Chapter 9: Ideal Transformer. 10/9/2003 Electromechanical Dynamics 1


 Elisabeth Ray
 1 years ago
 Views:
Transcription
1 Chapter 9: Ideal Transformer 10/9/003 Electromechanical Dynamics 1
2 Introduction Transformers are one of the most useful electrical devices provides a change in voltage and current levels provides galvanic isolation between different electrical circuits changes the apparent magnitude value of an impedance 10/9/003 Electromechanical Dynamics
3 Voltage Induction For a coil consisting of N turns placed in a timevarying sinusoidal flux, the flux induces a sinusoidal ac voltage dφ( t) e( t) N dt the rms value of the voltage E where π f 4.44 f N N Φ Φ max max f is the sinusoidal frequency Φ max is the peak flux as defined by Φ Φ max sin ( π f +φ ) the peak flux is useful for working with iron cores and assessing the impact of losses and saturation Φ max B max A core 10/9/003 Electromechanical Dynamics 3
4 Applied Voltage Consider a coil connected across an AC voltage source the coil and source resistances are negligible the induced voltage E must equal the source voltage; KVL a sinusoidal AC flux Φ must exist to generate the induced voltage on the N turns of the coil Φ max E g 4.44 f N Φ max varies in proportion to E g placing an iron core in the coil will not change the flux Φ magnetization current I m drives the AC flux the current is 90 outofphase and lagging with respect to the voltage with an iron core, less current is needed to drive the AC flux 10/9/003 Electromechanical Dynamics 4
5 Induced Voltages Example a coil, having 4000 turns, links an AC flux with a peak value of mwb at a frequency of 60 Hz calculate the rms value of the induced voltage what is the frequency of the induced voltage? Example a coil, having 90 turns, is connected to a 10 V, 60 Hz source the rms magnetization current is 4 A calculate the peak value of the flux and the mmf find the inductive reactance and the inductance of the coil 10/9/003 Electromechanical Dynamics 5
6 Elementary Transformer Consider an aircore coil excited by an AC source E g draws a magnetization current I m produces a total flux Φ A second coil is brought close to the first a portion Φ m1 of the flux couples the second coil, the mutual flux an AC voltage E is induced the flux linking only the first coil is called the leakage flux, Φ f1 Improved flux coupling concentric windings, iron core weak coupling causes small E the magnetization current I m produces both fluxes Φ m1 and Φ f1 the fluxes are inphase the voltages E g and E are inphase terminal orientation such that the coil voltages are inphase are said to possess the same polarity 10/9/003 Electromechanical Dynamics 6
7 Ideal Transformer An ideal transformer transformer has no losses core is infinitely permeable all fluxes link all coils there are no leakage fluxes Voltage relationship consider a transformer with two coils of N 1 and N turns a magnetizing current I m creates a flux Φ m the flux varies sinusoidally and has a peak value of Φ max the induced voltages are from these equations, it can be deduced that the ratio of the primary and secondary voltages is equal to the ratio of the number of turns E 1 and E are inphase polarity marks show the terminal on each coil that have a peak positive voltage simultaneously 10/9/003 Electromechanical Dynamics 7 E E 1 E E f f N N 1 N N 1 Φ a Φ max max
8 Ideal Transformer Current relationship let a load be connected across the secondary of an ideal transformer current I will immediately flow I E Z coil voltages E 1 and E cannot change when connected to a fixed voltage source and hence flux Φ m cannot change current I produces an mmf mmf NI if mmf acts along, it would profoundly change Φ m Φ m can only remain fixed if the primary circuit develops a mmf which exactly counterbalances mmf current I 1 must flow such that I1 N 1 I N a I 1 and I must be inphase when I 1 flows into the positive polarity marking of the primary, I flows out of the positive polarity marking of the secondary 10/9/003 Electromechanical Dynamics 8 1
9 Ideal Transformer Ideal transformer model let a N 1 /N then E E 1 / a and I 1 I / a + I 1 Φ m I E 1 E + 10/9/003 Electromechanical Dynamics 9
