SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS


 Gavin Chandler
 2 years ago
 Views:
Transcription
1 SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS Hossein Arsham, University of Baltimore, (410) , Veena Adlakha, University of Baltimore, (410) , ABSTRACT In this paper we present an improved Algebraic Method to solve linear systems of inequalities with applications to linear optimization. The proposed method eliminates the need to manipulate linear inequalities to introduce additional variables. We present application of the proposed method to handle linear optimization with varying objective function. Numerical examples are provided to illustrate the concepts presented in the paper. INTRODUCTION There are numerous algorithms for solving systems of simultaneous linear equations with unrestricted variables in linear algebra. However, the problem of solving a system of simultaneous linear inequalities in which some variables must be nonnegative is much harder and had to wait until the linear programming (LP) era for a resolution. The Graphical Method of solving LP problems provides a clear illustration of the feasible and nonfeasible regions, as well as, vertices. Having a visual understanding of the problem helps practitioners with a more rational thought process. For example, the fact that the optimal solution of a linear program with a nonempty bounded feasible region always occurs at a vertex of the feasible region. However, the Graphical Method is limited in its applicability to solving LP problems having at most two decision variables and its appeal of human vision is restricted when there are many constraints present. The ordinary algebraic method is a complete enumerating algorithm to solve linear programs (LP) with bounded solutions. It converts all inequality constraints to equality constraints to obtain a system of equations by introducing slack/surplus variables, converts all nonrestricted (in sign) variables to restricted ones by substituting the difference of two new variables, and finally solves all of its square subsystems of equations. This conversion of an LP into a pure algebraic version overlooks the original space of the decision variables and treats all variables alike throughout the process. In this paper, we propose an improved method to overcome these deficiencies. The Algebraic Method is designed to extend the graphical method results to a multidimensional LP problem. The proposed method uses Analytical Geometry concepts and overcomes the limitation of human vision of the Graphical Method. The algorithm initially concentrates on locating basic solutions by solving selected squared subsystems of equations of size dependent on the number of decision variables and constraints. Then, a feasibility test is performed on the obtained solution to be retained for further considerations.
2 THE LINEAR PROGRAMMING PROBLEM Linear Programming is a problemsolving approach developed to help managers make decisions. Numerous applications of linear programming can be found in today s competitive business environment. Consider the following standard LP formulation Problem P: Max (or Min) f(x) = CX Subject to AX a, BX b, DX = d, X i 0, i = 1,..., j X i 0, i = j+1,..., k X i unrestricted in sign, i = k+1,..., n where matrices A, B, and D have n columns with p, r, and q rows respectively and vectors C, a, b, and d have appropriate dimensions. Therefore, there are m = (p + r + q) constraints and n decision variables. It is assumed that m n in Problem P. Note that the main constraints have been separated into three subgroups. Without loss of generality we assume all RHS elements, a, b, and d, are nonnegative. We do not deal with trivial cases where A = B = D = 0 (no constraints), or a = b = d = 0 (all boundaries pass through the origin point). SOLVING A SYSTEM OF LINEAR INEQUALITIES Generally speaking, the Simplex method for linear programming is strictly based on the theory and solution of system of linear inequalities. The basic solutions to a linear program are the solutions to the systems of equations consisting of constraints at binding position. Not all basic solutions satisfy all the problem constraints. Those that do meet all the constraint restrictions are called the basic feasible solutions. The basic feasible solutions correspond precisely to the vertices of the feasible region. Definition 1: A solution to any system of equations is called a Basic Solution (BS). Those Basic Solutions which are feasible are called Basic Feasible Solutions (BFS). The optimal solution of a bounded LP always occurs at a BFS, i.e., one of the vertices of the feasible region. The importance of this result is that it reduces the LP problem to a "combinatorial" problem that of determining which constraints out of many should be satisfied by the optimal solution. The algebraic simplex method keeps trying different combinations and computes the objective function for each trial until the best value is found. The Ordinary Algebraic Method Assuming the Problem P has a bounded solution; then the usual algebraic simplex method proceeds as follows: 1. Convert all inequality constraints into equalities by introducing slack/surplus variables.
