# 6.2 Unions and Intersections

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 22 CHAPTER 6. PROBABILITY 6.2 Unions and Intersections The probability of a union of events Exercise 6.2- If you roll two dice, what is the probability of an even sum or a sum of 8 or more? Exercise In Exercise 6.2-, let E be the event even sum and let F be the event 8 or more. We found the probability of the union of the events E and F. Why isn t it the case that P (E F =P (E+P (F? What weights appear twice in the sum P (E +P (F? Find a formula for P (E F interms of the probabilities of E, F, and E F. Apply this formula to Exercise What is the value of expressing one probability in terms of three? Exercise What is P (E F G interms of probabilities of the events E, F, and G and their intersections? In the sum P (E +P (F the weights of elements of E F each appear twice, while the weights of all other elements of E F each appear once. We can see this by looking at a diagram called a Venn Diagram, as in Figure 6.. In a Venn diagram, the rectangle represents the sample space, and the circles represent the events. If we were to shade both E and F,wewould wind Figure 6.: A Venn diagram for two events. E E F F up shading the region E F twice. In Figure 6.2, we represent that by putting numbers in the regions, representing how many times they are shaded. This illustrates why the sum P (E+P (F includes the probability weight of each element of E F twice. Thus to get a sum that includes the probability weight of each element of E F exactly once, we have to subtract the weight of E F from the sum P (E+P (F. This is why P (E F =P (E+P (F P (E F (6.3 We can now apply this to Exercise 6.2- by noting that the probability of an even sum is /2, while the probability of a sum of 8 or more is = 5 36.

2 6.2. UNIONS AND INTERSECTIONS 23 Figure 6.2: If we shade each of E and F once, then we shade E F twice E E F F 2 From a similar sum, the probability of an even sum of 8 or more is 9/36, so the probability of a sum that is even or is 8 or more is = 2 3. (In this case our computation merely illustrates the formula; with less work one could add the probability of an even sum to the probability of a sum of 9 or. In many cases, however, probabilities of individual events and their intersections are more straightforward to compute than probabilities of unions (we will see such examples later in this section, and in such cases our formula is quite useful. Now let s consider the case for three events and draw a Venn diagram and fill in the numbers for shading all E, F, and G. Soasnot to crowd the figure we use EF to label the region corresponding to E F, and similarly label other regions. Doing so we get Figure 6.3. Thus we Figure 6.3: The number of ways the intersections are shaded when we shade E, F, and G. E EF 2 EFG EG FG G F have to figure out a way to subtract from P (E+P (F +P (G the weights of elements in the regions labeled EF, FG and EG once, and the the weight of elements in the region labeled EFG twice. If we subtract out the weights of elements of each of E F, F G, and E G, this does more than we wanted to do, as we subtract the weights of elements in EF, FG and EG once

3 24 CHAPTER 6. PROBABILITY but the weights of elements in of EFG three times, leaving us with Figure 6.4. We then see that Figure 6.4: The result of removing the weights of each intersection of two sets. E EF EFG 0 EG FG G F all that is left to do is to add weights of elements in the E F G back into our sum. Thus we have that P (E F G =P (E+P (F +P (G P (E F P (E G P (F G+P (E F G. Principle of inclusion and exclusion for probability From the last two exercises, it is natural to guess the formula n P ( E i = n n P (E i n j=i+ n 2 P (E i E j + n n j=i+ k=j+ P (E i E j E k... (6.4 All the sum signs in this notation suggest that we need some new notation to describe sums. We are now going to make a (hopefully small leap of abstraction in our notation and introduce notation capable of compactly describing the sum described in the previous paragraph. We use P (E i E i2 E ik (6.5 i,i 2,...,i k : i <i 2 < <i k n to stand for the sum, over all sequences i,i 2,...i k of integers between and n of the probabilities of the sets E i E i2... E ik. More generally, f(i,i 2,...,i k isthesum of i,i 2,...,i k : i <i 2 < <i k n f(i,i 2,...,i k over all increasing sequences of k numbers between and n. Exercise To practice with notation, what is i,i 2,i 3 : i <i 2 <i 3 4 i + i 2 + i 3?

