: Read page 2 ASAP. *Please feel free to email (longo.physics@gmail.com) me at any time if you have questions or concerns. rev. 05/4/16 AP Phyic C: Mechanic Summer Aignment 016-017 Mr. Longo Foret Park HS longo.phyic@gmail.com longodb@pwc.edu Welcome to AP Phyic C: Mechanic. The purpoe of thi ummer aignment i to give you a

More information

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

THE MODELLING AND CONTROL OF AN AUTOMOTIVE DRIVETRAIN

THE MODELLING AND CONTROL OF AN AUTOMOTIVE DRIVETRAIN THE MODELLNG AND CONTROL OF AN AUTOMOTVE DRVETRAN Thei preented in partial ulilment o the requirement or the degree MASTER OF SCENCE N ENGNEERNG By Nihola M. Northote Supervior Dr. A.B. Taylor Department

More information

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

An Incrementally Scalable Multiprocessor Interconnection Network with Flexible Topology and Low-Cost Distributed Switching.

An Incrementally Scalable Multiprocessor Interconnection Network with Flexible Topology and Low-Cost Distributed Switching. An Inrementally Salable Multiproeor Interonnetion Network with Flexible Topology and Low-Cot Ditributed Swithing. 1. Introdution Ronald Poe, Vinent Fazio, Jon Well Department of Computer Siene, Monah Univerity,

More information

Problem Set V Solutions

Problem Set V Solutions Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Pipe Flow Calculations

Pipe Flow Calculations Pipe Flow Calculation R. Shankar Subramanian epartment o Chemical and Biomolecular Engineering Clarkon Univerity We begin with ome reult that we hall ue when making riction lo calculation or teady, ully

More information

Solar Energy Discovery Lab

Solar Energy Discovery Lab Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I Digital Signal Proessing I (8-79) Fall Semester, 005 IIR FILER DESIG EXAMPLE hese notes summarize the design proedure for IIR filters as disussed in lass on ovember. Introdution:

More information

Renewable Energy Monitor User Manual And Software Reference Guide. sales@fuelcellstore.com (979) 703-1925

Renewable Energy Monitor User Manual And Software Reference Guide. sales@fuelcellstore.com (979) 703-1925 Renewable Energy Monitor User Manual And Software Reference Guide sales@fuelcellstore.com (979) 703-1925 1 Introducing the Horizon Renewable Energy Monitor The Renewable Energy Monitor is an educational

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES FLUID MECHANICS TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES In thi tutorial you will continue the work on laminar flow and develop Poieuille' equation to the form known a the Carman - Kozeny equation. Thi

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

Solution to Problem Set 1

Solution to Problem Set 1 CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let

More information

Problem Set 5 Work and Kinetic Energy Solutions

Problem Set 5 Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

More information

Electrician'sMathand BasicElectricalFormulas

Electrician'sMathand BasicElectricalFormulas Eletriian'sMathand BasiEletrialFormulas MikeHoltEnterprises,In. 1.888.NEC.CODE www.mikeholt.om Introdution Introdution This PDF is a free resoure from Mike Holt Enterprises, In. It s Unit 1 from the Eletrial

More information

THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode

THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode Swedish Laser-Medical Society The dose is the most important parameter in laser phototherapy. At a first glance, the dose seem very

More information

Voltage, Current, and Resistance

Voltage, Current, and Resistance Voltage, Current, and Resistance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

REINFORCED CONCRETE BEAMS: T-BEAMS AND DOUBLY REINFORCED BEAMS

REINFORCED CONCRETE BEAMS: T-BEAMS AND DOUBLY REINFORCED BEAMS CHAPTER Reinored Conrete Design Fith Edition REINFORCED CONCRETE BEAMS: T-BEAMS AND DOUBLY REINFORCED BEAMS A. J. Clark Shool o Engineering Department o Civil and Environmental Engineering Part I Conrete

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

Hand Crank Generator (9 May 05) Converting a Portable Cordless Drill to a Hand Crank DC Generator

Hand Crank Generator (9 May 05) Converting a Portable Cordless Drill to a Hand Crank DC Generator Converting a Portable Cordless Drill to a Hand Crank DC Generator The unit is light weight (2.5 lb), portable, low cost ($10-$20) and can be used to recharge single cell batteries at from 1-3.5 amps. It

More information

SAFE. Post-Tensioned Concrete Design Manual DESIGN OF SLABS, BEAMS AND FOUNDATIONIS REINFORCED AND POST-TENSIONED CONCRETE

