Handbook of Floating-Point Arithmetic

Size: px
Start display at page:

Download "Handbook of Floating-Point Arithmetic"

Transcription

1 Jean-Michel Muller Nicolas Brisebarre Florent de Dinechin Claude-Pierre Jeannerod Vincent Lerevre Guillaume Melquiond Nathalie Revol Damien Stehle Serge Tones Handbook of Floating-Point Arithmetic Birkhäuser Boston Basel Berlin

2 Preface List of Figures List of Tables xv xvii xxi I Introduction, Basic Definitions, and Standards 1 1 Introduction Some History Desirable Properties Some Strange Behaviors Some famous bugs Difficult problems 8 2 Definitions and Basic Notions Floating-Point Numbers Rounding Rounding modes Useful properties Relative error due to rounding Exceptions Lost or Preserved Properties of the Arithmetic on the Real Numbers Note on the Choice of the Radix Representation errors A case for radix Tools for Manipulating Floating-Point Errors The ulp function Errors in ulps and relative errors An example: iterated products Unit roundoff Note on Radix Conversion 40 v

3 vi Contents Conditions on the formats Conversion algorithms 2.8 The Fused Multiply-Add (FMA) Instruction 2.9 Interval Arithmetic Intervalls with floating-point bounds Optimized rounding Floating-Point Formats and Environment The IEEE Standard Formats specified by IEEE Little-endian, big-endian Rounding modes specified by IEEE Operations specified by IEEE Exceptions specified by IEEE Special values The IEEE Standard Constraints internal to a format Various formats and the constraints between them Conversions between floating-point numbers and decimal strings Rounding Operations Comparisons Exceptions The Need for a Revision A typical problem: "double rounding" Various ambiguities The New IEEE Standard Formats specified by the revised standard Binary interchange format encodings Decimal interchange format encodings Larger formats Extended and extendable precisions Attributes Operations specified by the standard Comparisons Conversions Default exception handling Recommended transcendental functions Floating-Point Hardware in Current Processors The common hardware denominator Fused multiply-add Extended precision Rounding and precision control 105

4 vii SIMD instructions Floating-point on x86 processors: SSE2 versus x Decimal arithmetic 3.6 Floating-Point Hardware in Recent Graphics Processing Units 3.7 Relations with Programming Languages The Language Independent Arithmetic (LIA) standard Programming languages 3.8 Checking the Environment MACHAR Paranoia UCBTest TestFloat IeeeCC Miscellaneous 116 II Cleverly Using Floating -Point Arithmetic Basic Properties and Algorithms Testing the Computational Environment Computing the radix Computing the precision Exact Operations Exact addition Exact multiplications and divisions Accurate Computations of Sums of Two Numbers The Fast2Sum algorithm The 2Sum algorithm If we do not use rounding to nearest Computation of Products Veltkamp splitting Dekker's multiplication algorithm Complex numbers Various error bounds Error bound for complex multiplication Complex division Complex square root The Fused Multiply-Add Instruction The 2Mu1tFMA Algorithm Computation of Residuals of Division and Square Root Newton Raphson-Based Division with an FMA Variants of the Newton Raphson iteration 155

5 viii Contents Using the Newton-Raphson iteration for correctly rounded division 160 Newton-Raphson-Based Square Root with an FMA The basic iterations Using the Newton-Raphson iteration for correctly rounded square roots 168 Multiplication by an Arbitrary-Precision Constant Checking for a given constant C if Algorithm 5.2 will always work 172 Evaluation of the Error of an FMA 175 Evaluation of Integer Powers Enhanced Floating-Point Sums, Dot Products, and Polynomial Values Preliminaries Floating-point arithmetic models Notation for error analysis and classical error estimates Properties for deriving running error bounds Computing Validated Running Error Bounds Computing Sums More Accurately Reordering the operands, and a bit more Compensated sums Implementing a "long accumulator" On the sum of three floating-point numbers Compensated Dot Products Compensated Polynomial Evaluation Languages and Compilers A Play with Many Actors Floating-point evaluation in programming languages Processors, compilers, and operating systems In the hands of the programmer Floating Point in the C Language Standard C99 headers and IEEE support Types Expression evaluation Code transformations Enabling unsafe optimizations Summary: a few horror stories Floating-Point Arithmetic in the C++ Language Semantics Numeric limits Overloaded functions FORTRAN Floating Point in a Nutshell 223

