# Waves Particles move in a perpendicular direction (right angles or 90 o ) to the direction of the wave:

Save this PDF as:

Size: px
Start display at page:

Download "Waves Particles move in a perpendicular direction (right angles or 90 o ) to the direction of the wave:"

## Transcription

1 chapter 1 Ultrasound Physics Sidney K. Edelman, Ph.D. ESP Ultrasound s Sound creates images by sending short bursts into the body. Thus we are concerned with the interaction of sound & media. Sound A type of wave that carries energy, not matter, from place to place. Created by the vibration of a moving object. Rhythmical variations in pressure or density. Comprised of compressions (increases in pressure or density) and rarefactions (decreases in pressure or density). Sound must travel through a medium, cannot travel through a vacuum. Sound is a mechanical, longitudinal wave. Waves Transverse Wave Particles move in a perpendicular direction (right angles or 90 o ) to the direction of the wave: direction of propagation of particles vibration Longitudinal Wave Particles move in the same direction as the wave: direction of propagation vibration of particles Edelman Ultrasound Physics Ultrasound Physics 1

2 Parameters describe sound waves: Period Frequency Speed Bigness (Amplitude, Power & Intensity) Wavelength Period Example The time required to complete a single cycle. The period of the moon circling the earth is 28 days. The period of class in high school may be 50 minutes. Units Typical Values second any unit of time 0.06 to 0.5 s Sound source No time one period 2 Ultrasound Physics ESP, Inc. 2013

3 Frequency The number of certain events that occur in a particular time duration. Simply, the reciprocal of period. Units per second, , Hertz, Hz second Ultrasound Audible Sound Infrasound Typical Values Note Sound source No A wave with a frequency exceeding 20,000Hz (20 khz). This frequency is so high that it is not audible. Heard by man, frequencies between 20Hz and 20,000Hz. Sound with frequencies less than 20Hz. This frequency is so low that it is not audible. From 2MHz to 15MHz Frequency affects penetration and axial resolution (image quality.) Intensity The concentration of energy in a sound beam. Units watts/square cm or watts/cm 2 Sound source (initially) Yes Intensity decreases as sound propagates through the body. Edelman Ultrasound Physics Ultrasound Physics 3

4 Wavelength The length or distance of a single cycle. Similar to the length of a single boxcar in a long train. Units mm - any unit of length Both the source and the medium No Wavelength influences axial resolution (image quality). Typical Values mm (in soft tissue) Higher frequency also means shorter wavelength Lower frequency also means longer wavelength. Higher Frequency Shorter Wavelength Lower Frequency Longer Wavelength Wavelengths in Soft Tissue In soft tissue, sound with a frequency of 1MHz has a wavelength of 1.54mm. In soft tissue, sound with a frequency of 2MHz has a wavelength of 0.77mm. Rule In soft tissue, divide 1.54mm by frequency in MHz. 1.54mm wavelength (mm) = frequency (MHz) 4 Ultrasound Physics ESP, Inc. 2013

5 Propagation Speed Units Note: The rate that sound travels through a medium. meters per second Medium only - Density and stiffness All sound, regardless of the frequency, travels at the same No speed through any specific medium. This means that sound with a frequency of 5MHz and sound with a frequency of 3MHz travel at the same propagation speed if they are traveling through the same medium. Typical Values Average speed of all sound (regardless of frequency) in biologic or soft tissue: 1,540 m/s = 1.54 m/s = 1.54mm / s lung (air) << fat < soft tissue << bone General Rule: gas (slower) < liquid < solid (faster) Tissue Type Speed (m/s) Air 330 Lung 300-1,200 Fat 1,450 Soft Tissue 1,540 Bone 2,000 4,000 Rule of Thumbs Stiffness is related to change in shape, squishability Density is related to weight Stiffness and Speed same direction Density and Speed opposite directions Edelman Ultrasound Physics Ultrasound Physics 5