4 6.2. UNIONS AND INTERSECTIONS 25 The sum in Exercise is = 3( = 30. With this understanding of the notation in hand, we can now write down a formula that captures the idea in Equation 6.4 more concisely. Notice that in Equation 6.4 we include probabilities of single sets with a plus sign, probabilities of intersections of two sets with a minus sign, and in general, probabilities of intersections of any even number of sets with a minus sign and probabilities of intersections of any odd number of sets (including the odd number one with a plus sign. Thus if we are intersecting k sets, the proper coefficient for the probability of the intersection of these sets is ( k+ (it would be equally good to use ( k, and correct but silly to use ( k+3. This lets us translate the formula of Equation 6.4 to Equation 6.6 in the theorem, called the Principle of Inclusion and Exclusion for Probability, that follows. We will give two completely different proofs of the theorem, one of which is a nice counting argument but is a bit on the abstract side, and one of which is straightforward induction, but is complicated by the fact that it takes a lot of notation to say what is going on. Theorem 6.3 (Principle of Inclusion and Exclusion for Probability The probability of the union E E 2 E n of events in a sample space S is given by ( n n P E i = ( k+ i,i 2,...,i k : i <i 2 < <i k n P (E i E i2 E ik. (6.6 First Proof: Consider an element x of n E i. Let E i,e i2,...e ik be the set of all events E i of which x is a member. Let K = {i,i 2,...,i k }. Then x is in the event E j E j2 E jm if and only if {j,j 2...j m } K. Why is this? If there is a j r that is not in K, then x E j and thus x E j E j2 E jm. Notice that every x in n E i is in at least one E i,soitisinat least one of the sets E i E i2 E ik. Recall that we define P (E j E j2 E jm tobethe sum of the probability weights p(x for x E j E j2 E jm. Suppose we substitute this sum of probability weights for P (E j E j2 E jm onthe right hand side of Equation 6.6. Then the right hand side becomes a sum of terms each of with is plus or minus a probability weight. The sum of all the terms involving p(x onthe right hand side of Equation 6.6 includes a term involving p(x for each nonempty subset {j,j 2,...,j m } of K, and no other terms involving p(x. The coefficient of the probability weight p(x inthe term for the subset {j,j 2,...,j m } is ( m+. Since there are ( k m subsets of K of size m, the sum of the terms involving p(x will therefore be ( ( ( k k k k ( m+ p(x = ( m p(x + p(x =0 p(x+p(x =p(x, m m m= m=0 because k and thus by the binomial theorem, k j=0 ( k j ( j =( k =0. This proves that for each x, the sum of all the terms involving p(x after we substitute the sum of probability weights into Equation 6.6 is exactly p(x. We noted above that for every x in n E i appears in at least one of the sets E i E i2 E ik.thus the right hand side of Equation 6.6 is the sum of every p(x such that x is in n E i.bydefinition, this is the left-hand side of Equation 6.6. Second Proof: The proof is simply an application of mathematical induction using Equation 6.3. When n =the formula is true because it says P (E =P(E. Now suppose inductively

