ESCI 340 Physical Meteorology Cloud Physics Lesson 2 Formation of Cloud Droplets

Size: px
Start display at page:

Download "ESCI 340 Physical Meteorology Cloud Physics Lesson 2 Formation of Cloud Droplets"

Transcription

1 ESCI 40 Phyical Meteorology Cloud Phyic Leon 2 Formation of Cloud Droplet Reference: A Short Coure in Cloud Phyic, Roger and Yau Reading: Roger and Yau, Chapter 6 The objective of thi leon are: 1) Undertand the effect curvature and olute on aturation vapor preure, and ho thee effect are quantified. 2) Decribe and undertand ho Kohler curve are created. ) Decribe the ignificance of the critical radiu, r *, and the different tability regime for r < r * and r > r *. 4) Decribe the different type of atmopheric aerool, and hich one are important a cloud condenation nuclei (CCN). SATURATION VAPOR PRESSURE OVER A CURVED DROPLET (THE CURVATURE EFFECT) The aturation vapor preure over a curved ater urface, e ( r ), i greater than that over a flat urface, e ( ). Thi i expreed mathematically a 2γ 1 e ( r) = e ( )exp = e exp a r Rv ρlt r ( ) ( ) here γ i the urface tenion of the ater-air interface (~0.075 N/m), ρ L i the denity of liquid ater (~1000 kg/m ), and r i the radiu of curvature (or radiu of the droplet). For a droplet to be in uilibrium ith the environment (meaning the droplet ill neither gro nor evaporate), then the environmental vapor preure e mut be ual to e ( r ). If thi i not true, the droplet ill either gro or evaporate. Thi i ummarized a: Condition The droplet ill e < e ( r) evaporate e = e ( r) remain the ame ize e > e ( r) gro via condenation (1)

2 For a droplet to be in uilibrium then Dividing both ide of (2) by e ( ) e get here S i the uilibrium aturation ratio. e = e ( )exp( a r). (2) S = e e ( ) = exp( a r) () ο The aturation ratio i jut relative humidity expreed a a ratio rather than a percent. The uilibrium aturation ratio i the aturation ratio ruired for the droplet to be in uilibrium. ο If the environmental aturation ratio i le than the uilibrium aturation ratio the droplet ill evaporate. ο If the environmental aturation ratio i greater than the uilibrium aturation ratio the droplet ill gro. For very mall drop the uilibrium aturation ratio i extremely large. The increae of uilibrium aturation ratio ith decreaing radiu i knon a the curvature effect. Homogeneou nucleation (condenation of pure ater ith no dut or aerool preent) ruire a relative humidity of %! Though thi can be achieved in a laboratory, uch high relative humidity doe not occur in the atmophere. Therefore, homogeneou nucleation cannot explain the initial formation of cloud droplet. SATURATION VAPOR PRESSURE OVER A SOLUTION (THE SOLUTE EFFECT) A diolved ubtance (olute) loer the aturation vapor preure of ater. A formula expreing thi for dilute olution i given by Raoult La e = χ e (4) here χ i the mole fraction of the ater n χ = n + n (n i the number of mole of olute and n i the number of mole of ater). For very dilute olution e can approximate χ a 2 (5)

3 The number of mole of olute and ater are given by χ 1 n n. (6) n = im / M olute n = m / M here m i ma, M i molecular eight, and i i the ion factor (the number of ion that one molecule of ubtance diociate into). Therefore, e get The ma of the ater in the droplet i o that χ m M χ =1 i. (8) m M m 4 (7) = πρlr (9) im M 1 = 1 1 b r 4πρ L M r =. (10) The ratio of the aturation vapor preure of the mixture over that of pure ater i then e e = 1 b r. (11) The reduction of aturation vapor preure by introducing a olute i knon a the olute effect. For droplet of mall radiu the aturation vapor preure over the drop i much le than that over pure ater. A radiu increae the aturation vapor preure of the olution approache that of pure ater. COMBINING THE CURVATURE AND SOLUTE EFFECTS The curvature effect increae the aturation vapor preure and ha the greatet impact for mall droplet. The olute effect decreae the aturation vapor preure and alo ha the greatet impact for mall droplet. Which effect in depend on the droplet ize and on the amount of olute preent.