3 2. Convert all nonrestricted variables to restricted ones by substituting the difference of two new variables (this step is not necessary; however, for uniformity in feasibility testing, this conversion is always performed). 3. Calculate the difference between the number of variables and the number of equations and set that many variables to zero. 4. Determine the solution to all these systems of equations. Set up the basic solution (BS) table to find out which BS is feasible (not violating the nonnegativity condition of slack/surplus). 5. Evaluate the objective function for each BFS and find the optimal solution with best value. The algebraic method is hard to apply because of the number of systems of equations involved: (# of var. + # of ineqs. )! ( # of consts.)!( # of vars. # of equal.consts.)! = ( p ( 2n  j + p + r )! + r + q )!( 2n  j  q )! Each system of equations contains (p + r + q) constraints with (p + r + q) variables which include slacks/surplus and the additional variables introduced for the unrestricted and negative variables. The Improved Algebraic Method Now we present an improved Algebraic Method of solving a system of linear inequalities (SLI) that does not require the formulation of an auxiliary LP problem and LP solution algorithms such as Simplex. We provide a simple methodology to extend the solution of SLI of one or two dimensions to systems of higher dimensions. We are interested in finding the vertices of the feasible region of Problem P, expressed as system of linear equalities and inequalities: AX a, BX b, DX = d, where some X i 0, some X i 0, and some X i unrestricted in sign. Matrices A, B, and D as well as vectors a, b, and d have appropriate dimensions. The interior of the feasible region is defined by the full set of the vertices obtained. Other relevant domains, such as faces, edges, etc. of the feasible region are defined by appropriate subsets of these vertices. This is the basis of the proposed Algebraic Method. We present the following steps to identify all such subsets of vertices using a constraintvertex table. Step 1. Convert all inequalities into equalities. Step 2. Calculate the difference between the number of equations and the number of variables (assuming m n) and set that many variables to zero. Step 3. Determine BS to this system of equations. Go back to Step 2 if any BS is left. Step 4. Check feasibility of all solutions obtained in Step 3 to determine BFSs.
4 The coordinates of vertices are the BFSs of the systems of equations obtained by setting some of the constraints at binding (i.e., equality) position. For a bounded feasible region, the number of vertices is at most combinatorial C m where m is the number of constraints and n is the number n of variables. Therefore, a BS is obtained by taking any set of n equations and solving them simultaneously. By plugging this BS in the constraints of other equations, one can check for feasibility of the BS. If it is feasible, then this solution is a BFS that provides the coordinates of a corner point of the feasible region. NUMERICAL EXAMPLES We provide an example to explain the proposed Algebraic Method and develop parametric representation of the feasible region for the given system of linear inequalities (SLI). Example 1: Suppose we wish to solve the following SLI to find the vertices of its feasible region: 3X 1 + X 2 6 X 1 + 2X 2 4 X 23 Step 1: Consider all of the constraints at binding position, i.e., all with equality (=) sign. This produces the following 3 equations in 2 unknowns: 3X 1 + X 2 = 6 X 1 + 2X 2 = 4 X 2 = 3 Steps 24: Here we have m = 3 equations with n = 2 unknowns. So there are at most 3 basic solutions. Solving the three resultant systems of equations, we have: X 1 X 2 Feasible? 33 Yes 103 Yes 8/7 18/7 Yes The solutions in the above table are all BFSs. Therefore, the vertices of the feasible region are: X 1 = 3 X 1 = 10 X 1 = 8/7 X 2 = 3 X 2 = 3 X 2 = 18/7
5 We extend this example to present a parametric representation of the feasible region of an SLI. Using the parameters λ 1, λ 2, and λ 3 for the first, second and third vertex, respectively, we get: X 1 = 3λ λ 28/7λ 3 X 2 = 3λ 13λ /7λ 3 for all parameters λ 1, λ 2, and λ 3 such that λ 1, λ 2, λ 3 0, and (λ 1 + λ 2 + λ 3 ) = 1. This representation is also known as the Convex Hull of the feasible region. By substituting suitable values for these λ values in the convex hull, one can generate any point of the feasible region. APPLICATIONS TO LINEAR PROGRAMS The proposed Algebraic Method can be used to solve linear programs as illustrated below. The following example is a continuation of Example 1. Example 2: The following LP is from Hillier and Lieberman [1, page 147]. Max X 1 + 4X 2 subject to: 3X 1 + X 2 6 X 1 + 2X 2 4 X 23 X 1, X 2 unrestricted in sign As determined earlier, the parametric representation of the feasible region is: X 1 = 3λ λ 28/7λ 3 X 2 = 3λ 13λ /7λ 3 Substituting the parametric version of the feasible region into the objective function, we obtain: f(λ) = X 1 + 4X 2 = 9λ 122λ /7λ 3, (1) over the closed domain λ 1, λ 2, λ 3 0, and (λ 1 + λ 2 + λ 3 ) = 1. This is a convex combination of three points on the real line R 1 ; namely the coefficients 9, 22, and 80/7. Clearly, the optimal solution occurs when λ 3 = 1 and all other λ's are set to 0, with maximum value of 80/7 at X 1 =  8/7, X 2 = 18/7. Note that the optimal solution is one of the vertices. Proposition: The maximum (minimum) points of an LP with a bounded feasible region correspond to the maximization (minimization) of the parametric objective function f (λ). Let the terms with the largest (smallest) coefficients in f (λ) be denoted by λ L and λ S