5 26 CHAPTER 6. PROBABILITY that for any family of n sets F,F 2,...,F n P ( n n F i = ( k+ i,i 2,i...,i k : i <i 2 < <i k n P (F i F i2 F ik (6.7 If in Equation 6.3 we let E = E... E n and F = E m,wemay apply Equation 6.3 to to compute P ( n E iasfollows: P ( n By the distributive law, E i = P ( n ( n E i + P (E n P E i E n = n (( n (E i E n, and substituting this into Equation 6.8 gives ( n ( n P E i = P E i + P (E n P ( n E i E n (E i E n Now we use the inductive hypothesis (Equation 6.7 in two places to get ( n P E i = n + P (E n n ( k+ ( k+ i,i 2,i...,i k : i <i 2 < <i k n i,i 2,i...,i k : i <i 2 < <i k n.. (6.8 P (E i E i2 E ik (6.9 P (E i E i2 E ik E n. The first summation on the right hand side sums ( k+ P (E i E i2 E ik over all lists i,i 2,...,i k that do not contain n, while the P (E n and the second summation work together to sum ( k+ P (E i E i2 E ik over all lists i,i 2,...,i k that do contain n. Therefore, ( n n P E i = ( k+ i,i 2,i...,i k : i <i 2 < <i k n P (E i E i2 E ik. Thus by the principle of mathematical induction, this formula holds for all integers n>0. Exercise At a fancy restaurant n students check their backpacks. They are the only ones to check backpacks. A child visits the checkroom and plays with the check tickets for the backpacks so they are all mixed up. If there are 5 students named Judy, Sam, Pat, Jill, and Jo, in how many ways may the backpacks be returned so that Judy gets her own backpack (and maybe some other students do, too? What is the probability that this happens? What is the probability that Sam gets his backpack (and maybe some other students do, too? What is the probability that Judy and Sam both get their own backpacks (and maybe some other students do, too? For any particular

6 6.2. UNIONS AND INTERSECTIONS 27 two element set of students, what is the probability that these two students get their own backpacks (and maybe some other students do, too? What is the probability that at least one student gets his or her own backpack? What is the probability that no students get their own backpacks? What do you expect the answer will be for the last two questions for n students? This classic problem is often stated using hats rather than backpacks (quaint, isn t it?, so it is called the hatcheck problem. It is also known as the derangement problem; a derangement of a set being a one-to-one function from a set onto itself (i.e., a bijection that sends each element to something not equal to it. For Exercise 6.2-5, let E i be the event that person i on our list gets the right backpack. Thus E is the event that Judy gets the correct backpack and E 2 is the event that Sam gets the correct backpack. The event E E 2 is the event that Judy and Sam get the correct backpacks (and maybe some other people do. In Exercise 6.2-5, there are 4! ways to pass back the backpacks so that Judy gets her own, as there are for Sam or any other single student. Thus P (E =P(E i = 4! 5!. Forany particular two element subset, such as Judy and Sam, there are 3! ways that these two people may get their backpacks back. Thus, for each i and j, P (E i E j = 3! 5!.For a particular k students the probability that each one of these k students gets his or her own backpack back is (5 k!/5!. If E i is the event that student i gets his or her own backpack back, then the probability of an intersection of k of these events is (5 k!/5! The probability that at least one person gets his or her own backpack back is the probability of E E 2 E 3 E 4 E 5. Then by the principle of inclusion and exclusion, the probability that at least one person gets his or her own backpack back is P (E E 2 E 3 E 4 E 5 = 5 ( k+ i,i 2,...,i k : i <i 2 < <i k 5 P (E i E i2 E ik. (6.0 As we argued above, for a set of k people, the probability that all k people get their backpacks back is (5 k!/5!. In symbols, P (E i E i2 E ik = (5 k! 5!. Recall that there are ( 5 k sets of k people chosen from our five students. That is, there are ( 5 k lists i,i 2,...i k with <i <i 2 < <i k 5. Thus, we can rewrite the right hand side of the Equation 6.0 as This gives us ( 5 5 (5 k! ( k+. k 5! P (E E 2 E 3 E 4 E 5 = ( 5 5 (5 k! ( k k 5! = 5 ( k 5! (5 k! k!(5 k! 5! = 5 ( k k! = 2 + 3! 4! + 5!.