SAFE. Post-Tensioned Concrete Design Manual DESIGN OF SLABS, BEAMS AND FOUNDATIONIS REINFORCED AND POST-TENSIONED CONCRETE SAFE DESIGN OF SLABS, BEAMS AND FOUNDATIONIS REINFORCED AND POST-TENSIONED CONCRETE Pot-Tenioned Conrete Deign Manual ISO SAF120108M5-Rev2 Berkeley, California, USA Verion 12 Deember 2010 Copyright Copyright

More information

Solutions to Sample Problems for Test 3

Solutions to Sample Problems for Test 3 22 Differential Equation Intructor: Petronela Radu November 8 25 Solution to Sample Problem for Tet 3 For each of the linear ytem below find an interval in which the general olution i defined (a) x = x

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

Work, Energy and Power

Work, Energy and Power Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

More information

SWITCH! DESCRIPTION. ENVIRONMENTAL SPECIFICATIONS Operating Temperature: 0 C to +40 C SPECIFICATION SHEET:

SWITCH! DESCRIPTION. ENVIRONMENTAL SPECIFICATIONS Operating Temperature: 0 C to +40 C SPECIFICATION SHEET: SWITCH The Budderfly lighting switch is a Decora style, plug-and-play replacement for your existing building switches. Installing a Budderfly adapter transforms your building s existing wiring into the

More information

Name: SID: Instructions

Name: SID: Instructions CS168 Fall 2014 Homework 1 Aigned: Wedneday, 10 September 2014 Due: Monday, 22 September 2014 Name: SID: Dicuion Section (Day/Time): Intruction - Submit thi homework uing Pandagrader/GradeScope(http://www.gradecope.com/

More information

Rotation of an Object About a Fixed Axis

Rotation of an Object About a Fixed Axis Chapter 1 Rotation of an Object About a Fixed Axi 1.1 The Important Stuff 1.1.1 Rigid Bodie; Rotation So far in our tudy of phyic we have (with few exception) dealt with particle, object whoe patial dimenion

More information

Table 1 r (m) I (W/m 2 ) 0.10 477.46 0.20 119.37 0.50 19.10 1.00 4.77 2.00 1.19 5.00 0.19 10.00 0.05 Table 2: Intensities at 1-m Distances Power (W)

Table 1 r (m) I (W/m 2 ) 0.10 477.46 0.20 119.37 0.50 19.10 1.00 4.77 2.00 1.19 5.00 0.19 10.00 0.05 Table 2: Intensities at 1-m Distances Power (W) Light Intensity The term intensity is used to describe the rate at which light spreads over a surface of a given area some distance from a source. The intensity varies with the distance from the source

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Proving the Law of Conservation of Energy

Proving the Law of Conservation of Energy Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving

More information

Selected Radio Frequency Exposure Limits

Selected Radio Frequency Exposure Limits ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 50: Non-ionizing Radiation Selected Radio Frequency Exposure Limits Product ID: 94 Revision ID: 1736 Date published: 30 June 2015 Date effective: 30 June 2015

More information

Figure 2.1. a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems

Figure 2.1. a. Block diagram representation of a system; b. block diagram representation of an interconnection of subsystems Figure. a. Block diagram repreentation o a ytem; b. block diagram repreentation o an interconnection o ubytem REVIEW OF THE LAPLACE TRANSFORM Table. Laplace tranorm table Table. Laplace tranorm theorem

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Value of Reverse Factoring in Multi-stage Supply Chains

Value of Reverse Factoring in Multi-stage Supply Chains Value o Revere Fatoring in Multi-tage Supply Chain Abtrat: We preent a mathematial model or integration, analyi, and optimization o operational and inanial proee within a upply hain. Speiially, we onider

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

Chapter 7: Acceleration and Gravity

Chapter 7: Acceleration and Gravity Chapter 7: Acceleration and Gravity 7.1 The Principle o Equivalence We saw in the special theory o relativity that the laws o physics must be the same in all inertial reerence systems. But what is so special

More information

A PRACTICAL GUIDE TO db CALCULATIONS

A PRACTICAL GUIDE TO db CALCULATIONS A PRACTICAL GUIDE TO db CALCULATIONS This is a practical guide to doing db (decibel) calculations, covering most common audio situations. You see db numbers all the time in audio. You may understand that

More information

σ m using Equation 8.1 given that σ

σ m using Equation 8.1 given that σ 8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur Module 8 Three-phae Induction Motor Verion EE IIT, Kharagpur Leon 33 Different Type of Starter for Induction Motor (IM Verion EE IIT, Kharagpur Inructional Objective Need of uing arter for Induction motor