6 respectively. Since f (λ) is a (linear) convex combination of its coefficients, the optimal solution of f (λ) is obtained by setting L or S equal to 1 and all other λ i = 0. The maximum and minimum points of an LP with a bounded feasible region correspond to λ L = 1 and λ S = 1, respectively. More on the Objective Function The parametric representation of the objective function provides a wealth of information. It can be easily seen that if the objective in the two examples presented above is changed to Min (instead of Max); a practitioner does not have to entirely resolve the problem. A look at the parametric representation f(λ) in equation (1) reveals that the minimum value of the objective function (X 1 + 4X 2 ) is 22 when λ 2 = 1, representing the feasible point (X 1 = 10, X 2 = 3). Therefore, one can deduce that the value of the function (X 1 + 4X 2 ) range from a low of 22 (the minimum value) to 80/7 (the maximum value). The parametric representation of the feasible region of an SLI is useful in solving the corresponding LP with varying objective. For any given objective function, one can easily obtain a parametric representation, f(λ), of the objective function to determine optimum value of the objective function, whether maximum or minimum. Further, bounds on the range of the objective function value can be obtained. CONCLUSIONS In this paper we present a new direct method of solving a linear system of inequalities (SLI) that does not require the formulation of an auxiliary LP problem and LP solution algorithms such as simplex. We provide a simple methodology to extend the solution of SLI of two dimensions to systems of higher dimensions. The proposed method can be used to optimize LP problems with varying objective function. Given a system of linear equalities and/or inequalities, the method provides all vertices of the feasible region. A parametric representation of the feasible region as a convex combination of the vertices is developed. This parametric representation of the feasible region enables a practitioner to solve linear optimization problems with varying objectives. REFERENCES [1] Hillier, F., Lieberman G. Introduction to Operations Research, New York, NY: McGraw Hill, 1995.
Definition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationLinear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More informationLinear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
More informationPractical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
More information1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
More informationNonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
More information1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
More information7.4 Linear Programming: The Simplex Method
7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method
More informationLinear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
More informationSpecial Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
More informationLinear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
More information3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
More informationLecture 2: August 29. Linear Programming (part I)
10725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.
More informationLargest FixedAspect, AxisAligned Rectangle
Largest FixedAspect, AxisAligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 19982016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
More information3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More information3 Does the Simplex Algorithm Work?
Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More informationInternational Doctoral School Algorithmic Decision Theory: MCDA and MOO
International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire
More informationLinear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
More informationSolving Systems of Linear Equations. Substitution
Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,
More informationUsing the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood
PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced
More informationWhat is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
More informationIEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
More informationActually Doing It! 6. Prove that the regular unit cube (say 1cm=unit) of sufficiently high dimension can fit inside it the whole city of New York.