7 28 CHAPTER 6. PROBABILITY The probability that nobody gets his or her own backpack is minus the probability that someone does, or 2 3! + 4! 5! To do the general case of n students, we simply substitute n for 5 and get that the probability that at least one person gets his or her own backpack is n ( i i! = 2 + 3! + ( n n! and the probability that nobody gets his or her own backpack is minus the probability above, or n ( i i! = 2 ( n + + (6. 3! n! i=2 Those who have had power series in calculus may recall the power series representation of e x, namely e x =+x + x2 2! + x3 3! + = x i i!. Thus the expression in Equation 6. is the approximation to e we get by substituting for x in the power series and stopping the series at i = n. Note that the result depends very lightly on n; solong as we have at least four or five people, no matter how many people we have, the probability that no one gets their hat back remains at roughly e. Our intuition might have suggested that as the number of students increases, the probability that someone gets his or her own backpack back approaches rather than e. Here is another example of why it is important to use computations with the rules of probability instead of intuition! i=0 The Principle of Inclusion and Exclusion for Counting Exercise How many functions are there from an n-element set N to a k-element set K = {y,y 2,...y k } that map nothing to y? Another way to say this is if I have n distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I pass out the candy bars so that Sam doesn t get any candy (and maybe some other children don t either? Exercise How many functions map nothing to a j-element subset J of K? Another way to say this is if I have n distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I pass out the candy bars so that some particular j-element subset of the children don t get any (and maybe some other children don t either? Exercise What is the number of functions from an n-element set N to a k element set K that map nothing to at least one element of K? Another way to say this is if Ihaven distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I pass out the candy bars so that some child doesn t get any (and maybe some other children don t either? Exercise On the basis of the previous exercises, how many functions are there from an n-element set onto a k element set?

8 6.2. UNIONS AND INTERSECTIONS 29 The number of functions from an n-element set to a k-element set K = {y,y 2,...y k } that map nothing to y is simply (k n because we have k choices of where to map each of our n elements. Similarly the number that map nothing to a particular set J of j elements will be (k j n. This warms us up for Exercise In Exercise we need an analog of the principle of inclusion and exclusion for the size of a union of k sets (set i being the set of functions that map nothing to element i of the set K. Because we can make the same argument about the size of the union of two or three sets that we made about probabilities of unions of two or three sets, we have a very natural analog. That analog is the Principle of Inclusion and Exclusion for Counting n n E i = ( k+ E i E i2 E ik. (6.2 i,i 2,...,i k : i <i 2 < <i k n In fact, this formula is proved by induction or a counting argument in virtually the same way. Applying this formula to the number of functions from N that map nothing to at least one element of K gives us k n E i = ( k+ k E i E i2 E ik = (k j n. i,i 2,...,i k : i <i 2 < <i k n j= ( j ( k j This is the number of functions from N that map nothing to at least one element of K. The total number of functions from N to K is k n.thus the number of onto functions is ( ( k k k k k n ( j (k j n = ( j (k j n, j j j= where the second equality results because ( k 0 is and (k 0 n is k n. j=0 Important Concepts, Formulas, and Theorems. Venn diagram. To draw a Venn diagram, for two or three sets, we draw a rectangle that represents the sample space, and two or three mutually overlapping circles to represent the events. 2. Probability of a union of two events. P (E F =P (E+P (F P (E F 3. Probability of a union of three events. P (E F G =P (E+P(F+P(G P (E F P (E G P (F G+P (E F G. 4. A summation notation. f(i,i 2,...,i k isthe sum of f(i,i 2,...,i k over all i,i 2,...,i k : i <i 2 < <i k n increasing sequences of k numbers between and n. 5. Principle of Inclusion and Exclusion for Probability. The probability of the union E E 2 E n of events in a sample space S is given by ( n n P E i = ( k+ P (E i E i2 E ik. i,i 2,...,i k : i <i 2 < <i k n