More information

OUTPUT STREAM OF BINDING NEURON WITH DELAYED FEEDBACK

OUTPUT STREAM OF BINDING NEURON WITH DELAYED FEEDBACK binding neuron, biological and medical cybernetic, interpike interval ditribution, complex ytem, cognition and ytem Alexander VIDYBIDA OUTPUT STREAM OF BINDING NEURON WITH DELAYED FEEDBACK A binding neuron

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENI CERTIFICATE GRADE 1 PHYSICAL SCIENCES: PHYSICS (P1) NOVEMBER 010 MEMANDUM MARKS: 150 This memorandum consists o 3 pages. NOTE: Marking rule 1.5 was changed according to decisions taken at

More information

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Energy transformations

Energy transformations Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Amplified High Speed Fiber Photodetectors

Amplified High Speed Fiber Photodetectors Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified

More information

Algebra: Real World Applications and Problems

Algebra: Real World Applications and Problems Algebra: Real World Applications and Problems Algebra is boring. Right? Hopefully not. Algebra has no applications in the real world. Wrong. Absolutely wrong. I hope to show this in the following document.

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Tips For Selecting DC Motors For Your Mobile Robot

Tips For Selecting DC Motors For Your Mobile Robot Tips For Selecting DC Motors For Your Mobile Robot By AJ Neal When building a mobile robot, selecting the drive motors is one of the most important decisions you will make. It is a perfect example of an

More information

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t)) Experiment 1: SOUND Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium state,

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science aachuett Intitute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric achinery Cla Note 10: Induction achine Control and Simulation c 2003 Jame L. Kirtley Jr. 1 Introduction

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

More information

d t Thus, L R ECS 152A Computer Networks Fall 2002 HW 7 Solutions

d t Thus, L R ECS 152A Computer Networks Fall 2002 HW 7 Solutions ECS 52A Computer Network Fall 2002 HW 7 Solution. (5 pt) Conider four tation that are attached to two different bu cable. The tation exchange fixed-ize packet of length ec. Time i divided into lot of ec.

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

Reflective Optical Sensor with Transistor Output

Reflective Optical Sensor with Transistor Output Reflective Optical Sensor with Transistor Output Description The NY7 has a compact construction where the emitting light source and the detector are arranged in the same direction to sense the presence

More information

10.1 The Lorentz force law

10.1 The Lorentz force law Sott Hughes 10 Marh 2005 Massahusetts Institute of Tehnology Department of Physis 8.022 Spring 2004 Leture 10: Magneti fore; Magneti fields; Ampere s law 10.1 The Lorentz fore law Until now, we have been

More information

People s Physics Book

People s Physics Book The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

More information

Support Vector Machine Based Electricity Price Forecasting For Electricity Markets utilising Projected Assessment of System Adequacy Data.

Support Vector Machine Based Electricity Price Forecasting For Electricity Markets utilising Projected Assessment of System Adequacy Data. The Sixth International Power Engineering Conference (IPEC23, 27-29 November 23, Singapore Support Vector Machine Baed Electricity Price Forecating For Electricity Maret utiliing Projected Aement of Sytem

More information

Project Management Basics

Project Management Basics Project Management Baic A Guide to undertanding the baic component of effective project management and the key to ucce 1 Content 1.0 Who hould read thi Guide... 3 1.1 Overview... 3 1.2 Project Management

More information

Photovoltaic Cell: Converting Light to Electricity

Photovoltaic Cell: Converting Light to Electricity Photovoltaic Cell: Converting Light to Electricity Outcomes: 1. Understand that a photovoltaic cell produces DC voltage when light shines on its surface. 2. Understand that the electrical voltage produced

More information

The Reduced van der Waals Equation of State

The Reduced van der Waals Equation of State The Redued van der Waals Equation of State The van der Waals equation of state is na + ( V nb) n (1) V where n is the mole number, a and b are onstants harateristi of a artiular gas, and R the gas onstant

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Lock - in Amplifier and Applications

Lock - in Amplifier and Applications Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

More information

[ ] Amplitude Modulation AM with Envelope Detector. Large S/N limit m. c c c c s c. slowly varying. y, low-pass filtered (envelope)

[ ] Amplitude Modulation AM with Envelope Detector. Large S/N limit m. c c c c s c. slowly varying. y, low-pass filtered (envelope) Amplitude Modulation AM with Envelope Detetor Large S/N limit m < 1 (t) in ω t 1 m [ ] Reeived = y(t) = A 1 + m ( t) o ω t + n ( t)o ω t + n ( t)in ω t { j ω t (t)e } = Re Y lowly varying y, low-pa filtered

More information

Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 2006 Homework 2 Solutions Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

More information