1: 1. Compute a random 4dimensional polytope P as the convex hull of 10 random points using rand sphere(4,10). Run VISUAL to see a Schlegel diagram. How many 3dimensional polytopes do you see? How many
More informationTransportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
More informationConvex Optimization SVM s and Kernel Machines
Convex Optimization SVM s and Kernel Machines S.V.N. Vishy Vishwanathan vishy@axiom.anu.edu.au National ICT of Australia and Australian National University Thanks to Alex Smola and Stéphane Canu S.V.N.
More informationCHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
More informationLECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005
LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationLinear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
More information24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NPcomplete. Then one can conclude according to the present state of science that no
More informationSensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
More informationLinear Programming: Theory and Applications
Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More informationThe Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
More informationModule1. x 1000. y 800.
Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,
More informationChapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
More informationEdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
More information4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
More informationMathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationLinear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
More informationIntroduction to Linear Programming (LP) Mathematical Programming (MP) Concept
Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts
More information2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
More informationLinear Programming. April 12, 2005
Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first
More informationSolutions Of Some NonLinear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR
Solutions Of Some NonLinear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision
More information56:171 Operations Research Midterm Exam Solutions Fall 2001
56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the
More informationStudy Guide 2 Solutions MATH 111
Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested
More informationCan linear programs solve NPhard problems?
Can linear programs solve NPhard problems? p. 1/9 Can linear programs solve NPhard problems? Ronald de Wolf Linear programs Can linear programs solve NPhard problems? p. 2/9 Can linear programs solve
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationChapter 2: Systems of Linear Equations and Matrices:
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
More informationLinear Programming in Matrix Form
Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,
More informationEXCEL SOLVER TUTORIAL
ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plugin, Solver, that we will be using
More informationMinimally Infeasible Set Partitioning Problems with Balanced Constraints
Minimally Infeasible Set Partitioning Problems with alanced Constraints Michele Conforti, Marco Di Summa, Giacomo Zambelli January, 2005 Revised February, 2006 Abstract We study properties of systems of
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More informationFE670 Algorithmic Trading Strategies. Stevens Institute of Technology
FE670 Algorithmic Trading Strategies Lecture 6. Portfolio Optimization: Basic Theory and Practice Steve Yang Stevens Institute of Technology 10/03/2013 Outline 1 MeanVariance Analysis: Overview 2 Classical
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationGENERALIZED INTEGER PROGRAMMING
Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA Email: schadha@uwec.edu Professor Veena CHADHA University of Wisconsin, Eau Claire, USA Email: chadhav@uwec.edu GENERALIZED INTEGER
More informationConverting a Linear Program to Standard Form
Converting a Linear Program to Standard Form Hi, welcome to a tutorial on converting an LP to Standard Form. We hope that you enjoy it and find it useful. Amit, an MIT Beaver Mita, an MIT Beaver 2 Linear
More informationZachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationSolving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)
Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationC&O 370 Deterministic OR Models Winter 2011
C&O 370 Deterministic OR Models Winter 2011 Assignment 1 Due date: Friday Jan. 21, 2011 Assignments are due at the start of class on the due date. Write your name and ID# clearly, and underline your last
More information0.1 Linear Programming
0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More information6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium
6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium Asu Ozdaglar MIT February 18, 2010 1 Introduction Outline PricingCongestion Game Example Existence of a Mixed
More informationCHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationLECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
More informationOperation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1
Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear
More informationMatrix Solution of Equations
Contents 8 Matrix Solution of Equations 8.1 Solution by Cramer s Rule 2 8.2 Solution by Inverse Matrix Method 13 8.3 Solution by Gauss Elimination 22 Learning outcomes In this Workbook you will learn to
More informationWalrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.
Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian
More information5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the FordFulkerson
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More informationSolving Quadratic Equations by Completing the Square
9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More information5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
More informationDATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More informationRow Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationStandard Form of a Linear Programming Problem
494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,
More informationLecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
More informationVector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a nonempty
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationBX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
More informationconstraint. Let us penalize ourselves for making the constraint too big. We end up with a
Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the
More informationChapter 8 Graphs and Functions:
Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes
More informationOverview of Math Standards
Algebra 2 Welcome to math curriculum design maps for Manhattan Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse
More information1.5 SOLUTION SETS OF LINEAR SYSTEMS
12 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More information