9 220 CHAPTER 6. PROBABILITY 6. Hatcheck Problem. The hatcheck problem or derangement problem asks for the probability that a bijection of an n element set maps no element to itself. The answer is n ( i i! = 2 3! i=2 ( n + +, n! the result of truncating the power series expansion of e at the ( n n!.thus the result is very close to e,even for relatively small values of n. 7. Principle of Inclusion and Exclusion for Counting. The Principle of inclusion and exclusion for counting says that n n E i = ( k+ E i E i2 E ik. i,i 2,...,i k : i <i 2 < <i k n Problems. Compute the probability that in three flips of a coin the coin comes heads on the first flip or on the last flip. 2. The eight kings and queens are removed from a deck of cards and then two of these cards are selected. What is the probability that the king or queen of spades is among the cards selected? 3. Two dice are rolled. What is the probability that we see a die with six dots on top? 4. A bowl contains two red, two white and two blue balls. We remove two balls. What is the probability that at least one is red or white? Compute the probability that at least one is red. 5. From an ordinary deck of cards, we remove one card. What is the probability that it is an Ace, is a diamond, or is black? 6. Give a formula for the probability of P (E F G H interms of the probabilities of E,F, G, and H, and their intersections. 7. What is i,i 2,i 3 : i <i 2 <i 3 4 i i 2 i 3? 8. What is i,i 2,i 3 : i <i 2 <i 3 5 i + i 2 + i 3? 9. The boss asks the secretary to stuff n letters into envelopes forgetting to mention that he has been adding notes to the letters and in the process has rearranged the letters but not the envelopes. In how many ways can the letters be stuffed into the envelopes so that nobody gets the letter intended for him or her? What is the probability that nobody gets the letter intended for him or her?

10 6.2. UNIONS AND INTERSECTIONS If we are hashing n keys into a hash table with k locations, what is the probability that every location gets at least one key?. From the formula for the number of onto functions, find a formula for S(n, k which is defined in Problem 2 of Section.4. These numbers are called Stirling numbers (of the second kind. 2. If we roll 8 dice, what is the probability that each of the numbers through 6 appear on top at least once? What about with 9 dice? 3. Explain why the number of ways of distributing k identical apples to n children is ( n+k k. In how many ways may you distribute the apples to the children so that Sam gets more than m? Inhow many ways may you distribute the apples to the children so that no child gets more than m? 4. A group of n married couples sits a round a circular table for a group discussion of marital problems. The counselor assigns each person to a seat at random. What is the probability that no husband and wife are side by side? 5. Suppose we have a collection of m objects and a set P of p properties, an undefined term, that the objects may or may not have. For each subset S of the set P of all properties, define N a (S (aisfor at least to be the number of objects in the collection that have at least the properties in S. Thus, for example, N a ( =m. Inatypical application, formulas for N a (S for other sets S P are not difficult to figure out. Define N e (S tobethe number of objects in our collection that have exactly the properties in S. Show that N e ( = K:K P ( K N a (K. Explain how this formula could be used for computing the number of onto functions in a more direct way than we did it using unions of sets. How would this formula apply to Problem 9 in this section? 6. In Problem 4 of this section we allow two people of the same sex to sit side by side. If we require in addition to the condition that no husband and wife are side by side the condition that no two people of the same sex are side by side, we obtain a famous problem known as the mènage problem. Solve this problem. 7. In how many ways may we place n distinct books on j shelves so that shelf one gets at least m books? (See Problem 7 in Section.4. In how many ways may we place n distinct books on j shelves so that no shelf gets more than m books? 8. In Problem 5 in this section, what is the probability that an object has none of the properties, assuming all objects to be equally likely? How would this apply the Problem 6-0?

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way

Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### Basic Probability Concepts

page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

### Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

### Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

### Notes on counting finite sets

Notes on counting finite sets Murray Eisenberg February 26, 2009 Contents 0 Introduction 2 1 What is a finite set? 2 2 Counting unions and cartesian products 4 2.1 Sum rules......................................

### Basic Probability Theory II

RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### Section 6-5 Sample Spaces and Probability

492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

### Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### Cartesian Products and Relations

Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

### + Section 6.2 and 6.3

Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

### Statistics 100A Homework 2 Solutions

Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

### 2015 Junior Certificate Higher Level Official Sample Paper 1

2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

### MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)

Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.