6 ix Philosophy IEEE 754 support in FORTRAN Java Floating Point in a Nutshell Philosophy Types and classes Infinities, NaNs, and signed zeros Missing features Reproducibility The BigDecimal package Conclusion 234 III Implementing Floating-Point Operators Algorithms for the Five Basic Operations Overview of Basic Operation Implementation Implementing IEEE Rounding Rounding a nonzero finite value with unbounded exponent range Overflow Underflow and subnormal results The inexact excep tion Rounding for actual operations Floating-Point Addition and Subtraction Decimal addition Decimal addition using binary encoding Subnormal inputs and outputs in binary addition Floating-Point Multiplication Normal case Handling subnormal numbers in binary multiplication Decimal specifics Floating-Point Fused Multiply-Add Case analysis for normal inputs Handling subnormal inputs Handling decimal cohorts Overview of a binary FMA implementation Floating-Point Division Overview and special cases Computing the significand quotient Managing subnormal numbers The inexact exception Decimal specifics Floating-Point Square Root Overview and special cases 265

7 8.7.2 Computing the significand square root Managing subnormal numbers The inexact exception Decimal specifics Hardware Implementation of Floating-Point Arithmetic 9.1 Introduction and Context Processor internal formats Hardware handling of subnormal numbers Full-custom VLSI versus reconfigurable circuits Hardware decimal arithmetic Pipelining The Primitives and Their Cost Integer adders Digit-by-integer multiplication in hardware Using nonstandard representations of numbers Binary integer multiplication Decimal integer multiplication Shifters Leading-zero courtters Tables and table-based methods for fixed-point function approximation Binary Floating-Point Addition Overview A first dual-path architecture Leading-zero anticipation Probing further on floating-point adders Binary Floating-Point Multiplication Basic architecture FPGA implementation VLSI implementation optimized for delay Managing subnormals Binary Fused Multiply-Add Classic architecture To probe further Division Digit-recurrence division Decimal division Conclusion: Beyond the FPU Optimization in context of standard operators Operation with a constant operand Block floating point Specific architectures for accumulation Coarser-grain operators 317

8 xi 9.8 Probing Further Software Implementation of Floating-Point Arithmetic Implementation Context Standard encoding of binary floating-point data Available integer operators First examples Design choices and optimizations Binary Floating-Point Addition Handling special values Computing the sign of the result Swapping the operands and computing the alignment shift Getting the correctly rounded result Binary Floating-Point Multiplication Handling special values Sign and exponent computation Overflow detection Getting the correctly rounded result Binary Floating-Point Division Handling special values Sign and exponent computation Overflow detection Getting the correctly rounded result Binary Floating-Point Square Root Handling special values Exponent computation Getting the correctly rounded result 365 IV Elementary Functions Evaluating Floating-Point Elementary Functions Basic Range Reduction Algorithms Cody and Waite's reduction algorithm Payne and Hanek's algorithm Bounding the Relative Error of Range Reduction More Sophisticated Range Reduction Algorithms An example of range reduction for the exponential function An example of range reduction for the logarithm Polynomial or Rational Approximations L2 case L", or minimax case 390

9 xii Contents "Truncated" approximations Evaluating Polynomials Correct Rounding of Elementary Functions to binary The Table Maker's Dilemma and Ziv's onion peeling strategy When the TMD is solved Rounding test Accurate second step Error analysis and the accuracy/performance tradeoff Computing Error Bounds The point with efficient code Example: a "double-double" polynomial evaluation Solving the Table Maker's Dilemma Introduction The Table Maker's Dilemma Brief history of the TMD Organization of the chapter Preliminary Remarks on the Table Maker's Dilemma Statistical arguments: what can be expected in practice In some domains, there is no need to find worst cases Deducing the worst cases from other functions or domains The Table Maker's Dilemma for Algebraic Functions Algebraic and transcendental numbers and functions The elementary case of quotients Around Liouville's theorem Generating bad rounding cases for the square root using Hensel 2-adic lifting Solving the Table Maker's Dilemma for Arbitrary Functions Lindemann's theorem: application to some transcendental functions A theorem of Nesterenko and Waldschmidt A first method: tabulated differences From the TMD to the distance between a grid and a segment Linear approximation: Lefevre's algorithm The SLZ algorithm Periodic functions on large arguments Some Results Worst cases for the exponential, logarithmic, trigonometric, and hyperbolic functions A special case: integer powers Current Limits and Perspectives 458