4 The combined effect are expreed by applying the correction from (11) to the uilibrium aturation ratio uation () to get S b = 1 exp r ( a r ) A plot of S for a olution containing three different amount of olute (each curve differ in olute ma by a factor of 10) i hon belo. The tallet curve i for the leat amount of olute.. (12) A plot like that hon above i referred to a a Kohler curve. Making ue of the approximation that for mall x, e x 1 + x,, e can rite S a b 1 + r r. (1) The radiu at hich the Kohler curve i a maximum can be found by taking S / r and etting it ual to zero. Thi radiu i called the critical radiu, r*, and the aturation ratio at thi point i called the critical aturation ratio,, S*. They have value of r* = b a S* = 1+ 4a 27b The critical radiu i of fundamental importance for cloud droplet groth. 4

5 At radii belo the critical radiu (r < r*) the droplet are in table uilibrium. If S increae the droplet ill gro to a larger ize and then top. If S decreae the droplet ill hrink to a maller ize and then top. ο Droplet at radii belo the critical radiu are called haze particle. At radii above the critical radiu (r > r*) the uilibrium i untable, and the droplet ill pontaneouly gro larger, even though S i not increaing. ο Droplet hoe radiu ual the critical radiu (r = r*) are aid to be activated. ATMOSPHERIC AEROSOLS Aerool are formed either directly by diintegration of liquid or olid (knon a primary ource) or indirectly by condenation of gae (knon a ga-toparticle converion). Indirect ource are knon a econdary ource Example of primary ource are ο ind-generated dut ο ea pray ο foret fire ο combution The gae reponible for ga-to-particle converion are ο Sulfur dioxide (SO 2 ) ο Nitrogen dioxide (NO 2 ) ο NH ο certain hydrocarbon Aerool are broken into three different group baed on ize. Thee group are ο Aitkin nuclei particle ith r < 0.1µm ο Large particle 0.1µm < r < 1.0µm ο Giant particle r > 1.0µm The ize ditribution of aerool population can be pecified by a ditribution function n d (D), here D i the uivalent diameter (the diameter of a pherical particle ith the ame volume a the actual particle). In many intance the aerool ize ditribution i given a n d D) β ( = cd. 5

6 ο Thi ditribution i knon a the Junge ditribution. CLOUD CONDENSATION NUCLEI Homogeneou nucleation doe not occur in the atmophere, ince aturation ratio rarely exceed Therefore, the olute effect i extremely important! The olute for the olute effect come from aerool particle in the air. There are to type of aerool ο Hygrocopic nuclei nuclei that are attractive to ater vapor molecule, and act a collection ite for condenation ο Hydrophobic nuclei nuclei that are repellent to ater and therefore cannot act a ite for condenation Not all hygrocopic nuclei are important for cloud droplet formation. Since aturation ratio rarely exceed 1.01, only thoe nuclei that activate at S < 1.02 are available for forming cloud droplet. It i thee nuclei that are knon a cloud condenation nuclei (CCN). EXERCISES 1. What i the relative humidity ruired to upport pure ater droplet of radiu 8µm at a temperature of 0 C? I a relative humidity of thi magnitude ever achieved in the atmophere? 2. Uing the approximate expreion for a Kohler curve ho that S a b 1+ r r r* = b a S* = 1+ 4a 27b. Uing a graphing calculator or computer program, plot the Kohler curve for a droplet containing gram of odium chloride (NaCl). Alo, plot the curve for a droplet containing one-tenth a much odium chloride and compare 6

7 the curve. Sodium chloride ha a molecular eight of g/mol, and ha an ion factor of Sho that for the Junge ditribution that a. The total area of particle having diameter beteen D 1 and D 2 i π c A = D D 1 2 β β β ( ) D ; D 2 1 b. The total ma of particle having diameter beteen D 1 and D 2 i π cρ M = D D ( ) ( 4 β 4 β ) β D ; D 2 1 7

1. Microphysics of Clouds

1. Microphysics of Clouds 1. Microphysics of Clouds Changes in phase are basic to cloud microphysics. The possible changes are: vapor-liquid evaporation, condensation liquid-solid freezing, melting vapor-solid deposition, sublimation

More information

Lecture Ch. 5a. Macro-Thermodynamics. Water Saturation. Micro-Thermodynamics

Lecture Ch. 5a. Macro-Thermodynamics. Water Saturation. Micro-Thermodynamics Lecture Ch. 5a Surface tension (Kelvin effect) Hygroscopic growth (subsaturated humidity) Saturation Chemical potential (Raoult effect) Nucleation Competition between surface and chemical effects Köhler

More information

Saturation Vapour Pressure above a Solution Droplet

Saturation Vapour Pressure above a Solution Droplet Appendix C Saturation Vapour Pressure above a Solution Droplet In this appendix, the Köhler equation is derived. As in Appendix B, the theory summarised here can be found in Pruppacher & Klett (1980) and

