# Calculus II MAT 146 Integration Applications: Area Between Curves

Save this PDF as:

Size: px
Start display at page:

Download "Calculus II MAT 146 Integration Applications: Area Between Curves" ## Transcription

1 Calculus II MAT 46 Integration Applications: Area Between Curves A fundamental application of integration involves determining the area under a curve for some interval on the x- or y-axis. In a previous chapter, we reviewed or learned for the first time various methods for evaluating integrals, including approximation techniques based on areas. When we study improper integrals, we will determine how to calculate areas over infinite-length x-axis or y-axis intervals and areas involving discontinuities within limits of integration. Here, as we consider applications of integration, we extend the idea of area under a curve to area between two curves.! g( x) for If f x all x on some closed interval [a,b], then the region bounded by f and g has area A, where A = b " ( f ( x)! g( x) ) dx a x = a x = b Example Calculate the area between y = x + and y =! x for! x!. y = f (x) y = g(x) 4.5 y = x + y = x a typical height: x + width:!x!! x a = b =

2 Step : Graph the two functions and identify the x-axis interval. This is useful in determining that x +! " x on! x!. Step : Sketch a typical within the bounded region. Determine the height and width of this typical. Label the dimensions. Step : Set up an appropriate integral to show the area of the typical. (!! x ) A = " x + dx The integral serves to sum the areas of an infinite number of the typical s packed into the x-axis interval from a = to b =. This is the length (height) of the typical. This is the width of the typical. Step 4: Evaluate the integral. Height x Width represents area calculation. A = " (( x + )! (! x) ) dx = x x " ( + x +) dx = + x # + x % % = 6 You can, of course, use a CAS, such as your TI-89 or an online app, to complete this calculation. Example Determine the area between the curves x!= y and x!= y on the interval, [ ]. a typical! x! height: x! width:!x

3 " x! ) Look at the graph to see that x! ) Sketch a typical and determine its area. Area = height! width " x " = # x " ) Build an integral that sums these areas. on! x!. (! x! ) % & 'x A = " x! dx 4) Evaluate the integral. A = " (( x!)! ( x!)) dx = x x " (! x) 4 dx = + x # % % = 6 Example Determine the area bounded by curves f (x) = x! 4.5 and g(x) =!x +. (,4) f( x) = ( x ).5 a typical (,) g( x) = x a =.5 b = The area of a typical is: Area = height! width = #("x + ) " ( x ") % & 'x To determine limits of integration, we need to determine the x-coordinates of the points of intersection f (x) = g(x) :!x + = ( x!) " x =!, x = (using TI-89 solve command)

4 Integrate: A = " (!x + )! ( x!) dx = "!x + x + dx = 9!! Example 4 Determine the area bounded by curves y = x! x + and y = x +. y = x x (,4).5 y = x + Area Rectangle! x + = " # x! x + one typical.5 (,) another typical.5 % &x Area Rectangle (,).5 = " # x +! x! x + % &x 4 a =.5 b = a = b =.5 Here, the graph shows two bounded regions. We also needed to determine two x-axis intervals, for integration. We solved x! x + = x + to determine the x-coordinates of the ordered-pair points of intersection noted in the figure. This leads to the following area calculation:! x + A = " # x! x + & % dx + " & # x +! = 4 + 4! x! x + % dx = 8 Notice, too, the symmetry of the graphs. The two bounded regions have equal area. Of course, we d need to formally justify that indeed there is such symmetry. Example 5 Calculate the area of the region bounded by x = y! and x =. Here, it may be more efficient to consider a typical oriented with respect to the y-axis. If so, we need integration limits on the y-axis. To

5 determine these (potential) y values, we set the two functions equal to each other and solve for y: y!= " y = ± These are the values for a and b shown in the plot accompanying this example. This generates the following area calculation, with y as the variable of integration: A = " #! y! & % dy =! Notice, too, that we could have transformed the functions into functions with x as the independent variable ( x = y! " y = ± x + ). The integral for area calculation with x as the independent variable is: A = " # x +! (! x + & )% dx = & x + dx = ' 6 * ) (, = +.!! Example 6 Determine the area of region R, between the curves y = cos (! x) and y =, where R is the first region to the right of the origin (i.e., x > ) bounded by the curves. We solve cos! x = to determine the smallest positive values of x that satisfy the equation: x = / and x = 5 /. This leads to

6 5 " A =! cos (! x % # & ' dx = + ).57 These examples help illustrate important steps you can carry out when calculating area between two curves: Graph the functions in question and identify the number of bounded regions as well as which function is greater than the other for each region. Determine the x-axis intervals (or y-axis intervals) for the bounded regions. The interval endpoints may be explicitly stated or can be determined using algebraic techniques, most typically by setting the two functions equation to each other. Draw in a typical and determine its area. This provides essential information for the area integral you need to create. For each bounded region, create a definite integral to represent the sum of the areas of an infinite number of typical s. Evaluate this integral to determine the area of each bounded region. Note that your TI-89 or other CAS can be a useful tool for several components of your solution process.

### GRAPHING IN POLAR COORDINATES SYMMETRY GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,

More information

### AP CALCULUS AB 2008 SCORING GUIDELINES AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

More information

### Graphing Quadratic Functions Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

More information

### Section 1.8 Coordinate Geometry Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

More information

### Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other

More information

### APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

More information

### (b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation (1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval

More information

### 7.3 Volumes Calculus 7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

More information

### AP Calculus BC 2003 Free-Response Questions AP Calculus BC 2003 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

More information

### AP Calculus BC 2013 Free-Response Questions AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

### AP Calculus AB 2010 Free-Response Questions AP Calculus AB 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

More information

### 55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of

More information

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

### AP Calculus AB 2004 Free-Response Questions AP Calculus AB 2004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be

More information

### MATHEMATICS Unit Pure Core 2 General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Wednesday 9 January 2008 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer

More information

### AP Calculus AB 2013 Free-Response Questions AP Calculus AB 2013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded

More information

### 1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

### Example 1. Example 1 Plot the points whose polar coordinates are given by Polar Co-ordinates A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points

More information

### AP Calculus AB 2006 Free-Response Questions AP Calculus AB 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

### AP Calculus BC 2010 Free-Response Questions AP Calculus BC 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

More information

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

More information

### Analyzing Piecewise Functions Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including

More information

### AP Calculus BC 2006 Free-Response Questions AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

### AP Calculus BC 2004 Free-Response Questions AP Calculus BC 004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be

More information

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

### a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12. MA123 Elem. Calculus Fall 2015 Exam 3 2015-11-19 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

More information

### Chapter 11 - Curve Sketching. Lecture 17. MATH10070 - Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson. Lecture 17 MATH10070 - Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx

More information

### Student Performance Q&A: Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

More information

### SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions All questions in the Math Level 1 and Math Level Tests are multiple-choice questions in which you are asked to choose the

More information

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

### Mathematics (Project Maths Phase 3) 2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300

More information

### Apr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,

More information

### Visualizing Differential Equations Slope Fields. by Lin McMullin Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should

More information

### Statistics Revision Sheet Question 6 of Paper 2 Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

More information

### Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

### Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

### LAB 4: APPROXIMATING REAL ZEROS OF POLYNOMIAL FUNCTIONS LAB 4: APPROXIMATING REAL ZEROS OF POLYNOMIAL FUNCTIONS Objectives: 1. Find real zeros of polynomial functions. 2. Solve nonlinear inequalities by graphing. 3. Find the maximum value of a function by graphing.

More information

### AP Calculus AB 2006 Scoring Guidelines AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

### Student Performance Q&A: Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

More information

### This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2. INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,

More information

### Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

### AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

### FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

### 4.4 CURVE SKETCHING. there is no horizontal asymptote. Since sx 1 l 0 as x l 1 and f x is always positive, we have SECTION 4.4 CURE SKETCHING 4.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x- and y-intercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal

More information

### MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

### AP Calculus AB 2012 Free-Response Questions AP Calculus AB 1 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

### Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

### USING YOUR TI-83/84 GRAPHING CALCULATOR. Part II: Graphing Basics USING YOUR TI-83/84 GRAPHING CALCULATOR Part II: Graphing Basics 2 The y= editor To enter a function into the calculator to be graphed, you must be in Function mode. Hit o There are ten storage locations