10 xiii V Extensions Formalisms for Certifying Floating-Point Algorithms Formalizing Floating-Point Arithmetic Defining floating-point numbers Simplifying the definition Defining rounding operators Extending the set of numbers Formalisms for Certifying Algorithms by Hand Hardware units Low-level algorithms Advanced algorithms Automating Proofs Computing on bounds Counting digits Manipulating expressions Handling the relative error Using Gappa Toy implementation of sine Integer division on Itanium Extending the Precision Double-Words, Triple-Words Double-word arithmetic Static triple-word arithmetic Quad-word arithmetic Floating-Point Expansions Floating-Point Numbers with Batched Additional Exponent Large Precision Relying on Processor Integers Using arbitrary-precision integer arithmetic for arbitrary-precision floating-point arithmetic A brief introduction to arbitrary-precision integer arithmetic 513 VI Perspectives and Appendix Conclusion and Perspectives Appendix: Number Theory Tools for Floating-Point Arithmetic Continued Fractions The LLL Algorithm 524 Bibliography 529 Index 567

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

More information

Some Functions Computable with a Fused-mac

Some Functions Computable with a Fused-mac Some Functions Computable with a Fused-mac Sylvie Boldo and Jean-Michel Muller Laboratoire LIP (CNRS/ENS Lyon/Inria/Univ. lyon ), Projet Arénaire, 46 allée d Italie, 69364 Lyon Cedex 07, FRANCE Sylvie.Boldo@ens-lyon.fr,

More information

Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs

Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs Nathan Whitehead Alex Fit-Florea ABSTRACT A number of issues related to floating point accuracy and compliance are a frequent

More information

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1 Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

More information

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

More information

A new binary floating-point division algorithm and its software implementation on the ST231 processor

A new binary floating-point division algorithm and its software implementation on the ST231 processor 19th IEEE Symposium on Computer Arithmetic (ARITH 19) Portland, Oregon, USA, June 8-10, 2009 A new binary floating-point division algorithm and its software implementation on the ST231 processor Claude-Pierre

More information

CR-LIBM A library of correctly rounded elementary functions in double-precision

CR-LIBM A library of correctly rounded elementary functions in double-precision CR-LIBM A library of correctly rounded elementary functions in double-precision Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nicolas Gast, Jean-Michel Muller September 16,

More information

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano

More information

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

More information

CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

More information

Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.

Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x. ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.

More information

What Every Computer Scientist Should Know About Floating-Point Arithmetic

What Every Computer Scientist Should Know About Floating-Point Arithmetic What Every Computer Scientist Should Know About Floating-Point Arithmetic D Note This document is an edited reprint of the paper What Every Computer Scientist Should Know About Floating-Point Arithmetic,

More information

Numerical Matrix Analysis

Numerical Matrix Analysis Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, blomgren.peter@gmail.com Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

RN-coding of Numbers: New Insights and Some Applications

RN-coding of Numbers: New Insights and Some Applications RN-coding of Numbers: New Insights and Some Applications Peter Kornerup Dept. of Mathematics and Computer Science SDU, Odense, Denmark & Jean-Michel Muller LIP/Arénaire (CRNS-ENS Lyon-INRIA-UCBL) Lyon,

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Intel 64 and IA-32 Architectures Software Developer s Manual

Intel 64 and IA-32 Architectures Software Developer s Manual Intel 64 and IA-32 Architectures Software Developer s Manual Volume 1: Basic Architecture NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual consists of seven volumes: Basic Architecture,

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

More information

IA-32 Intel Architecture Software Developer s Manual

IA-32 Intel Architecture Software Developer s Manual IA-32 Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The IA-32 Intel Architecture Software Developer s Manual consists of three volumes: Basic Architecture, Order Number

More information

Floating Point Fused Add-Subtract and Fused Dot-Product Units

Floating Point Fused Add-Subtract and Fused Dot-Product Units Floating Point Fused Add-Subtract and Fused Dot-Product Units S. Kishor [1], S. P. Prakash [2] PG Scholar (VLSI DESIGN), Department of ECE Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu,

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

FMA Implementations of the Compensated Horner Scheme

FMA Implementations of the Compensated Horner Scheme Reliable Implementation of Real Number Algorithms: Theory and Practice Dagstuhl Seminar 06021 January 08-13, 2006 FMA Implementations of the Compensated Horner Scheme Stef GRAILLAT, Philippe LANGLOIS and

More information

FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015

FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015 FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015 AGENDA The Kaveri Accelerated Processing Unit (APU) The Graphics Core Next Architecture and its Floating-Point Arithmetic

More information

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

RN-Codings: New Insights and Some Applications

RN-Codings: New Insights and Some Applications RN-Codings: New Insights and Some Applications Abstract During any composite computation there is a constant need for rounding intermediate results before they can participate in further processing. Recently

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

A new binary floating-point division algorithm and its software implementation on the ST231 processor

A new binary floating-point division algorithm and its software implementation on the ST231 processor 2009 19th IEEE International Symposium on Computer Arithmetic A new binary floating-point division algorithm and its software implementation on the ST231 processor Claude-Pierre Jeannerod 1, 2 Hervé Knochel

More information

Intel Architecture Software Developer s Manual

Intel Architecture Software Developer s Manual Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The Intel Architecture Software Developer s Manual consists of three volumes: Basic Architecture, Order Number 243190;

More information

Floating-point control in the Intel compiler and libraries or Why doesn t my application always give the expected answer?

Floating-point control in the Intel compiler and libraries or Why doesn t my application always give the expected answer? Floating-point control in the Intel compiler and libraries or Why doesn t my application always give the expected answer? Software Solutions Group Intel Corporation 2012 *Other brands and names are the

More information

THE EXACT DOT PRODUCT AS BASIC TOOL FOR LONG INTERVAL ARITHMETIC

THE EXACT DOT PRODUCT AS BASIC TOOL FOR LONG INTERVAL ARITHMETIC THE EXACT DOT PRODUCT AS BASIC TOOL FOR LONG INTERVAL ARITHMETIC ULRICH KULISCH AND VAN SNYDER Abstract. Computing with guarantees is based on two arithmetical features. One is fixed (double) precision

More information

CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

More information

Big Ideas in Mathematics

Big Ideas in Mathematics Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

More information

Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved.

Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved. Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved. You have permission to read this article for your own education. You do not have permission to put it on your website

More information

Return of the hardware floating-point elementary function

Return of the hardware floating-point elementary function Return of the hardware floating-point elementary function Jérémie Detrey Florent de Dinechin Xavier Pujol LIP, École Normale Supérieure de Lyon 46 allée d Italie 69364 Lyon cedex 07, France {Jeremie.Detrey,

More information

Algebra I Credit Recovery

Algebra I Credit Recovery Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal 2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

IA-32 Intel Architecture Software Developer s Manual

IA-32 Intel Architecture Software Developer s Manual IA-32 Intel Architecture Software Developer s Manual Volume 1: Basic Architecture NOTE: The IA-32 Intel Architecture Software Developer s Manual consists of three volumes: Basic Architecture, Order Number

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing! MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

More information

ACCUPLACER Arithmetic & Elementary Algebra Study Guide

ACCUPLACER Arithmetic & Elementary Algebra Study Guide ACCUPLACER Arithmetic & Elementary Algebra Study Guide Acknowledgments We would like to thank Aims Community College for allowing us to use their ACCUPLACER Study Guides as well as Aims Community College

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy

More information

YOU CAN COUNT ON NUMBER LINES

YOU CAN COUNT ON NUMBER LINES Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and

More information

MBA Jump Start Program

MBA Jump Start Program MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

More information

Sequence of Mathematics Courses

Sequence of Mathematics Courses Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS

More information

Arithmetic in MIPS. Objectives. Instruction. Integer arithmetic. After completing this lab you will:

Arithmetic in MIPS. Objectives. Instruction. Integer arithmetic. After completing this lab you will: 6 Objectives After completing this lab you will: know how to do integer arithmetic in MIPS know how to do floating point arithmetic in MIPS know about conversion from integer to floating point and from

More information

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

More information

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices. Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

More information

Lecture 2. Binary and Hexadecimal Numbers

Lecture 2. Binary and Hexadecimal Numbers Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

More information

Number Systems and Radix Conversion

Number Systems and Radix Conversion Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will

More information

Figure 1. A typical Laboratory Thermometer graduated in C.

Figure 1. A typical Laboratory Thermometer graduated in C. SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES

More information

Numerical Analysis An Introduction

Numerical Analysis An Introduction Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

More information

Numerical Analysis I

Numerical Analysis I Numerical Analysis I M.R. O Donohoe References: S.D. Conte & C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third edition, 1981. McGraw-Hill. L.F. Shampine, R.C. Allen, Jr & S. Pruess,

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304

http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304 MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: piercevu@utpa.edu Phone: 665.3535 Teaching Assistant Name: Indalecio

More information

Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program.