10 Ideal Transformer Example a not so ideal transformer has 00 turns in the primary coil and 10 turns in the secondary coil the mutual coupling is perfect, but the magnetization current is 1 A the primary coil is connected to a 480 V, 60 Hz source calculate the secondary rms voltage, peak voltage Example for the transformer above, a load is connected to the secondary coil that draws 80 A of current at a 0.8 lagging pf calculate the primary rms current and draw the phasor diagram 10/9/003 Electromechanical Dynamics 10
11 Impedance Ratio Transformers can also be used to transform an impedance the source sees the effective impedance Z X E 1 I 1 on the other side, the secondary winding of the transformer sees the actual impedance Z E I the effective impedance is related to the actual impedance by E1 a E a E Z X a Z I I a I 1 10/9/003 Electromechanical Dynamics 11
12 Shifting Impedances Impedances located on the secondary side of a transformer can be relocated to the primary side the circuit configuration remains the same (series or shunt connected) but the shifted impedance values are multiplied by the turns ratio squared Impedance on the primary side can be moved to the secondary side in reverse manner the impedance values are divided by the turns ratio squared 10/9/003 Electromechanical Dynamics 1
13 Shifting Impedances In general, as an impedance is shifted across the transformer the real voltage across the impedance increases by the turns ratio the actual current through the impedance decreases by the turns ratio the required equivalent impedance increases by the square of the turns ratio Example using the shifting of impedances calculate the voltage E and current I in the circuit, knowing that the turns ratio is 1:100 10/9/003 Electromechanical Dynamics 13
14 Ideal Transformer Homework Problems: 94, 96, 910* Note: problem 910 is a design problem 10/9/003 Electromechanical Dynamics 14
Module 7. Transformer. Version 2 EE IIT, Kharagpur
Module 7 Transformer Version EE IIT, Kharagpur Lesson 4 Practical Transformer Version EE IIT, Kharagpur Contents 4 Practical Transformer 4 4. Goals of the lesson. 4 4. Practical transformer. 4 4.. Core
More informationElectrical Machines II. Week 1: Construction and theory of operation of single phase transformer
Electrical Machines II Week 1: Construction and theory of operation of single phase transformer Transformers Overview A transformer changes ac electric power at one frequency and voltage level to ac electric
More informationEE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits
EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers
More informationOutline. Systems and Signals 214 / 244 & Energy Systems 244 / 344. Ideal Inductor. Ideal Inductor (cont... )
Outline Systems and Signals 214 / 244 & Energy Systems 244 / 344 Inductance, Leakage Inductance, Mutual Inductance & Transformers 1 Inductor revision Ideal Inductor NonIdeal Inductor Dr. P.J. Randewijk
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationCoupled Inductors. Introducing Coupled Inductors
Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing
More information8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
More informationThe Ideal Transformer. Description and Circuit Symbol
The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However,
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3  MAGNETISM and INDUCTION
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3  MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:
More informationSYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a threephase synchronous machine are practically identical
More informationChapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits acircuits Phasor Diagrams Resistors, apacitors and nductors in acircuits R acircuits acircuit power. Resonance Transformers ac ircuits Alternating currents and
More informationNZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians
NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers
More informationDHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302  ELECTRICAL MACHINES II UNITI SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302  ELECTRICAL MACHINES II UNITI SYNCHRONOUS GENERATOR PART A 1.
More informationFunctions, variations and application areas of magnetic components
Westring 18 3314 Büren Germany T +49 951 60 01 0 F +49 951 60 01 3 www.schaffner.com energy efficiency and reliability 1.1 Transformers The transformer is one of the traditional components of electrical
More informationIf there is no fault, then with proper connections account for the CT polarity, we should obtain circulatory current through CT secondary.