More information

### lim lim x l 1 sx 1 and so the line x 1 is a vertical asymptote. f x 2xsx 1 x 2 1 (2sx 1) x 1 SECTION 3.4 CURE SKETCHING 3.4 CURE SKETCHING EXAMPLE A Sketch the graph of f x. sx A. Domain x x 0 x x, B. The x- and y-intercepts are both 0. C. Symmetry: None D. Since x l sx there is no horizontal

More information

### 2015 Junior Certificate Higher Level Official Sample Paper 1 2015 Junior Certificate Higher Level Official Sample Paper 1 Question 1 (Suggested maximum time: 5 minutes) The sets U, P, Q, and R are shown in the Venn diagram below. (a) Use the Venn diagram to list

More information

### 1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

### Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

### Investigating Area Under a Curve Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

More information

### MATH 2300 review problems for Exam 3 ANSWERS MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

More information

### Engineering Math II Spring 2015 Solutions for Class Activity #2 Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the x-axis. Then find

More information

### Rational functions are defined for all values of x except those for which the denominator hx ( ) is equal to zero. 1 Function 5 Function Section 4.6 Rational Functions and Their Graphs Definition Rational Function A rational function is a function of the form that h 0. f g h where g and h are polynomial functions such Objective : Finding

More information

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

### Calculus AB 2014 Scoring Guidelines P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

More information

### AP Calculus AB 2003 Scoring Guidelines Form B AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

More information

### SL Calculus Practice Problems Alei - Desert Academ SL Calculus Practice Problems. The point P (, ) lies on the graph of the curve of = sin ( ). Find the gradient of the tangent to the curve at P. Working:... (Total marks). The diagram

More information

### Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

### COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving

More information

### 4 More Applications of Definite Integrals: Volumes, arclength and other matters 4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

More information

### AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

### Calculator Notes for the TI-Nspire and TI-Nspire CAS CHAPTER 11 Calculator Notes for the Note 11A: Entering e In any application, press u to display the value e. Press. after you press u to display the value of e without an exponent. Note 11B: Normal Graphs

More information

### 12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section

More information

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points? GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

More information

### AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and

More information

### Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

### Volumes of Revolution Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students

More information

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

### Practice Test - Chapter 1 Determine whether the given relation represents y as a function of x. 1. y 3 x = 5 2. When x = 1, y = ±. Therefore, the relation is not one-to-one and not a function. The graph passes the Vertical Line

More information

### Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)

More information

### 5-3 Polynomial Functions. not in one variable because there are two variables, x. and y y. 5-3 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the

More information

### AP Calculus BC 2012 Free-Response Questions AP Calculus BC 0 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

### Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

More information

### Quickstart for Web and Tablet App Quickstart for Web and Tablet App What is GeoGebra? Dynamic Mathematic Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

### Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

### National Quali cations 2015 H National Quali cations 05 X77/76/ WEDNESDAY, 0 MAY 9:00 AM 0:0 AM Mathematics Paper (Non-Calculator) Total marks 60 Attempt ALL questions. You may NOT use a calculator. Full credit will be given only

More information

### Functions and Equations Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

More information

### AP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB. AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods

More information

### Roots and Coefficients of a Quadratic Equation Summary Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

More information

### GRADE 5 SKILL VOCABULARY MATHEMATICAL PRACTICES Evaluate numerical expressions with parentheses, brackets, and/or braces. Common Core Math Curriculum Grade 5 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS Operations and Algebraic Thinking 5.0A What can affect the relationship between numbers? round decimals? compare decimals? What

More information

### 2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

More information

### 2. THE x-y PLANE 7 C7 2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

More information

### Practice Test - Chapter 1 Determine whether the given relation represents y as a function of x. 1. y 3 x = 5 When x = 1, y = ±. Therefore, the relation is not one-to-one and not a function. not a function 2. The graph passes the

More information

### Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0 College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

More information

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

More information

### Math Common Core Standards Fourth Grade Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

More information

### AP Calculus AB 2011 Free-Response Questions AP Calculus AB 11 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

More information

### Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

### Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and

More information

### TEACHER NOTES MATH NSPIRED Math Objectives Students will describe the relationship between the unit circle and the sine and cosine functions. Students will describe the shape of the sine and cosine curves after unwrapping the unit

More information

### Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information