Name: Class: Date: 9. The compiler ignores all comments they are there strictly for the convenience of anyone reading the program. Name: Class: Date: Exam #1 - Prep True/False Indicate whether the statement is true or false. 1. Programming is the process of writing a computer program in a language that the computer can respond to

More information

Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

More information

PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be

PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Simple C++ Programs. Engineering Problem Solving with C++, Etter/Ingber. Dev-C++ Dev-C++ Windows Friendly Exit. The C++ Programming Language

Simple C++ Programs. Engineering Problem Solving with C++, Etter/Ingber. Dev-C++ Dev-C++ Windows Friendly Exit. The C++ Programming Language Simple C++ Programs Engineering Problem Solving with C++, Etter/Ingber Chapter 2 Simple C++ Programs Program Structure Constants and Variables C++ Operators Standard Input and Output Basic Functions from

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1 Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK

Monday January 19th 2015 Title: Transmathematics - a survey of recent results on division by zero Facilitator: TheNumberNullity / James Anderson, UK Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK It has been my pleasure to give two presentations

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

The pitfalls of verifying floating-point computations

The pitfalls of verifying floating-point computations The pitfalls of verifying floating-point computations David Monniaux To cite this version: David Monniaux. The pitfalls of verifying floating-point computations. ACM Transactions on Programming Languages

More information

Algebraic and Transcendental Numbers

Algebraic and Transcendental Numbers Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)

More information

A numerically adaptive implementation of the simplex method

A numerically adaptive implementation of the simplex method A numerically adaptive implementation of the simplex method József Smidla, Péter Tar, István Maros Department of Computer Science and Systems Technology University of Pannonia 17th of December 2014. 1

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC. E. C. R. HEHNER and R. N. S. HORSPOOL

A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC. E. C. R. HEHNER and R. N. S. HORSPOOL A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC E. C. R. HEHNER and R. N. S. HORSPOOL Abstract. A novel system for representing the rational numbers based on Hensel's p-adic arithmetic

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

AMSCO S Ann Xavier Gantert

AMSCO S Ann Xavier Gantert AMSCO S Integrated ALGEBRA 1 Ann Xavier Gantert AMSCO SCHOOL PUBLICATIONS, INC. 315 HUDSON STREET, NEW YORK, N.Y. 10013 Dedication This book is dedicated to Edward Keenan who left a profound influence

More information

096 Professional Readiness Examination (Mathematics)

096 Professional Readiness Examination (Mathematics) 096 Professional Readiness Examination (Mathematics) Effective after October 1, 2013 MI-SG-FLD096M-02 TABLE OF CONTENTS PART 1: General Information About the MTTC Program and Test Preparation OVERVIEW

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Arithmetic Coding: Introduction

Arithmetic Coding: Introduction Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation

More information

Numerology - A Case Study in Network Marketing Fractions

Numerology - A Case Study in Network Marketing Fractions Vers l analyse statique de programmes numériques Sylvie Putot Laboratoire de Modélisation et Analyse de Systèmes en Interaction, CEA LIST Journées du GDR et réseau Calcul, 9-10 novembre 2010 Sylvie Putot

More information

AP Calculus AB Syllabus

AP Calculus AB Syllabus Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.

More information

Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster

Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster Abstract Brian J. Shelburne Dept of Math and Comp Sci Wittenberg University In

More information

Control Systems with Actuator Saturation

Control Systems with Actuator Saturation Control Systems with Actuator Saturation Analysis and Design Tingshu Hu Zongli Lin With 67 Figures Birkhauser Boston Basel Berlin Preface xiii 1 Introduction 1 1.1 Linear Systems with Actuator Saturation

More information

This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));

This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30)); Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

More information

Interpretation of Test Scores for the ACCUPLACER Tests

Interpretation of Test Scores for the ACCUPLACER Tests Interpretation of Test Scores for the ACCUPLACER Tests ACCUPLACER is a trademark owned by the College Entrance Examination Board. Visit The College Board on the Web at: www.collegeboard.com/accuplacer

More information

An Efficient RNS to Binary Converter Using the Moduli Set {2n + 1, 2n, 2n 1}

An Efficient RNS to Binary Converter Using the Moduli Set {2n + 1, 2n, 2n 1} An Efficient RNS to Binary Converter Using the oduli Set {n + 1, n, n 1} Kazeem Alagbe Gbolagade 1,, ember, IEEE and Sorin Dan Cotofana 1, Senior ember IEEE, 1. Computer Engineering Laboratory, Delft University

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information