More information

Laboratory Evidence for Surface Nucleation of Solid Polar Stratospheric Cloud Particles

Laboratory Evidence for Surface Nucleation of Solid Polar Stratospheric Cloud Particles 10238 J. Phy. Chem. A 2002, 106, 10238-10246 Laboratory Evidence for Surface Nucleation of Solid Polar Stratopheric Cloud Particle A. Tabazadeh,*, Y. S. Djikaev, P. Hamill, and H. Rei NASA Ame Reearch

More information

Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately

More information

1D STEADY STATE HEAT

1D STEADY STATE HEAT D SEADY SAE HEA CONDUCION () Prabal alukdar Aociate Profeor Department of Mechanical Engineering II Delhi E-mail: prabal@mech.iitd.ac.in Convection Boundary Condition Heat conduction at the urface in a

More information

6 Cloud droplet formation and Köhler theory

6 Cloud droplet formation and Köhler theory 6 Cloud droplet formation and Köhler theory This chapter discusses the details of cloud droplet formation. Cloud droplet formation requires phase changes. Some phase changes require a nucleation process,

More information

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy

More information

Critical Radius and Supersaturation. Condensed Water Molecules. Cloud Droplet Nucleation. Bubbles. Clouds. Change in number of liquid molecules

Critical Radius and Supersaturation. Condensed Water Molecules. Cloud Droplet Nucleation. Bubbles. Clouds. Change in number of liquid molecules Condensed Water Molecules Change in number of liquid molecules Critical Radius and Supersaturation Integrate then find maximum Cloud Droplet Nucleation particle activation - process by which droplets (several

More information

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES

FLUID MECHANICS. TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES FLUID MECHANICS TUTORIAL No.4 FLOW THROUGH POROUS PASSAGES In thi tutorial you will continue the work on laminar flow and develop Poieuille' equation to the form known a the Carman - Kozeny equation. Thi

More information

EQUILIBRIUM. Consider the reversible system initially consisting of reactants only.

EQUILIBRIUM. Consider the reversible system initially consisting of reactants only. EQUILIBRIUM When non reversible chemical reactions proceed to completion, the concentration of the reactants gradually decrease, until there is NO limiting reactant remaining. Most chemical reactions,

More information

A) HCl C) 52 g KCl in 100 g water at 80ºC A) temperature of the solution increases B) supersaturated D) low temperature and high pressure D) KClO3

A) HCl C) 52 g KCl in 100 g water at 80ºC A) temperature of the solution increases B) supersaturated D) low temperature and high pressure D) KClO3 1. Which compound becomes less soluble in water as the temperature of the solution is increased? A) HCl B) 2. The solubility of O3(s) in water increases as the A) temperature of the solution increases

More information

STUDY ON THE EFFECT OF COOLING WATER TEMPERATURE RISE ON LOSS FACTOR AND EFFICIENCY OF A CONDENSER FOR A 210 MW THERMAL POWER UNIT

STUDY ON THE EFFECT OF COOLING WATER TEMPERATURE RISE ON LOSS FACTOR AND EFFICIENCY OF A CONDENSER FOR A 210 MW THERMAL POWER UNIT International Journal of Emerging Technology and Advanced Engineering Volume 3, Special Iue 3: ICERTSD 2013, Feb 2013, page 485-489 An ISO 9001:2008 certified Int. Journal, ISSN 2250-2459, available online

More information

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada

Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation

More information

A technical guide to 2014 key stage 2 to key stage 4 value added measures

A technical guide to 2014 key stage 2 to key stage 4 value added measures A technical guide to 2014 key tage 2 to key tage 4 value added meaure CONTENTS Introduction: PAGE NO. What i value added? 2 Change to value added methodology in 2014 4 Interpretation: Interpreting chool

More information

EXPERIMENT 11 CONSOLIDATION TEST

EXPERIMENT 11 CONSOLIDATION TEST 119 EXPERIMENT 11 CONSOLIDATION TEST Purpoe: Thi tet i performed to determine the magnitude and rate of volume decreae that a laterally confined oil pecimen undergoe when ubjected to different vertical

More information

Colligative Properties

Colligative Properties Colligative Properties Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Element of same atomic number, but different atomic mass o Example: Hydrogen

Element of same atomic number, but different atomic mass o Example: Hydrogen Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

More information

Heat transfer to or from a fluid flowing through a tube

Heat transfer to or from a fluid flowing through a tube Heat tranfer to or from a fluid flowing through a tube R. Shankar Subramanian A common ituation encountered by the chemical engineer i heat tranfer to fluid flowing through a tube. Thi can occur in heat

More information

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,

Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems, MANAGEMENT SCIENCE Vol. 54, No. 3, March 28, pp. 565 572 in 25-199 ein 1526-551 8 543 565 inform doi 1.1287/mnc.17.82 28 INFORMS Scheduling Arrival to Queue: A Single-Server Model with No-Show INFORMS

More information

Freezing, drying and/or vitrification of membrane-solute-water systems.

Freezing, drying and/or vitrification of membrane-solute-water systems. Thi material ha been publihed in Cryobiology, 39, 103-129, the only definitive repoitory of the content that ha certified and accepted after peer revie. Copyright and all right therein are retained by

More information

Chapter 8, Part 1. How do droplets grow larger? Cloud Droplets in Equilibrium. Precipitation Processes

Chapter 8, Part 1. How do droplets grow larger? Cloud Droplets in Equilibrium. Precipitation Processes Chapter 8, Part 1 Precipitation Processes How do droplets grow larger? Cloud contain water droplets, but a cloudy sky does not always mean rain. Cloud Droplets in Equilibrium In equilibrium water molecules

More information

Turbulent Mixing and Chemical Reaction in Stirred Tanks

Turbulent Mixing and Chemical Reaction in Stirred Tanks Turbulent Mixing and Chemical Reaction in Stirred Tank André Bakker Julian B. Faano Blend time and chemical product ditribution in turbulent agitated veel can be predicted with the aid of Computational

More information

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur Module 8 Three-phae Induction Motor Verion EE IIT, Kharagpur Leon 33 Different Type of Starter for Induction Motor (IM Verion EE IIT, Kharagpur Inructional Objective Need of uing arter for Induction motor

More information

= = 326/0.75 = kj/kg. 1 4 w E ) T 5 ) = 1.004( T 5. = = kj/kg. ) = 1.004( ) = 89.

= = 326/0.75 = kj/kg. 1 4 w E ) T 5 ) = 1.004( T 5. = = kj/kg. ) = 1.004( ) = 89. ME - HERMODYNAMICS I Solution to extra problem in Chapter : November 9, 000 J. Murthy. A utility run a Rankine cycle with a water boiler at.5 MPa and the cycle ha the highet and lowet temperature of 50

More information

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1 s Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions. Ways of

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Ideal Rankine Cycle T 1 2

Ideal Rankine Cycle T 1 2 Vapor Poer Cycle We kno that the Carnot cycle i mot efficient cycle operatg beteen to pecified temperature limit. Hoever; the Carnot cycle i not a uitable model for team poer cycle ce: he turbe ha to handle

More information

Colligative Properties of Nonvolatile Solutes 01. Colligative Properties of Nonvolatile Solutes 02. Colligative Properties of Nonvolatile Solutes 04

Colligative Properties of Nonvolatile Solutes 01. Colligative Properties of Nonvolatile Solutes 02. Colligative Properties of Nonvolatile Solutes 04 Colligative Properties of Nonvolatile Solutes 01 Colligative Properties of Nonvolatile Solutes 02 Colligative Properties: Depend on the amount not on the identity There are four main colligative properties:

More information

A model for the relationship between tropical precipitation and column water vapor

A model for the relationship between tropical precipitation and column water vapor Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L16804, doi:10.1029/2009gl039667, 2009 A model for the relationhip between tropical precipitation and column water vapor Caroline J. Muller,

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1 Solutions Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions.

More information

. Relative humidity - RH = w/w s. Example: T = 0 C (outside) RH = 100% T = 20 C (inside) What is the indoor relative humidity? w. ( 0 ) = 3.

. Relative humidity - RH = w/w s. Example: T = 0 C (outside) RH = 100% T = 20 C (inside) What is the indoor relative humidity? w. ( 0 ) = 3. WATER IN THE ATMOSPHERE Mixing ratio (w) i the amount of water vapor that i in the air. w i the gram of vapor per kg of dry air. w i an abolute meaure of the amount of water vapor in the air. Saturation

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Chapter 7 Vapor and Gas Power Systems

Chapter 7 Vapor and Gas Power Systems Chapter 7 Vapor and Ga Power Sytem In thi chapter, we will tudy the baic component of common indutrial power and refrigeration ytem. Thee ytem are eentially thermodyanmic cycle in which a working fluid

More information

Unit 11 Using Linear Regression to Describe Relationships

Unit 11 Using Linear Regression to Describe Relationships Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory

More information

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. What units do we use to define the weight of an atom? amu units of atomic weight. (atomic

More information

Harmonic Oscillations / Complex Numbers

Harmonic Oscillations / Complex Numbers Harmonic Ocillation / Complex Number Overview and Motivation: Probably the ingle mot important problem in all of phyic i the imple harmonic ocillator. It can be tudied claically or uantum mechanically,

More information

Atomic nature of matter / springs. RE 4.a EP 3, HW3: Ch 3 Pr s 42, 46, 58, 65, 72 & CP RE 4.b. Mon. Tues. Wed.

Atomic nature of matter / springs. RE 4.a EP 3, HW3: Ch 3 Pr s 42, 46, 58, 65, 72 & CP RE 4.b. Mon. Tues. Wed. Mon. Tue Wed. Lab ri Mon. Tue... ri. 4.-.5 Atomic nature of matter / pring 4.6-.7,.9-.0 Stre, Strain, Young Modulu, Compreion, Sound Science Poter Seion: Hedco7pm~9pm L4: Young Modulu & Speed of Sound

More information

Ch09. Formulas. Exploring the molecular blueprint. How we represent compounds & molecules. version 1.5

Ch09. Formulas. Exploring the molecular blueprint. How we represent compounds & molecules. version 1.5 Ch09 Formulas Exploring the molecular blueprint. How we represent compounds & molecules. version 1.5 Nick DeMello, PhD. 2007-2015 Chemical Formulas Molecules & Compounds Compounds are not mixtures. Chemical

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton Law Newton firt law: An object will tay at ret or in a tate of uniform motion with contant velocity, in a traight line, unle acted upon by an external force. In other word, the bodie reit any change

More information

Chapter 32. OPTICAL IMAGES 32.1 Mirrors

Chapter 32. OPTICAL IMAGES 32.1 Mirrors Chapter 32 OPTICAL IMAGES 32.1 Mirror The point P i called the image or the virtual image of P (light doe not emanate from it) The left-right reveral in the mirror i alo called the depth inverion (the

More information

PHYSICAL-CHEMICAL PROCESSES OF CLOUD ACTIVATION STUDIED WITH A DESKTOP CLOUD MODEL

PHYSICAL-CHEMICAL PROCESSES OF CLOUD ACTIVATION STUDIED WITH A DESKTOP CLOUD MODEL PHYSICAL-CHEMICAL PROCESSES OF CLOUD ACTIVATION STUDIED WITH A DESKTOP CLOUD MODEL Stephen E. Schwartz ses@bnl.gov Brookhaven National Laboratory Upton NY USA 11973 6th International Conference Air-Surface

More information

Name Date Class. SECTION 16.1 PROPERTIES OF SOLUTIONS (pages 471 477)

Name Date Class. SECTION 16.1 PROPERTIES OF SOLUTIONS (pages 471 477) 16 SOLUTIONS SECTION 16.1 PROPERTIES OF SOLUTIONS (pages 471 477) This section identifies the factors that affect the solubility of a substance and determine the rate at which a solute dissolves. Solution

More information

0.279 M Change g to mol: g/mol = mol Molarity = mol L = mol 0.325L = M

0.279 M Change g to mol: g/mol = mol Molarity = mol L = mol 0.325L = M 118 ChemQuest 39 Name: Date: Hour: Information: Molarity Concentration is a term that describes the amount of solute that is dissolved in a solution. Concentrated solutions contain a lot of dissolved solute,

More information

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Calculation of Molar Masses. Molar Mass. Solutions. Solutions Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements

More information

1. Define the term colligative property and list those physical properties of a solution that can be classified as colligative properties.

1. Define the term colligative property and list those physical properties of a solution that can be classified as colligative properties. Solutions Colligative Properties DCI Name Section 1. Define the term colligative property and list those physical properties of a solution that can be classified as colligative properties. Colligative

More information

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure

Colligative Properties. Vapour pressure Boiling point Freezing point Osmotic pressure Colligative Properties Vapour pressure Boiling point Freezing point Osmotic pressure Learning objectives Describe meaning of colligative property Use Raoult s law to determine vapor pressure of solutions

More information

On Rayleigh Optical Depth Calculations

On Rayleigh Optical Depth Calculations 1854 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 16 On Rayleigh Optical Depth Calculation BARRY A. BODHAINE NOAA/Climate Monitoring and Diagnotic Laboratory, Boulder, Colorado NORMAN B. WOOD Cooperative

More information

Water and Secondary Containment Concrete Structures

Water and Secondary Containment Concrete Structures Water and Secondary Containment Concrete Structure Repair and Protection of Joint and Crack Sikadur Combiflex Sytem TYPICAL JOINT OR CRACK SEALING PROBLEMS IN WATER STRUCTURES Water Structure Civil Engineering

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.

More information

1. Formation and Growth of Ice Crystals

1. Formation and Growth of Ice Crystals 1. Formation and Growth of Ice Crystals When a cloud extends to altitudes where the temperature is colder than 0 C, ice crystals may form. Cold clouds can consist of supercooled droplets or ice particles

More information

Calculating Atoms, Ions, or Molecules Using Moles

Calculating Atoms, Ions, or Molecules Using Moles TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

More information

CHEMICAL QUANTITIES. Chapter 10

CHEMICAL QUANTITIES. Chapter 10 CHEMICAL QUANTITIES Chapter 10 What is a mole? A unit of measurement in chemistry 1 mole of a substance = 6.02 x 10 23 (Avagadro s number) representative particles of a substance Representative particle

More information

Physical Properties of Soils and Compaction

Physical Properties of Soils and Compaction Soil Mechanic Phyical Propertie of Soil and Compaction page 1 Content of thi chapter : CHAPITRE 2. PHYSICAL PROPERTIES OF SOILS AND COMPACTION...1 2.1 UNITS...1 2.2 BASIC DEFINITIONS AND TERMINOLOGY...2

More information

Chapter and. FIGURE 9 36 The deviation of an actual gas-turbine cycle from the ideal Brayton cycle as a result of irreversibilities.

Chapter and. FIGURE 9 36 The deviation of an actual gas-turbine cycle from the ideal Brayton cycle as a result of irreversibilities. Chapter 9 The thermal efficiency could alo be determined from where h th q out q out h h 789.7 00.9 89. kj>kg Dicuion Under the cold-air-tard aumption (contant pecific heat value at room temperature),

More information

Chemistry: The Central Science. Chapter 13: Properties of Solutions

Chemistry: The Central Science. Chapter 13: Properties of Solutions Chemistry: The Central Science Chapter 13: Properties of Solutions Homogeneous mixture is called a solution o Can be solid, liquid, or gas Each of the substances in a solution is called a component of

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Types of Solutions. Chapter 17 Properties of Solutions. Types of Solutions. Types of Solutions. Types of Solutions. Types of Solutions

Types of Solutions. Chapter 17 Properties of Solutions. Types of Solutions. Types of Solutions. Types of Solutions. Types of Solutions Big Idea: Liquids will mix together if both liquids are polar or both are nonpolar. The presence of a solute changes the physical properties of the system. For nonvolatile solutes the vapor pressure, boiling

More information

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected.

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected. 12.1 Homework for t Hypothei Tet 1) Below are the etimate of the daily intake of calcium in milligram for 38 randomly elected women between the age of 18 and 24 year who agreed to participate in a tudy

More information

Demand-controlled ventilation

Demand-controlled ventilation OVERVIEW Demand-controlled ventilation Leading edge product for demand-controlled ventilation! www.wegon.com Demand-controlled ventilation offer great comfort and low operating cot When the room i in ue,

More information

THE HUMIDITY/MOISTURE HANDBOOK

THE HUMIDITY/MOISTURE HANDBOOK THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M

More information

Humidity Fixed Points of Binary Saturated Aqueous Solutions

Humidity Fixed Points of Binary Saturated Aqueous Solutions JOURNAL OF RESEARCH of the National Bureau of Standard-A. Phyic and Chemitry Vol. 81 A, No. 1, January-February 1977 Humidity Fixed Point of Binary Saturated Aqueou Solution Lewi Greenpan Intitute for

More information

Cloud activation of singlecomponent. particles

Cloud activation of singlecomponent. particles Course: SIO209 Aerosol-Cloud Interactions Instructor: Prof. Lynn Russell Author: Timothy M. Raymond and Spyros N. Pandis Date: December 2002 Journal: Journal of Geophysical Research (Vol. 207 NO.24) Title:

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS Chritopher V. Kopek Department of Computer Science Wake Foret Univerity Winton-Salem, NC, 2709 Email: kopekcv@gmail.com

More information

Mathematical Modeling of Molten Slag Granulation Using a Spinning Disk Atomizer (SDA)

Mathematical Modeling of Molten Slag Granulation Using a Spinning Disk Atomizer (SDA) Mathematical Modeling of Molten Slag Granulation Uing a Spinning Dik Atomizer (SDA) Hadi Purwanto and Tomohiro Akiyama Center for Advanced Reearch of Energy Converion Material, Hokkaido Univerity Kita

More information

CSUS Department of Chemistry Experiment 2 Chem. 1A

CSUS Department of Chemistry Experiment 2 Chem. 1A Name: Lab Section: EXPERIMENT 2: HYDRATE PRE LABORATORY ASSIGNMENT Score: /10 (To be completed prior to lab, read the experiment before attempting) 1. A student obtains the following data: Mass of test

More information

Physical and chemical properties of water Gas Laws Chemical Potential of Water Rainfall/Drought

Physical and chemical properties of water Gas Laws Chemical Potential of Water Rainfall/Drought Lecture 14, Water, Humidity, Pressure and Trace Gases, Part 1 Physical and chemical properties of water Gas Laws Chemical Potential of Water Rainfall/Drought Atmospheric Gas Composition constitue nt percent

More information

ASHRAE Journal July 2002 33

ASHRAE Journal July 2002 33 Copyright 2002, Aerican ociety of Heating, Refrigerating and Air-Conditioning Engineer, Inc. (www.ahrae.org). Reprinted by periion fro AHRAE Journal, July 2002. Thi article ay not be copied nor ditributed

More information

Design Capacities for Structural Plywood

Design Capacities for Structural Plywood Deign Capacitie for Structural Plyood Alloale Stre Deign (ASD) The deign value in thi document correpond ith thoe pulihed in the 005 edition of the AF&PA American Wood Council Alloale Stre Deign (ASD)/RFD

More information

Test 1: Introduction to Chemistry

Test 1: Introduction to Chemistry Name: Sunday, October 14, 2007 Test 1: Introduction to Chemistry 1. Two substances, A and Z, are to be identified. Substance A can not be broken down by a chemical change. Substance Z can be broken down

More information

Design Capacities for Oriented Strand Board

Design Capacities for Oriented Strand Board Deign Capacitie for Oriented Strand Board Alloale Stre Deign (ASD) The deign value in thi document correpond ith thoe pulihed in the 005 edition of the AF&PA American Wood Council Alloale Stre Deign (ASD)/RFD

More information

1) What is the overall order of the following reaction, given the rate law?

1) What is the overall order of the following reaction, given the rate law? PRACTICE PROBLEMS FOR TEST 2 (March 11, 2009) 1) What is the overall order of the following reaction, given the rate law? A) 1st order B) 2nd order C) 3rd order D) 4th order E) 0th order 2NO(g) + H 2(g)

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS G. Chapman J. Cleee E. Idle ABSTRACT Content matching i a neceary component of any ignature-baed network Intruion Detection

More information

0.002432 1.002432. where x is check for normality T 105.67 5.2546

0.002432 1.002432. where x is check for normality T 105.67 5.2546 6 PRACTICAL NUMERICAL METHODS Chapter 3 VBA Practice Problem Ue Excel and VBA to olve the following problem. Document your olution uing the Expert Problem Solving tep outlined in Table 1.2. 1.961 x 0.5

More information

Chapter 7. Chapter 7. Chemical Formulas Express Composition. Chapter 7 MARCH REVIEW SLIDES LISTEN AND UPDATE MISSING NOTES

Chapter 7. Chapter 7. Chemical Formulas Express Composition. Chapter 7 MARCH REVIEW SLIDES LISTEN AND UPDATE MISSING NOTES REVIEW Express A compound s chemical formula tells you which elements, & how much of each, are present in a compound. Formulas for covalent compounds show the elements and the number of atoms of each element

More information

Chemistry I: Using Chemical Formulas. Formula Mass The sum of the average atomic masses of all elements in the compound. Units are amu.

Chemistry I: Using Chemical Formulas. Formula Mass The sum of the average atomic masses of all elements in the compound. Units are amu. Chemistry I: Using Chemical Formulas Formula Mass The sum of the average atomic masses of all elements in the compound. Units are amu. Molar Mass - The mass in grams of 1 mole of a substance. Substance

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations

Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathematical Representations 36 Biophyical Journal Volume 8 December 200 36 336 Stochaticity in Trancriptional Regulation: Origin, Conequence, and Mathematical Repreentation Thoma B. Kepler* and Timothy C. Elton *Santa Fe Intitute,

More information

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?

More information

Manual of Weighing Applications. Part 1. Density

Manual of Weighing Applications. Part 1. Density Manual of Weighing Application Part 1 Denity Foreword In many common area of application, a weighing intrument or the weight it meaure i jut a mean to an end: The value that i actually ought i calculated

More information

Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons.

Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons. Molecular Compounds and Covalent Bonds Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons. Atoms that are held

More information

SLOPE PROTECTION Revised Oct 98

SLOPE PROTECTION Revised Oct 98 SLOPE PROTECTION Revied Oct 98 1. Replacement or overlayment of the exiting lope protection. 1.1. Replacement of the exiting lope protection. Slope protection on the riveride lope of the flood control

More information

Influence of Soil Moisture on Boundary Layer Cloud Development

Influence of Soil Moisture on Boundary Layer Cloud Development 86 JOURNAL OF HYDROMETEOROLOGY VOLUME 5 Influence of Soil Moiture on Boundary Layer Cloud Development M. B. EK National Center for Environmental Prediction, Environmental Modeling Center, Suitland, Maryland

More information

Calculations involving concentrations, stoichiometry

Calculations involving concentrations, stoichiometry Calculations involving concentrations, stoichiometry MUDr. Jan Pláteník, PhD Mole Unit of amount of substance the amount of substance containing as many particles (atoms, ions, molecules, etc.) as present

More information

Lab 9. Colligative Properties an Online Lab Activity

Lab 9. Colligative Properties an Online Lab Activity Prelab Assignment Before coming to lab: Lab 9. Colligative Properties an Online Lab Activity Chemistry 162 - K. Marr Revised Winter 2014 This lab exercise does not require a report in your lab notebook.

More information

Colligative properties of biological liquids

Colligative properties of biological liquids Colligative properties of biological liquids Colligative properties are properties of solutions that depend on the number of molecules in a given volume of solvent and not on the properties (e.g. size

More information

R = J/mol K R = L atm/mol K

R = J/mol K R = L atm/mol K version: master Exam 1 - VDB/LaB/Spk This MC portion of the exam should have 19 questions. The point values are given with each question. Bubble in your answer choices on the bubblehseet provided. Your

More information

Engineering Bernoulli Equation

Engineering Bernoulli Equation Engineering Bernoulli Equation R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkon Univerity The Engineering Bernoulli equation can be derived from the principle of conervation

More information

Name Block THE MOLE. Who s Counting Lab. Mole Notes. Mole Calculations. Mixed Mole Conversions. % Comp, Emp, and Molecular Calcuations

Name Block THE MOLE. Who s Counting Lab. Mole Notes. Mole Calculations. Mixed Mole Conversions. % Comp, Emp, and Molecular Calcuations Name Block THE MOLE Who s Counting Lab Mole Notes Mole Calculations Mixed Mole Conversions % Comp, Emp, and Molecular Calcuations Mole Notes, Part 1 1. The Mole is just a long word for changing units

More information

Ch. 22 Electromagnetic Induction

Ch. 22 Electromagnetic Induction Ch. 22 Electromagnetic Induction 22.1 Induced emf So electric current (moving charge) create agnetic Field. I the revere true? Can magnetic field create current??? D Ye!!! ut it take a changing magnetic

More information

The geometric resistivity correction factor for several geometrical samples

The geometric resistivity correction factor for several geometrical samples Vol. 36, No. 8 Journal of Semiconductor Augut 05 The geometric reitivity correction factor for everal geometrical ample ; ; Serdar Yilmaz Merin Univerity Science and Art Faculty Phyic Department, Merin,

More information

Chapter 7. Bellringer. Table of Contents. Chapter 7. Chapter 7. Objectives. Avogadro s Number and the Mole. Chapter 7. Chapter 7

Chapter 7. Bellringer. Table of Contents. Chapter 7. Chapter 7. Objectives. Avogadro s Number and the Mole. Chapter 7. Chapter 7 The Mole and Chemical Table of Contents Chemical Formulas Bellringer List as many common counting units as you can. Determine how many groups of each unit in your list are present in each of the following

More information

Study Guide For Chapter 7

Study Guide For Chapter 7 Name: Class: Date: ID: A Study Guide For Chapter 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The number of atoms in a mole of any pure substance

More information

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 10 Stocks and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS Chapter Stoc and Their Valuation ANSWERS TO EN-OF-CHAPTER QUESTIONS - a. A proxy i a document giving one peron the authority to act for another, typically the power to vote hare of common toc. If earning

More information

Pipe Flow Calculations

Pipe Flow Calculations Pipe Flow Calculation R. Shankar Subramanian epartment o Chemical and Biomolecular Engineering Clarkon Univerity We begin with ome reult that we hall ue when making riction lo calculation or teady, ully

More information

Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

More information

Fog and Cloud Development. Bows and Flows of Angel Hair

Fog and Cloud Development. Bows and Flows of Angel Hair Fog and Cloud Development Bows and Flows of Angel Hair 1 Ch. 5: Condensation Achieving Saturation Evaporation Cooling of Air Adiabatic and Diabatic Processes Lapse Rates Condensation Condensation Nuclei

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information