Module 10 : Differential Protection of Bus, Transformer and Generator Lecture 39 : Transformer Protection Introduction Differential protection of transformer was introduced in lecture 2. Traditionally,
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 3 TUTORIAL 1  SINGLE PHASE AC CIRCUITS
EDEXCE NATIONA CETIFICATE/DIPOMA UNIT 67  FUTHE EECTICA PINCIPES NQF EVE 3 OUTCOME 3 TUTOIA  SINGE PHASE AC CICUITS Unit content 3. Understand the behaviour of singlephase alternating current (AC) circuits
More informationCoupling Magnetic Signals to a SQUID Amplifier
SQUID Application Note 1050 Coupling Magnetic Signals to a SQUID Amplifier Matching the effective inductances of the Pickup Coil and the Input Coil to detect and couple magnetic flux maximizes the sensitivity
More informationTransformer circuit calculations
Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More information7.1 POWER IN AC CIRCUITS
C H A P T E R 7 AC POWER he aim of this chapter is to introduce the student to simple AC power calculations and to the generation and distribution of electric power. The chapter builds on the material
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More informationDIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION
ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER3973 Application note ÿþ üûúùø öõöôùóùõò
More informationDirect versus Alternating Current Things We Can Measure
Phil Sherrod W4PHS Direct versus Alternating Current Things We Can Measure Direct Current (DC) Alternating Current (AC) Voltage Voltage (peak, RMS) Current Current (peak, effective) Power True power, Apparent
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationThree phase circuits
Three phase circuits THREE PHASE CIRCUITS THREEPHASE ADVANTAGES 1. The horsepower rating of threephase motors and the kva rating of threephase transformers are 150% greater than singlephase motors
More informationChapter 4: DC Generators. 9/8/2003 Electromechanical Dynamics 1
Chapter 4: DC Generators 9/8/2003 Electromechanical Dynamics 1 Armature Reaction Current flowing in the armature coils creates a powerful magnetomotive force that distorts and weakens the flux coming from
More information13 ELECTRIC MOTORS. 13.1 Basic Relations
13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This
More informationMotor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
More informationDigital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationThe full wave rectifier consists of two diodes and a resister as shown in Figure
The FullWave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centretapped secondary winding. This secondary winding has a lead attached
More informationFor these various types, the electrical configurations that are available are:
RF Transformers RF transformers are widely used in lowpower electronic circuits for impedance matching to achieve maximum power transfer, for voltage stepup or stepdown, and for isolating dc from two
More informationModule 10. Measuring Instruments. Version 2 EE IIT, Kharagpur
Module 1 Measuring Instruments Lesson 44 Study of Single Phase Induction Type Energy Meter or Watthour Meter Objectives To understand the basic construction and different components of a single phase
More informationChapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... . A ircuits with a Source and One ircuit Element... 3.. Purely esistive oad... 3.. Purely Inductive oad... 6..3 Purely apacitive oad... 8.3 The Series ircuit...
More informationSingle and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques
Single and Three Phase Transformer Testing Using Static Motor Circuit Analysis Techniques Howard W. Penrose, Ph.D On behalf of ALLTEST Pro, LLC Old Saybrook, CT Introduction Field and shop testing of
More informationMutual Inductance and Transformers F3 3. r L = ω o
utual Inductance and Transformers F3 1 utual Inductance & Transformers If a current, i 1, flows in a coil or circuit then it produces a magnetic field. Some of the magnetic flux may link a second coil
More informationAlternatingCurrent Circuits
hapter 1 Alternatingurrent ircuits 1.1 A Sources... 11. Simple A circuits... 13 1..1 Purely esistive load... 13 1.. Purely Inductive oad... 15 1..3 Purely apacitive oad... 17 1.3 The Series ircuit...
More informationPower Quality Paper #3
The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4  ALTERNATING CURRENT 4 Understand singlephase alternating current (ac) theory Single phase AC
More informationRotary Variable Differential Transformer (RVDT)
Rotary Variable Differential Transformer (RVDT) Direct TYPICAL APPLICATIONS Flight control actuation / navigation Fuel control / valves Cockpit controls Nose wheel steering systems Missile fin actuation
More informationChapter 14: Inductor design
Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A stepbystep design procedure 14.3 Multiplewinding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points
More informationREPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)
CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean
More informationThe Synchronous Machine
Experiment No. 5 The Synchronous Machine Synchronous ac machines find application as motors in constant speed applications and, when interfaced to the power source with a variablefrequency converter system,
More informationDOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4
DOEHDBK1011/392 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release;
More informationFull representation of the real transformer
TRASFORMERS EQVALET CRCT OF TWOWDG TRASFORMER TR Dots show the points of higher potential. There are applied following conventions of arrow directions: for primary circuit the passive sign convention
More information7CURRENT TRANSFORMERS
7CURRENT TRANSFORMERS Protective relays of the ac type are actuated by current and voltage supplied by current and voltage transformers. These transformers provide insulation against the high voltage
More information7 Testing of Transformers
7 Testing of Transformers The structure of the circuit equivalent of a practical transformer is developed earlier. The performance parameters of interest can be obtained by solving that circuit for any
More informationInductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
More information3 Synchronous Generator Operation
3 Synchronous Generator Operation 3.1 Cylindrical Rotor Machine xa xl ra xa E xl ra E Load A (a) (b)phasor diagram for R load xs ra Zs Xs Zs Load (c) φ (d)phasor diagram for RL load Ι Figure 30: Equivalent
More information1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)
1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,
More informationDrive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance
ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an
More informationPower supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E
Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer
More informationChapter 12: Three Phase Circuits
Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in
More informationTHE ROLE OF MAGNETIC COMPONENTS IN POWER ELECTRONICS
THE ROLE OF MAGNETIC COMPONENTS IN POWER ELECTRONICS Magnetic components are used to perform many functions in a power conversion system. These functions are broadly divided between power handling magnetics
More informationCHAPTER 5 SYNCHRONOUS GENERATOR
CHPTER 5 SYNCHRONOUS GENERTOR Summary: 1. Synchronous Generator Construction 2. The Speed of Rotation of a Synchronous Generator 3. The Internal Generated Voltage of a Synchronous Generator 4. The Equivalent
More informationSelecting IHLP Composite Inductors for NonIsolated Converters Utilizing Vishay s Application Sheet
VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for NonIsolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite
More informationLCR Parallel Circuits
Module 10 AC Theory Introduction to What you'll learn in Module 10. The LCR Parallel Circuit. Module 10.1 Ideal Parallel Circuits. Recognise ideal LCR parallel circuits and describe the effects of internal
More informationRectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationChapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.
Chapter 16 Current Transformer Design Table of Contents 1. Introduction 2. Analysis of the Input Current Component 3. Unique to a Current Transformer 4. Current Transformer Circuit Applications 5. Current
More informationMeasuring Telecommunication Transformers
Measuring Telecommunication Transformers Rapid expansion of the Internet and Mobile Communications has driven the need to transmit digital information at high frequencies. This need has put new requirements
More informationThe Polyphase Induction Motor
Experiment No. 4 The Polyphase Induction Motor The polyphase induction motor is the most commonly used industrial motor, finding application in many situations where speed regulation is not essential.
More informationCHAPTER THREE DIODE RECTIFIERS
CHATE THEE DODE ECTFES 3. Singlehase Half Wave ectifier: Single phase halfwave rectifier is the simplest circuit, this circuit is not used in precise practical applications due to high voltage ripples,
More informationSalman Bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)
CHAPTER # 3 SALIENTPOLE SYNCHRONOUS GENERATOR AND MOTOR 1 Introduction A cylindrical rotor synchronous machines has a uniform airgap, therefore its reactance remains the same, irrespective of the rotor
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationEquipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)
Lab 5: Singlephase transformer operations. Objective: to examine the design of singlephase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the
More informationLecture  4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture  4 Diode Rectifier Circuits
More informationDesigning a Low Power Flyback Power Supply
APPLICATION NOTE INTRODUCTION Bourns is a wellknown supplier of standard offtheshelf high power inductors for power supplies in consumer, medical and automotive applications. Bourns also has a strong
More informationBasics of Ferrite and Noise Countermeasures
TDK EMC Technology Basic Section Basics of Ferrite and Noise Countermeasures TDK Corporation Magnetics Business Group Shinichiro Ito 1 What is Ferrite? Ferrite was invented by Dr. Kato and Dr. Takei in
More informationStudent Name Instructor Name. High School or Vocational Center Grade. COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics
Student Name Instructor Name High School or Vocational Center Grade COMPETENCY RECORD FOR ARTICULATION Muskegon Community College Electronics Please check below each skill the student has mastered as described,
More informationSynchronous generators are built in large units, their rating ranging from tens to hundreds of megawatts.
II. Synchronous Generators Synchronous machines are principally used as alternating current (AC) generators. They supply the electric power used by all sectors of modern societies: industrial, commercial,
More informationAC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationCapacitors in Circuits
apacitors in ircuits apacitors store energy in the electric field E field created by the stored charge In circuit apacitor may be absorbing energy Thus causes circuit current to be reduced Effectively
More informationBack to the Basics Current Transformer (CT) Testing
Back to the Basics Current Transformer (CT) Testing As test equipment becomes more sophisticated with better features and accuracy, we risk turning our field personnel into test set operators instead of
More informationLine Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
More informationVectors and Phasors. A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles. Owen Bishop
Vectors and phasors Vectors and Phasors A supplement for students taking BTEC National, Unit 5, Electrical and Electronic Principles Owen Bishop Copyrught 2007, Owen Bishop 1 page 1 Electronics Circuits
More informationModeling of Transmission Lines
Modeling of Transmission Lines Electric Power Transmission The electric energy produced at generating stations is transported over highvoltage transmission lines to utilization points. The trend toward
More informationChapter 24. ThreePhase Voltage Generation
Chapter 24 ThreePhase Systems ThreePhase Voltage Generation Threephase generators Three sets of windings and produce three ac voltages Windings are placed 120 apart Voltages are three identical sinusoidal
More informationBSNL TTA Question PaperInstruments and Measurement Specialization 2007
BSNL TTA Question PaperInstruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above
More informationn 164 current transformers for HV protection Michel Orlhac
n 164 current transformers for HV protection Michel Orlhac Graduated from the Ecole Centrale de Paris in 1977. After one year's specialisation at the university of Stuttgart (Germany), he entered the overseas
More informationEE 221 AC Circuit Power Analysis. Instantaneous and average power RMS value Apparent power and power factor Complex power
EE 1 AC Circuit Power Analysis Instantaneous and average power RMS value Apparent power and power factor Complex power Instantaneous Power Product of timedomain voltage and timedomain current p(t) =
More informationELECTRICAL ENGINEERING Vol. I  Direct Current and Alternating Current Systems  N. Rajkumar DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS
DIRECT CURRENT AND ALTERNATING CURRENT SYSTEMS N. Rajkumar, Research Fellow, Energy Systems Group, City University Northampton Square, London EC1V 0HB, UK Keywords: Electrical energy, direct current, alternating
More informationMagnetic Field of a Circular Coil Lab 12
HB 112607 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
More informationTHE PERUNIT SYSTEM. (2) The perunit values for various components lie within a narrow range regardless of the equipment rating.
THE PERUNIT SYSTEM An interconnected power system typically consists of many different voltage levels given a system containing several transformers and/or rotating machines. The perunit system simplifies
More informationAlternating Current RL Circuits
Alternating Current RL Circuits Objectives. To understand the voltage/current phase behavior of RL circuits under applied alternating current voltages, and. To understand the current amplitude behavior
More informationChapter 12: Basic Magnetics Theory
Chapter 12. Basic Magnetics Theory 12.1. Review of basic magnetics 12.1.1. Basic relations 12.1.2. Magnetic circuits 12.2. Transformer modeling 12.2.1. The ideal transformer 12.2.3. Leakage inductances
More informationEEE1001/PHY1002. Magnetic Circuits. The circuit is of length l=2πr. B andφ circulate
1 Magnetic Circuits Just as we view electric circuits as related to the flow of charge, we can also view magnetic flux flowing around a magnetic circuit. The sum of fluxes entering a point must sum to
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationTamura Closed Loop Hall Effect Current Sensors
Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors
More informationThe Importance of the X/R Ratio in LowVoltage Short Circuit Studies
The Importance of the X/R Ratio in LowVoltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing
More informationE.G.Strangas MSU Electrical Machines and Drives Laboratory
Notes for an Introductory Course On Electrical Machines and Drives E.G.Strangas MSU Electrical Machines and Drives Laboratory Contents Preface ix 1 Three Phase Circuits and Power 1 1.1 Electric Power
More informationChapter 25 Alternating Currents
Physics Including Human Applications 554 Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each
More informationEdmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
More informationBasic Magnetics. The two main properties of magnets are: A) Like poles repel. B) Unlike poles attract.
Basic Magnetics Magnetism and electricity are closely related. Whenever an electric current flows through a conductor, a magnetic field is produced. When a conductor cuts across a magnetic field or magnetic
More informationTransistor Tuned Amplifiers
5 Transistor Tuned Amplifiers 389 Transistor Tuned Amplifiers 5. Tuned Amplifiers 5. Distinction between Tuned Amplifiers and other Amplifiers 5.3 Analysis of Parallel Tuned Circuit 5.4 Characteristics
More informationChapter 30 Inductance
Chapter 30 Inductance  Mutual Inductance  SelfInductance and Inductors  MagneticField Energy  The R Circuit  The C Circuit  The RC Series Circuit . Mutual Inductance  A changing current in
More informationATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only
ATTACHMENT F CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category
More informationRevision Calcs. 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2
EMA Revision Calcs Miller College Revision Calcs Revision Calcs 1. The flux produced by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm 2 2. For the magnet in the previous
More information