6 The Skinny determined by sound source determined by both inversely related to each other period frequency Wavelength directly related to each other, changed by sonographer Bigness (amplitude, power & intensity) Speed determined by medium Review 1 1. What are the units of: a. wavelength b. frequency c. intensity d. propagation speed e. period 2. Does the medium or the sound source determine these parameters? a. wavelength b. frequency c. intensity d. propagation speed e. period 3. (True or False) Sound is a transverse, mechanical wave. 4. (True or False) A wave with a frequency of 15,000 MHz is ultrasonic. Answers 1a.millimeters 1b.Hertz 1c.Watts/cm 2 1d.meters/sec 1e.second 2a.both 2b.sound source 2c.sound source 2d.medium 2e.sound source 3. Sound is mechanical, but it is a longitudinal wave. 4 True. Ultrasound is defined as any wave with a frequency of greater than 20,000 Hertz. 6 Ultrasound Physics ESP, Inc. 2013

7 Review 2 1. Which of the following best describes line B? a. amplitude b. peak-to-peak amplitude c. frequency d. wavelength e. none of the above 2. Which of the following best describes line D? a. amplitude b. peak-to-peak amplitude c. frequency d. wavelength e. none of the above Answers 1.e 2.d 3.d 4.line D 5.line B 3. Which of the following best describes line D? a. amplitude b. peak-to-peak amplitude c. frequency d. period e. none of the above 4. Which of the lines above, A, B, C, or D, is most likely to be the reciprocal of frequency? 5. Which of the lines above, A, B, or C, is most likely to be determined by the source and the medium? Edelman Ultrasound Physics Ultrasound Physics 7

8 Review 3 1. A sound beam travels a total of 10 cm in 2 seconds. What is the speed of the sound in this medium? a. 10 cm/sec b. 2 cm/sec c. 5 cm/sec d. 0.2 cm/sec 2. (True or False) Propagation speed increases as frequency increases. 3. Medium 1 has a density of 9 and a stiffness of 6, while medium 2 has a density of 8 and a stiffness of 6. In which medium will sound travel slower? Answers 1.c 2.False 3.Medium 1 4. b 4. Which of the following characteristics will create the fastest speed of sound? a. high density, high stiffness b. low density, high stiffness c. high density, low stiffness d. low density, low stiffness 8 Ultrasound Physics ESP, Inc. 2013

### Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Parameters used to completely characterize a sound wave Describing Sound Waves Chapter 3 Period Frequency Amplitude Power Intensity Speed Wave Length Period Defined as the time it take one wave vibrate

### A pulse is a collection of cycles that travel together. the cycles ( on or transmit time), and. the dead time ( off or receive time)

chapter 2 Pulsed Ultrasound In diagnostic ultrasound imaging, short bursts, or pulses, of acoustic energy are used to create anatomic images. Continuous wave sound cannot create anatomic images. Analogy

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### Ultrasound Physics. ASCeXAM Review- 2011. Sidney K. Edelman, Ph.D. Director, ESP Ultrasound edelman@esp-inc.com 281-292-9400 www.esp-inc.

chapter 1 Ultrasound Physics ASCeXAM Review- 2011 Sidney K. Edelman, Ph.D. Director, ESP Ultrasound edelman@esp-inc.com 281-292-9400 www.esp-inc.com Definitions Sound A type of wave that carries energy

### PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

### Waves and Sound. AP Physics B

Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

### Waves Sound and Light

Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### Hunting Bats. Diagnostic Ultrasound. Ultrasound Real-time modality

Diagnostik Ultrasound Basic physics, image reconstruction and signal processing Per Åke Olofsson Dpt of Biomedical Engineering, Malmö University Hospital, Sweden Ultrasound Real-time modality 17-WEEK FETAL

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### Giant Slinky: Quantitative Exhibit Activity

Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the

### Waves. Overview (Text p382>)

Waves Overview (Text p382>) Waves What are they? Imagine dropping a stone into a still pond and watching the result. A wave is a disturbance that transfers energy from one point to another in wave fronts.

Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

### 1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

### physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

### Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

### Basics of Ultrasound Imaging

2 Basics of Ultrasound Imaging Vincent Chan and Anahi Perlas Introduction... Basic Principles of B-Mode US... Generation of Ultrasound Pulses... Ultrasound Wavelength and Frequency... Ultrasound Tissue

### Chapter 17: Change of Phase

Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

### Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### 16.2 Periodic Waves Example:

16.2 Periodic Waves Example: A wave traveling in the positive x direction has a frequency of 25.0 Hz, as in the figure. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave. 1

### It s shape. Sound Beams foundation for a basic understanding. Anatomy of the beam. Focus. Near Zone. Focal Length. Chapter 10

It s shape Sound Beams foundation for a basic understanding It begins the size or diameter of the transducer gradually converges to a narrower point then begins to diverge Chapter 10 Anatomy of the beam

### FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to :

1 Candidates should be able to : ULTRASOUND Describe the properties of ultrasound. ULTRASOUND is any sound wave having a frequency greater than the upper frequency limit of human hearing (20 khz). Describe

### Chapter 21 Study Questions Name: Class:

Chapter 21 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If a fire engine is traveling toward you, the Doppler

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### Kinetic Theory. Energy. Transfers and Efficiency. The National Grid

AQA P1 Revision Infrared Radiation Heating and Insulating Buildings Kinetic Theory Energy Transfers and Efficiency Energy Transfer by Heating Transferring Electrical Energy Generating Electricity The National

### UNIT 1: mechanical waves / sound

1. waves/intro 2. wave on a string 3. sound waves UNIT 1: mechanical waves / sound Chapter 16 in Cutnell, Johnson: Physics, 8th Edition Properties of waves, example of waves (sound. Light, seismic), Reflection,

Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

### 08/19/09 PHYSICS 223 Exam-2 NAME Please write down your name also on the back side of this exam

08/19/09 PHYSICS 3 Exam- NAME Please write down your name also on the back side of this exam 1. A sinusoidal wave of frequency 500 Hz has a speed of 350 m/s. 1A. How far apart (in units of cm) are two

### Light (and other electromagnetic radiation) and Sound

Light (and other electromagnetic radiation) and Sound Introduction Teacher Guidelines L1-3 Light and sound can seem mysterious. It is easy to know when light and sound are present and absent but difficult

### Acoustics: the study of sound waves

Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

### General Physics (PHY 2130)

General Physics (PHY 2130) Lecture 28 Waves standing waves Sound definitions standing sound waves and instruments Doppler s effect http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture:

### Section 1 Electromagnetic Waves

Section 1 Electromagnetic Waves What are electromagnetic waves? What do microwaves, cell phones, police radar, television, and X-rays have in common? All of them use electromagnetic waves Electromagnetic

### Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

### Ch 25 Chapter Review Q & A s

Ch 25 Chapter Review Q & A s a. a wiggle in time is called? b. a wiggle in space & time is called? a. vibration b. wave What is the period of a pendulum? The period is the time for 1 cycle (back & forth)

### Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

### Periodic Wave Phenomena

Name: Periodic Wave Phenomena 1. The diagram shows radar waves being emitted from a stationary police car and reflected by a moving car back to the police car. The difference in apparent frequency between

### Introduction to Waves. Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f)

Introduction to Waves Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f) Use the PowerPoint to fill in the Waves graphic organizer as we discuss the characteristics

### Ultrasonic Wave Propagation Review

Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic

### Grade 8 Science Chapter 4 Notes

Grade 8 Science Chapter 4 Notes Optics the science that deals with the properties of light. Light a form of energy that can be detected by the human eye. The History of Optics (3 Scientists): 1. Pythagoras

### v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

### AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

### Level 3 Science, 2008

90732 3 907320 For Supervisor s Level 3 Science, 2008 90732 Describe selected properties and applications of EMR, radioactive decay, sound and ultrasound Credits: Four 2.00 pm Thursday 20 November 2008

### Various Technics of Liquids and Solids Level Measurements. (Part 3)

(Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,

### Lecture 1. The nature of electromagnetic radiation.

Lecture 1. The nature of electromagnetic radiation. 1. Basic introduction to the electromagnetic field: Dual nature of electromagnetic radiation Electromagnetic spectrum. Basic radiometric quantities:

### Acousto-optic modulator

1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

### Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

Experiment 1: SOUND Introduction Sound is classified under the topic of mechanical waves. A mechanical wave is a term which refers to a displacement of elements in a medium from their equilibrium state,

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

### The Physics of Guitar Strings

The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

### Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Sound and Waves: 4.D.1A Introduction to Sound and Waves

### Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

Wave Properties Student Worksheet Answer the following questions during or after your study of Wave Properties. 1. A person standing 385 m from a cliff claps her hands loudly, only to hear the sound return

### MAKING SENSE OF ENERGY Electromagnetic Waves

Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

### Waves - EM spectrum, wave characteristics, wavespeed, ray diagrams

Waves - EM spectrum, wave characteristics, wavespeed, ray diagrams 47 minutes 47 marks Page of 50 Q. (i) Use the words frequency, wavelength and wave speed to write an equation which shows the relationship

### Using light scattering method to find The surface tension of water

Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

### Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

### 5-Minute Refresher: SOUND AND HEARING

5-Minute Refresher: SOUND AND HEARING Sound Key Ideas Sound is a type of energy that involves the vibration of molecules in a medium, such as air or water. Sound is transmitted through a medium as a pressure

### Robot Perception Continued

Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

### UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BMMC (2011 Admission) V SEMESTER CORE COURSE AUDIO RECORDING & EDITING QUESTION BANK 1. Sound measurement a) Decibel b) frequency c) Wave 2. Acoustics

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

### Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

### The Nature of Sound Waves

Name: The Nature of Sound Waves Read from Lesson 1 of the Sound and Music chapter at The Physics Classroom: http://www.physicsclassroom.com/class/sound/u11l1a.html http://www.physicsclassroom.com/class/sound/u11l1b.html

### Solution Derivations for Capa #13

Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### Experiment 5. Lasers and laser mode structure

Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

### EXPERIMENTING WITH SLINKY SPRINGS: INVESTIGATION 1. To measure the velocity of a pulse (transverse) travelling through a slinky spring

EXPERIMENTING WITH SLINKY SPRINGS: INVESTIGATION 1 Method: To measure the velocity of a pulse (transverse) travelling through a slinky spring To calculate velocity, we can use: velocity = distance or v

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Phys 2310 Wed. Sept. 21, 2016 Today s Topics

Phys 2310 Wed. Sept. 21, 2016 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

### Scheme of Work 9 Picture this. Overall learning objectives. Overall learning outcomes. Curriculum learning objectives

Scheme of Work 9 Page 1/8 Overall learning objectives Developing a sense of scale and proportion with regard to measurement of frequency. Understanding of concepts of sound and ultrasound with use of wave

### PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ \$%!7Î= "'!*7/>/

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X-rays, which have frequencies in the range 0 8 0 2 Hz are already marked

### Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA Phone: (847)

### 10ème Congrès Français d'acoustique Lyon, 12-16 Avril 2010

ème Congrès Français d'acoustique Lyon, -6 Avril Finite element simulation of the critically refracted longitudinal wave in a solid medium Weina Ke, Salim Chaki Ecole des Mines de Douai, 94 rue Charles

### The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology

The Effects of Ultrasonic Sound Generated by Ultrasonic Cleaning Systems on Human Hearing and Physiology Questions about the effects of ultrasonic energy on hearing and other human physiology arise from

### Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

### Resonance in a Closed End Pipe

Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

### The Electromagnetic Spectrum

The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

### Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Physiological Basis of Hearing Tests By Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Introduction Def: Hearing is the ability to perceive certain pressure vibrations in the

### Simple Pendulum 10/10

Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,

### PRODUCTION OF ULTRASONIC WAVE

ULTRASONICS Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing - pulse echo system through transmission and reflection modes - A,B and C

### Ultrasound. - Dosimetry. Gail ter Haar. Joint Physics Department, Royal Marsden Hospital: Institute of Cancer Research, Sutton, Surrey UK

Ultrasound - Dosimetry Gail ter Haar Joint Physics Department, Royal Marsden Hospital: Institute of Cancer Research, Sutton, Surrey UK Measurable in water Exposure Reduced by: tissue acoustic properties

### E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

### Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

### Antonio Rampoldi Struttura Complessa di Radiologia Interventistica Azienda Ospedale Niguarda Ca Granda, Milano. Terminology

Biophysical principles and clinical applications of MRgFUS Alberto Torresin Struttura Complessa di Fisica Sanitaria Azienda, Milano Università degli Studi di Milano Dip. di Fisica Antonio Rampoldi Struttura

### Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN

Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Outline Notions

### Superposition and Standing Waves. Solutions of Selected Problems

Chapter 18 Superposition and Standing Waves. s of Selected Problems 18.1 Problem 18.8 (In the text book) Two loudspeakers are placed on a wall 2.00 m apart. A listener stands 3.00 m from the wall directly

### Yerkes Summer Institute 2002

Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time

### P1 4. Waves and their uses

P 4. Waves and their uses P 8 minutes 8 marks Answer all questions using any and all resources. Page of 38 Q. Diagram shows four of the seven types of wave in the electromagnetic spectrum. Diagram J K

### INTERFERENCE OF SOUND WAVES

1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.