Lecture 6: Properties of ROC and Inverse z-transform

Size: px
Start display at page:

Download "Lecture 6: Properties of ROC and Inverse z-transform"

Transcription

1 EE58 Digital Signal Processing University of Washington Autumn Dept. of Electrical Engineering Lecture 6: Properties of ROC and Inverse z-transform Oct 7, Prof: J. Bilmes TA: Mingzhou ng 6. Properties of ROC (continued) More on Property 5 x[n] is a right sided sequence and x[n] = for n < N. Let r such that x[n] r n n= = x[n] r n < n=n Now see if Consider r r and let r = cr for c. {z : z = r } ROC {z : z > r } ROC x[n] r n n=n = x[n] (cr ) n n=n = x[n] c n r n n=n c N + n= x[n] r n + c N n=n x[n] c n r n n= x[n] r n =A x[n] r n < ( {z : z = r } ROC) n=n where A = ( r r ) N. which means x[n] r n < n=n {z : z > r } ROC Property 7. If x[n] is two sided sequence, and if the circle z = r is in ROC, then the ROC will consist of a ring in the z-plane which includes z = r. Why? x[n] = x L [n] + x R [n] 6-

2 6- where x L [n] is a left sided sequence and x R [n] is a right sided sequence. ROC for x R [n] is bounded inside by outmost pole of X R (z). ROC for x L [n] is bounded outside by innermost pole of X L (z). Add the two together. Either the two ROC s overlap, which is a ring shaped ROC for x[n], or there is no ROC for x[n]. Property 8. ROC must be a connected region. Note from Property 7, any sequence is the sum of a left sided sequence and a right sided sequence. if intersection exists, it must be formed by d R < z < d L Hence, poles determine possible types of ROC s. When there are two poles d and d, and d < d, there are three possible ROC candidates, i.e. ROC ={z : z < d } ROC ={z : d < z < d } ROC 3 ={z : d < z } 3 log( H(z) ) Re z 3 Im z Figure 6.: A z-transform H(z) =.z +.88z.8z +.6z with poles around. ± j.698 and zeros around. ± j. 6. Inverse z-transform z-transform is n= x[n]z n Let z = re jω n= x[n](re jω ) n = n= x[n]r n e jωn = X(re jω ) = FT {x[n]r n }

3 6-3 Then FT {X(re jω )} = x[n]r n x[n] =r n FT {X(re jω )} =r n π X(re jω )e jωn dω π π = π X(re jω )(re jω ) n dω π π Since z = re jω, that is, dz = jre jω dω = jzdω dω = j z dz Therefore, x[n] = π X(z)z n dz π j π But r can be anything inside the ROC. The inverse z-transform equation can be written as x[n] = X(z)z n dz (6.) π j c The contour integral c is performed at a counter-clockwise closed circular contour centered at the origin with radius r, for all r such that {z : z = r} ROC Another way to derive this. Theorem 6. (Cauchy Integral Theorem). z k dz = π j c { k = k (6.) Proof. See Churchill & Brown (98), Introduction to Complex Variables. Consider X(z)z n dz = π j c π j c = = k= k= =x[n] k= x[k]z k+n dz x[k] z k+n dz π j c x[k]δ[n k] ( Cauchy Integral Theorem) Note: the result is valid for both positive and negative values of n. Note: for z = e jω, this reduces to inverse FT, since X(z)z n dz π j c since dz = jre jω dω. How to calculate this in general? z=e jω = π X(e jω )e jωn e jω je jω dω π j π

4 6- Theorem 6. (Cauchy Residue Theorem). Proof. See Churchill & Brown (98). x[n] = X(z)z n dz = π j [residues of X(z)z n at poles inside c] (6.3) c Finding residues (to be defined shortly) is often difficult. But if X(z)z n is a rational function of z, X(z)z n = If X(z)z n has s poles at z = d and Ψ(z) has no poles at z = d, then Residue [X(z)z n at z = d ] = Ψ(z) (z d ) s (6.) (s )! [ d s ] Ψ(z) dz s z=d (6.5) if s = (st order pole), then Residue [X(z)z n at z = d ] = Ψ(d ) Find the inverse z-transform of x[n] = π j c az z > a z n dz = az π j c z n z a dz The radius of contour must be greater than a since the contour has to be in ROC. We will consider the contour integral for n and n < separately.. n There is only one pole at z = a, i.e., Ψ(z) = z n and Ψ(a) = a n. Therefore since s = and no derivative is necessary.. n < z n has only one pole at z = a z a x[n] = a n n There are multiple order poles at z =, with the order depending on n. There is one pole at z = a. When n =, there are a st order pole at z = and a st order pole at z = a. residues sum to, i.e., Residue [X(z)z n n= at z = a] = a ( Ψ(z) = z n ) Residue [X(z)z n n= at z = ] = a ( Ψ(z) = z a ) x[ ] = When n =, there are two poles at z = and one pole at z = a. X(z)z n = z z a = Ψ (z) (z a) = Ψ (z) (z ) with Ψ (z) = z and Ψ (z) = (z a)

5 6-5 (Pole at z = a, s = ) (Pole at z =, s = ) Residue [X(z)z n n= at z = a] = Ψ (a) = a Residue [X(z)z n n= at z = ] = d dz Ψ (z) = d z= dz z= (z a) = (z a) z= = a Residues cancel out again, so We can continue this for x[ 3],x[ ], x[ ] = Easier Ways to Compute Inverse z-transform Inspection. Use z-transform table. if x[n] is a right sided sequence. so a n Z u[n] az z > a 3 z Z ( ) n u[n] = x[n] 3 a z + a z a < z < a x[n] = a n u[n] an u[ n ] since ROCs of each of the terms in X(z) must overlap for the existence of X(z). Partial Fraction Expansion. (There are some nice forms of z-transform that we can get their inverse relatively easily.) When We can factor the denominator and numerator and get P(z) Q(z) = M k= b kz k N k= a kz k (6.6) b a M k= ( c kz ) N k= ( d kz ) (6.7). N > M and the poles are all first order poles (i.e., all the poles are unique). N k= A k d k z (6.8) Note: since A k = ( d k z )X(z) z=dk (6.9) ( d k z ) A k + N l k,l= A l ( d k z ) d l z

6 6-6 and 3 z + 8 z = ( z )( z ) = A z + A z A = ( z )X(z) z= = A = ( z )X(z) z= = Z z x[n] = z ( ) n u[n] ( ) n u[n]. N M and the poles are all first order poles (i.e., all the poles are unique). M k= b kz k M N N k= a kz k = B r z r + r= N k= A k d k z (6.) The first term is obtainable by long division (example later). The second term is obtainable by the same procedure used when N > M. In general where max(m N,) r= max(m N,) = r= B r z r + M k= b kz k N k= a kz k (M < N) B r z r + N u S i i= k= A ik d i z N u # of unique poles in denominator S i = order of i-th pole B r is obtained as before (6.) A ik = (s i k)!( d i ) s i k [ d s i k dw s i k ( ( di w) s i X(w ) )] w=di We can verify this by multiplying both sides of X(z) by ( d i z ) s i and following the above operations. Power Series Expansion. then z z + z x[n] = δ[n + ] δ[n + ] δ[n] + δ[n ] (6.) Power series. log( + az ) = n= ( ) n+ a n z n n Z x[n] = { ( ) n+ a n n n n Long Division. +.z +.z.z = +.6z.5z +.z 3 +

7 6-7 Then x[n] = n < x[] = x[] =.6 x[] =.5 x[3] =..

The Z transform (3) 1

The Z transform (3) 1 The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

Lecture 5 Rational functions and partial fraction expansion

Lecture 5 Rational functions and partial fraction expansion S. Boyd EE102 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper rational functions

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

1.2 Linear Equations and Rational Equations

1.2 Linear Equations and Rational Equations Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

More information

Lecture 18: The Time-Bandwidth Product

Lecture 18: The Time-Bandwidth Product WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics

More information

Availability of a system with gamma life and exponential repair time under a perfect repair policy

Availability of a system with gamma life and exponential repair time under a perfect repair policy Statistics & Probability Letters 43 (1999) 189 196 Availability of a system with gamma life and exponential repair time under a perfect repair policy Jyotirmoy Sarkar, Gopal Chaudhuri 1 Department of Mathematical

More information

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

More information

Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

More information

1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms

1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms .5 / -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de.5 Transforms Using different summation and integral transformations pmf, pdf and cdf/ccdf can be transformed in such a way, that even

More information

arxiv:math/0601660v3 [math.nt] 25 Feb 2006

arxiv:math/0601660v3 [math.nt] 25 Feb 2006 NOTES Edited by William Adkins arxiv:math/666v3 [math.nt] 25 Feb 26 A Short Proof of the Simple Continued Fraction Expansion of e Henry Cohn. INTRODUCTION. In [3], Euler analyzed the Riccati equation to

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

More information

Solving Linear Equations - Fractions

Solving Linear Equations - Fractions 1.4 Solving Linear Equations - Fractions Objective: Solve linear equations with rational coefficients by multiplying by the least common denominator to clear the fractions. Often when solving linear equations

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 04 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March 8, 05 Notes: Notation: Unlessotherwisenoted,x, y,andz denoterandomvariables, f x

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

1. s to Z-Domain Transfer Function

1. s to Z-Domain Transfer Function 1. s to Z-Domain Transfer Function 1. s to Z-Domain Transfer Function Discrete ZOH Signals 1. s to Z-Domain Transfer Function Discrete ZOH Signals 1. Get step response of continuous transfer function y

More information

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008 Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the input-output

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Fast Fourier Transform: Theory and Algorithms

Fast Fourier Transform: Theory and Algorithms Fast Fourier Transform: Theory and Algorithms Lecture Vladimir Stojanović 6.973 Communication System Design Spring 006 Massachusetts Institute of Technology Discrete Fourier Transform A review Definition

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

GREATEST COMMON DIVISOR

GREATEST COMMON DIVISOR DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Lecture 4: Partitioned Matrices and Determinants

Lecture 4: Partitioned Matrices and Determinants Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying

More information

25 Integers: Addition and Subtraction

25 Integers: Addition and Subtraction 25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Multiplication and Division with Rational Numbers

Multiplication and Division with Rational Numbers Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up

More information

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

More information

2.4 Real Zeros of Polynomial Functions

2.4 Real Zeros of Polynomial Functions SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Discrete-Time Signals and Systems

Discrete-Time Signals and Systems 2 Discrete-Time Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

Throughout this text we will be considering various classes of signals and systems, developing models for them and studying their properties.

Throughout this text we will be considering various classes of signals and systems, developing models for them and studying their properties. C H A P T E R 2 Signals and Systems This text assumes a basic background in the representation of linear, time-invariant systems and the associated continuous-time and discrete-time signals, through convolution,

More information

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about. Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

More information

NETWORK STRUCTURES FOR IIR SYSTEMS. Solution 12.1

NETWORK STRUCTURES FOR IIR SYSTEMS. Solution 12.1 NETWORK STRUCTURES FOR IIR SYSTEMS Solution 12.1 (a) Direct Form I (text figure 6.10) corresponds to first implementing the right-hand side of the difference equation (i.e. the eros) followed by the left-hand

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X

Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random

More information

Constant Elasticity of Variance (CEV) Option Pricing Model:Integration and Detailed Derivation

Constant Elasticity of Variance (CEV) Option Pricing Model:Integration and Detailed Derivation Constant Elasticity of Variance (CEV) Option Pricing Model:Integration and Detailed Derivation Ying-Lin Hsu Department of Applied Mathematics National Chung Hsing University Co-authors: T. I. Lin and C.

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Sample Solutions for Assignment 2.

Sample Solutions for Assignment 2. AMath 383, Autumn 01 Sample Solutions for Assignment. Reading: Chs. -3. 1. Exercise 4 of Chapter. Please note that there is a typo in the formula in part c: An exponent of 1 is missing. It should say 4

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Circles - Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points

More information

HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY. Received June 1, 2007; revised September 30, 2007

HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY. Received June 1, 2007; revised September 30, 2007 Scientiae Mathematicae Japonicae Online, e-007, 739 755 739 HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY Yoshinori Kametaka, Kazuo Takemura, Hiroyuki Yamagishi, Atsushi

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

TSI College Level Math Practice Test

TSI College Level Math Practice Test TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

CONTENTS. Please note:

CONTENTS. Please note: CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

More information

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those 1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

More information

Calculate the value of π

Calculate the value of π Rakesh Goel CEO, SK Dynamics P. Ltd., B5 Industrial Estate, Roorkee 247 667 I. Abstract: π is a constant extensively used in Mathematics and application of mathematics in Physics etc. In fact, π is considered

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Luigi Piroddi Active Noise Control course notes (January 2015)

Luigi Piroddi Active Noise Control course notes (January 2015) Active Noise Control course notes (January 2015) 9. On-line secondary path modeling techniques Luigi Piroddi piroddi@elet.polimi.it Introduction In the feedforward ANC scheme the primary noise is canceled

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

COMPLEX NUMBERS AND SERIES. Contents

COMPLEX NUMBERS AND SERIES. Contents COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Section 3-3 Approximating Real Zeros of Polynomials

Section 3-3 Approximating Real Zeros of Polynomials - Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros

More information

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes) NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +

More information

SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

CAMI Education linked to CAPS: Mathematics

CAMI Education linked to CAPS: Mathematics - 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

More information

GCE. Mathematics. Mark Scheme for June 2012. Advanced GCE Unit 4725: Further Pure Mathematics 1. Oxford Cambridge and RSA Examinations

GCE. Mathematics. Mark Scheme for June 2012. Advanced GCE Unit 4725: Further Pure Mathematics 1. Oxford Cambridge and RSA Examinations GCE Mathematics Advanced GCE Unit 4725: Further Pure Mathematics 1 Mark Scheme for June 2012 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Partial Fractions Decomposition

Partial Fractions Decomposition Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

More information

3.1 State Space Models

3.1 State Space Models 31 State Space Models In this section we study state space models of continuous-time linear systems The corresponding results for discrete-time systems, obtained via duality with the continuous-time models,

More information