### 1 Introduction to Counting

1 Introduction to Counting 1.1 Introduction In this chapter you will learn the fundamentals of enumerative combinatorics, the branch of mathematics concerned with counting. While enumeration problems can

### Probabilistic Strategies: Solutions

Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

### Induction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition

Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing

### Mathematical Induction. Mary Barnes Sue Gordon

Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

### Definition and Calculus of Probability

In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

### Worksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation

Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other

### Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

### Hoover High School Math League. Counting and Probability

Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches

### The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

### Sample Induction Proofs

Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

### Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

### REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

### Ready, Set, Go! Math Games for Serious Minds

Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

### Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

### Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

### (b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

### Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

### Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

### 3.4 Complex Zeros and the Fundamental Theorem of Algebra

86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

### Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

### Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

### Section Summary. The Product Rule The Sum Rule The Subtraction Rule The Division Rule Examples, Examples, and Examples Tree Diagrams

Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and Combinations Generating Permutations

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### THE MULTINOMIAL DISTRIBUTION. Throwing Dice and the Multinomial Distribution

THE MULTINOMIAL DISTRIBUTION Discrete distribution -- The Outcomes Are Discrete. A generalization of the binomial distribution from only 2 outcomes to k outcomes. Typical Multinomial Outcomes: red A area1

### Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

### STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia

STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that

### Combinatorial Proofs

Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations

### Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

### Pigeonhole Principle Solutions

Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

### Homework 3 (due Tuesday, October 13)

Homework (due Tuesday, October 1 Problem 1. Consider an experiment that consists of determining the type of job either blue-collar or white-collar and the political affiliation Republican, Democratic,

### SECTION 10-5 Multiplication Principle, Permutations, and Combinations

10-5 Multiplication Principle, Permutations, and Combinations 761 54. Can you guess what the next two rows in Pascal s triangle, shown at right, are? Compare the numbers in the triangle with the binomial

Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant

### PROBABILITY 14.3. section. The Probability of an Event

4.3 Probability (4-3) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### Probability OPRE 6301

Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.

### Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

### Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system

CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical

### Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

### Probability and Expected Value

Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

### Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.

Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus

### Homework 5 Solutions

Homework 5 Solutions 4.2: 2: a. 321 = 256 + 64 + 1 = (01000001) 2 b. 1023 = 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (1111111111) 2. Note that this is 1 less than the next power of 2, 1024, which

### Worked examples Basic Concepts of Probability Theory

Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one

### 8. You have three six-sided dice (one red, one green, and one blue.) The numbers of the dice are

Probability Warm up problem. Alice and Bob each pick, at random, a real number between 0 and 10. Call Alice s number A and Bob s number B. The is the probability that A B? What is the probability that

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2

Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

### MAT 1000. Mathematics in Today's World

MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### 4.4 Conditional Probability

4.4 Conditional Probability It is often necessary to know the probability of an event under restricted conditions. Recall the results of a survey of 100 Grade 12 mathematics students in a local high school.

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Discrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.

Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### Jan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 50-54)

Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0- Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample

### PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE

PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as

### EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS

EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

### Solving Equations. How do you know that x = 3 in the equation, 2x - 1 = 5?

Question: Solving Equations How do you know that x = 3 in the equation, 2x - 1 = 5? Possible answers to the question are: 1. If you use guess and check, the only number that works for x is 3. 2. Why should

### The fundamental question in economics is 2. Consumer Preferences

A Theory of Consumer Behavior Preliminaries 1. Introduction The fundamental question in economics is 2. Consumer Preferences Given limited resources, how are goods and service allocated? 1 3. Indifference

### A Few Basics of Probability

A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

### SAT Math Facts & Formulas Review Quiz

Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

### 1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S.

1 Probability Theory 1.1 Experiment, Outcomes, Sample Space Example 1 n psychologist examined the response of people standing in line at a copying machines. Student volunteers approached the person first

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative