Introduction (Read Before Lab up to Experimental Procedure) Snell s Law

Size: px
Start display at page:

Download "Introduction (Read Before Lab up to Experimental Procedure) Snell s Law"

Transcription

1 GEOMETRIC OPTICS Introduction (Read Before Lab up to Experimental Procedure) In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric optics to systems of thin lenses, and examine the operation of various optical instruments: the human eye, a microscope and telescope. Snell s Law The index of refraction n of a material is defined to be n = speed of light in vacuum speed of light in medium = c v. (1) For air, n is very close to 1. Note that greater index of refraction implies a smaller speed of light. (Some meticulous physicists want us to note that there is no single index of refraction, since it s really wavelength dependent. We ll only be working with visible light today, so you can think of our n as an average value for the 400 to 700 nm region of the spectrum.) For a light beam passing from medium 1 to medium 2 as in Figure 1, Snell s law is n 1 sin θ 1 = n 2 sin θ 2, (2) where n 1 and n 2 are the indices of refraction of the two materials, and θ 1 and θ 2 are the angles of the light ray from the perpendicular to the interface. Figure1: A ray of light at an interface Thin Lenses The basic equation we will use is the thin lens equation: 1 s + 1 = 1, (3) s' f where s is the distance from the object to the center of the lens, s' is the distance from the center of the lens to the image, and f is the focal length of the lens. An illustration for a converging lens is given in Figure 2.

2 Figure 2: A converging lens with real image I and object O. In this illustration, s, s', and f are all positive. The rays converge at the image point s', forming an image: a region of space from which light rays emanate as though there were an object there. Note that this image is inverted it is upside down compared to the original object. Right-side up images are said to be erect. Images also can be different sizes in general from the original object (an effect called magnification even though the image can be larger or smaller than the object). If we place a screen at s', we will observe an image of the object. The image is thus said to be real, meaning the rays of light actually converge to those points in space and hence the image can be displayed on a screen. Examples of real images are those created by a computer projector or the lens and cornea of the human eye. The magnification is defined to be the ratio of the image height to the object height. If the image is inverted, then the magnification is negative. For a thin lens, the magnification M is given by M = s' s. (4) Figure 3: A converging lens with a virtual image. Images can also be virtual: even though the rays of light appear to emanate from a region of space, there is no point at which the rays of light actually converge and at which a real image can be captured. To see how this can be true, look at the illustration of a virtual image in figure 3. In this example, s and f are positive, but s' is negative. If you were to look from the right-hand side through the lens, the image would appear to be at s', even though the light rays are not converging at s'. If we were to place a screen at s', we would not observe an image of the object on the screen. (Note that this image is also erect.) Virtual images are formed by magnifying glasses, binoculars, and microscopes and telescopes with eyepieces. The refractive power P of a lens is commonly given in diopters, P = 1, (5) f

3 where f is the focal length expressed in meters. Thus a lens with P = 20 has a focal length of f = 1/20 m = 0.05 m, or 5 cm. The power P is positive for a converging lens, and negative for a diverging lens. A typical prescription for a person who is mildly nearsighted would be a diverging lens with P = 2, or f = 50cm. Combinations of Thin Lenses Combinations of thin lenses can be handled by successive application of the thin lens equation to each of the lenses. A real image formed by one lens can serve as the object for another. We examine two useful lens combinations below. The arrangement in figure 3 above corresponds to a simple magnifier. An object placed just inside the focal length of the converging lens gives rise to a magnified, virtual image. A similar principle is used in the compound microscope. We first use a converging lens to form a real, inverted image, as in figure 2. This lens is called the objective, and typically has a short focal length. We then use a simple magnifier, called the eyepiece, to enlarge this image. The best results are obtained when the object is placed just outside the focal distance of the objective, and the image formed by the objective is just inside the focal distance of the eyepiece. This means that the distance between the two lenses is much greater than the sum of the two focal lengths. (Once you have your microscope built, notice whether it s really magnifying or not.) Do you have a real or inverted image? Which do you want? The principles behind the refracting telescope are similar to those behind the compound microscope. However, the object is now assumed to be very far away, so light rays from the object are essentially parallel. The objective typically has a long focal length. The eyepiece is again used to magnify the image formed by the objective. The distance between the two lenses is approximately equal to the sum of the two focal lengths. Anatomy of the Human Eye The human eye forms an optical image that stimulates special nerve cells, creating the sensation of sight. The eye consists of an aperture and lens system at the front, and a light-sensitive surface at the back. Light enters the eye through the aperture-lens system, and is focused on the back wall. The lens system consists of two lenses: the corneal lens on the front surface of the eye, and the crystalline lens inside the eye. The space between the lenses is filled with a transparent fluid called the aqueous humor. Also between the lenses is the iris, an opaque, colored membrane. At the center of the iris is the pupil, a muscle-controlled, variable-diameter hole, or aperture, which controls the amount of light that enters the eye. The interior of the eye behind the crystalline lens is filled with a colorless, transparent material called the vitreous humor. On the back wall of the eye is the retina, a membrane containing light-sensitive nerve cells known as rods and cones. Rods are very sensitive to low light levels, but provide us only with low-resolution black-and-white vision. Cones allow us to see in color at higher resolution, but they require higher light levels. The fovea, a small area near the center of the retina, contains only cones and is responsible for the most acute vision. Surrounding the fovea is the sensitive region called the macula, which is

4 responsible for central vision. Signals from the rods and cones are processed in a neural network in the retina before being carried by nerve fibers to the optic nerve, which leads to the brain. The optic nerve connects to the back of the eye; there are no light-sensitive cells at the point where it attaches, resulting in a blind spot. cameras. Still and video cameras use the same basic optical design as the human eye. Cameras of course have lenses that move mechanically back and forth rather than being fixed in place like the crystalline lens and cornea, and they sense light with electronic sensors or film rather than a retina, but the optical design issues you learn here will apply to Optics of the Eye The corneal lens and crystalline lens together act like a single convergent lens. Light entering the eye from an object passes through this lens system and forms an inverted, real image on the retina. The eye focuses on objects at varying distances by accommodation, or the use of muscles to change the curvature, and thus the focal length, of the crystalline lens. In its most relaxed state, the crystalline lens has a long focal length, and the eye can focus the image of a distant object on the retina. The farthest distance at which the eye can accommodate is called the far point for distinct vision. For a normal eye, the far point is infinity. When muscles in the eye contract and squeeze the lens, the center of the lens bulges, causing the focal length to shorten, and allowing the eye to focus on closer objects. The nearest distance at which they eye can accommodate is called the near point for distinct vision. The near point of a normal eye is about 25 cm.

5 Experimental Procedure Experiment 1: Snell s law The configuration for determining the index of refraction of the glass is shown in Figure 4. Figure 4: Determining n from Snell s law The light is refracted upon entering the semicircle of glass. However, since the light exits the glass perpendicular to the interface, it is not refracted a second time. Thus, you need only consider refraction at the first interface. 1) For at least 3 different incident angles, determine the index of refraction of the glass from measurements of the angles of incidence and refraction of the laser beam. Take the average of your measurements as the best estimate of n. 2) Determine how to measure the angle of total internal reflection using this apparatus. Find out what the critical angle is using your design. Experiment 2: The thin lens equation For each of these experiments, be sure to draw the configuration of the lenses, light source, and screen in your notes. Record whether the image is real or virtual, and whether it is inverted or erect. Measure the actual focal length of each of your lenses, as it may differ from the nominal value. 1. Single converging lens Real Image. Use either the P = 10 or P = 20di lens. Place the object light source outside the focal length of the lens, as in Figure 2 above. Find the image point s such that the image is focused on the screen. For at least 3 different object distances, determine s and the magnification M. Compare your answers with the expected values. 2. Single converging lens Virtual Image. Use the P = 10di lens. Place the object light source inside the focal length of the lens, as in Figure 3 above. Record whether the virtual image is inverted or erect.

6 Object Lens 1 Lens 2 Image d d d Figure 5: The arrangement and notation for parts 3 and 4 3. Compound Systems. Use the P = 10 and P = 20di converging lenses to form a real erect image of the arrow. Make sure that the lenses are separated by a distance greater than the sum of their focal lengths. Find the location of the image. Measure the distances from the object to the first lens, between the lenses, and the distance from the second lens to the image. Compare the image distance to the predicted value. Measure the magnification M of the image and compare to the predicted value. 4. Refractor telescope. Build a refractor telescope. Use the large P = 2di lens for the objective and the P = 20di lens for the eyepiece. Try your telescope on several distant objects out the window. Record the configuration that works best for you. Record whether the image is real or virtual, and whether it is erect or inverted. Your human eye model The PASCO Human Eye Model consists of a sealed plastic tank shaped roughly like a horizontal cross section of an eyeball. A permanently mounted plano-convex glass lens on the front of the eye model acts as the cornea. The tank is filled with water, which models the aqueous and vitreous humors. The crystalline lens of the eye is modeled by a changeable lens behind the cornea. A movable screen at the back of the model represents the retina.

7 The lenses of the eye model are equipped with handles, which allow them to be easily inserted into the water. The handles of the plastic lenses are marked with their focal lengths in air. Two of the lenses are cylindrical lenses for causing and correcting astigmatism in the model; these can be identified by notches on their edges that mark the cylindrical axes. WARNING: DO NOT wipe or rub the lenses with a cloth or tissues to dry or clean them. They are plastic and easily scratched. We will provide blowoff guns you can use to dry them off. The crystalline lens, which is supported in the slot labeled SEPTUM, can be replaced with different lenses to accommodate, or focus, the eye model at different distances. Two other slots behind the cornea, labeled A and B, can hold additional lenses to simulate changing the power of the crystalline lens. A cylindrical lens can be placed in slot A or B to give the eye astigmatism. The pupil aperture can also be placed into slot A or B to demonstrate the effect of a round or cat-shaped pupil. Two slots in front of the cornea, labeled 1 and 2, can hold simulated eyeglasses lenses to correct for near-sightedness, far-sightedness, and astigmatism. The retina screen can be placed in three different positions (labeled NORMAL, NEAR, and FAR) to simulate a normal, near-sighted, or farsighted eye.

8 Experiment 3: Image formation 1. Put the retina screen in the NORMAL slot and the +120 mm lens in the SEPTUM slot. 2. Fill the model with water. This simulates the effect of the aqueous and vitreous humors that actually fill the eyeball. 3. Aim the eye at a bright, distant object such as objects outside a window. A real image should be formed on the retina screen. Observe and record the orientation of the image relative to the object (up/down, left-right). Why are you not aware of any reversals of the retinal image compared to the real-life object in your own eyes? This experiment simulates what happens for normal vision, when the eye muscles are fully relaxed, and the eye can image distant objects using its longest focal length configuration. Experiment 4: Focusing at different distances: Accommodation In the process of accommodation, muscles in the eye change the shape of the crystalline lens to change its focal length so as to image close objects. Accommodation in the eye model is simulated by changing the lens or lenses that represent the crystalline lens. You will now simulate what happens for normal vision when the eye muscles exert force on the lens, causing it to curve and shorten its focal length to allow closer objects to be in focus. 1. Place the eye model about 35 cm from the light source you used in the first lens experiments and object. Replace the +120 mm lens with the shorter focal length +62 mm lens in the SEPTUM slot. 2. Is the image in focus now? Describe the image on the retina screen as you move the eye model back and forth. Move the eye model as close as possible to the light source while keeping the image in focus. 3. Measure the object distance, o, from the screen of the light source to the top rim of the eye model, as pictured below. (The front of the rim is a convenient place to measure to and marks the center of the eye model s two-lens system.) Record this distance, which is the near point of the eye model when equipped with the +62 mm lens. Measure and record the near point for your eyes and those of your lab partner by finding the shortest distances at which you can focus. (Keep your glasses on if you wear them. Note that although we ve given a typical value above, your near point may be much smaller or larger than this value!) 4. Far-sightedness & reading glasses With age, your eye muscles atrophy and you may become unable to focus close enough to read. We model this now. Increase the ability of the eye model to focus on a close object by adding the +400 mm lens to slot B. This new combination of lenses models a different focal length for the crystalline lens, due either to accommodation (if the eye muscles are working properly) or wearing reading glasses (if not!) How close can the eye focus now?

9 5. Remove both lenses and place the +62 mm lens in the SEPTUM slot. Adjust the eye-source distance to the near point distance for this lens (which you found in step 3) so that the image is in focus. While looking at the image, place the round pupil in slot A. What changes occur in the brightness and clarity of the image? Move the light source closer to and farther from the eye model. Is the image still in focus? Remove the pupil and observe the change in clarity of the image. Both with and without the pupil, how much can you change the eye-source distance and still have a sharp image? What are the tradeoffs for image formation in having the pupil in place and removed? Experiment 5: Refractive errors: near sightedness A person affected by myopia (near-sightedness) has a longer-than-normal eye ball, making the retina too far away from the lenses. This causes the image of a distant object to be formed in front of the retina. By contrast, a person affected by far-sightedness (hyperopia) has a shorter-than-normal eye ball, making the retina too close to the lens system. This causes images of near objects to be formed behind the retina. (As discussed earlier, aging can cause a decline in accommodation that results in similar optical effects, a condition called presbyopia.) These refractive errors of course can be compensated for with eyeglasses or with laser surgery to change the curvature of the cornea. We will explore only the first condition here. 1. Set the eye model to normal, far vision (put the +120 mm lens in the SEPTUM slot, remove other lenses, and put the retina screen in the NORMAL position). Turn the eye model to look at a very distant object, as in the first eye experiment above. Make sure the image is in focus. Now put the retina screen in the NEAR position. Describe the image. This is what a near-sighted person sees when trying to look at a far-away object. The lens in the SEPTUM slot represents the crystalline lens in its most relaxed, flattest state, with its longest-possible focal length. Can an eye compensate for myopia by accommodation? Explain. 2. You will now correct the myopia by putting an eyeglass lens on the model. Find a lens that brings the image into focus when you place it in front of the eye in slot 1. Record the focal length of this lens. Laser surgery for myopia corrects near-sightedness by changing the shape of the cornea. Does it do so by making the cornea flatter or more curved? Explain. Experiment 6: Astigmatism In a normal eye, the lens surfaces are spherical and rotationally symmetrical; but an eye with astigmatism has lens surfaces that are not rotationally symmetrical that is to say, they are thicker along one direction rather like a rugby ball or football. This makes the eye able to focus sharply only on lines of certain orientations, while lines at other orientations look blurred. Astigmatism can be corrected with a cylindrical eyeglass lens one that is also thicker along one direction--that is oriented to cancel out the defect in the eye. Each cylindrical lens included with the eye model has its cylindrical axis marked by two notches in the edge. (You can see this effect if you need eye glasses for astigmatism. Take off your glasses and look at the chart below while rotating it to see how only one orientation lines is in focus at a time.)

10 1. Set the eye model to normal, near vision (put the +62 mm lens in the SEPTUM slot, remove other lenses, and put the retina screen in the NORMAL position). With the eye model looking at the nearby light source, adjust the eyesource distance so that the image is in focus. 2. Place the -128 mm cylindrical lens in slot A. The side of the lens handle marked with the focal length should be towards the light source. Describe the image formed by the eye with astigmatism. 3. Rotate the cylindrical lens. What happens to the image? This shows that astigmatism can have different directions depending on how the defect in the eye s lens system is oriented. 4. Eyeglasses can be outfitted with compensating cylindrical lenses to correct astigmatism. Now place the other astigmatic lens in the eyeglass holder slot and move it until the image is again focused. What manipulation did you have to do to bring the image into focus again? Describe how you could find out experimentally if a pair of eye glasses have astigmatic corrections.

Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass

Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the

More information

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec. Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

The light. Light (normally spreads out straight... ... and into all directions. Refraction of light

The light. Light (normally spreads out straight... ... and into all directions. Refraction of light The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted

More information

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away. Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color The Eye: Vision variants and Correction http://www.colorado.edu/physics/phys1230 What does 20/20 vision mean? Visual acuity is usually measured with a Snellen chart Snellen

More information

Vision Correction in Camera Viewfinders

Vision Correction in Camera Viewfinders Vision Correction in Camera Viewfinders Douglas A. Kerr Issue 2 March 23, 2015 ABSTRACT AND INTRODUCTION Many camera viewfinders are equipped with a lever or knob that controls adjustable vision correction,

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

Geometrical Optics - Grade 11

Geometrical Optics - Grade 11 OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

Light and Sound. Pupil Booklet

Light and Sound. Pupil Booklet Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 3-11a - By exploring the refraction of light when passed through different materials, lenses

More information

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/16 Optics 1 /11 GEOMETRIC OPTICS 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

Learning Optics using Vision

Learning Optics using Vision Learning Optics using Vision Anjul Maheshwari David R. Williams Biomedical Engineering Center for Visual Science University of Rochester Rochester, NY Center for Adaptive Optics Project #42 2 INTRODUCTION

More information

Light and its effects

Light and its effects Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs

Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs http://www.medispainstitute.com/menu_laser_tattoo.html http://www.life123.com/bm.pix/bigstockphoto_close_up_of_eye_surgery_catar_2264267.s600x600.jpg

More information

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors. Ray Diagram for Convex Mirror Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

More information

Information and consent for patients preparing for refractive surgery LASIK Laser Eye Center Kubati

Information and consent for patients preparing for refractive surgery LASIK Laser Eye Center Kubati 1. General information Not long ago, the WHO - World Health Organization has described ametropy (medical term for diopter) as a category of disability creating a solution to the needs of many with ametropy

More information

Cassie Schroeder Refractive Surgery Coordinator Boozman-Hof Regional Eye Clinic (479) 246-1820 (479) 531-3937

Cassie Schroeder Refractive Surgery Coordinator Boozman-Hof Regional Eye Clinic (479) 246-1820 (479) 531-3937 Thank you for your interest in refractive surgery here at Boozman-Hof Regional Eye Clinic. Enclosed is a bio on Dr. Cole and articles about LASEK. There is also information on our financing company that

More information

ReLEx smile Minimally invasive vision correction Information for patients

ReLEx smile Minimally invasive vision correction Information for patients ReLEx smile Minimally invasive vision correction Information for patients Seeing is living Our eyes are our most important sensory organ. The human brain obtains over 80 % of its information via the sense

More information

LASIK. Cornea. Iris. Vitreous

LASIK. Cornea. Iris. Vitreous LASIK Introduction LASIK surgery is a procedure that improves vision and can decrease or eliminate the need for eyeglasses or contact lenses. If you and your doctor decide that LASIK surgery is right for

More information

Senses 3. The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field

Senses 3. The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field Senses 3 The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field Practical tasks Purkinje s images Keratoscopy Ophthalmoscopy Purkinje s flash figure Determination of the

More information

TRUSTED LASIK SURGEONS. Eye Conditions Correctable by Refractive Surgical Procedures

TRUSTED LASIK SURGEONS. Eye Conditions Correctable by Refractive Surgical Procedures Eye Conditions Correctable by Refractive Surgical Procedures How does the eye focus? Light rays are focused on to the retina (where the image is relayed to the brain) by the cornea and the lens of the

More information

26 VISION AND OPTICAL INSTRUMENTS

26 VISION AND OPTICAL INSTRUMENTS CHAPTER 26 VISION AND OPTICAL INSTRUMENTS 929 26 VISION AND OPTICAL INSTRUMENTS Figure 26.1 A scientist examines minute details on the surface of a disk drive at a magnification of 100,000 times. The image

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

Thin Lenses Drawing Ray Diagrams

Thin Lenses Drawing Ray Diagrams Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses

More information

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine

More information

Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection.

Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection. KH_BD1_SEG5_U4C12L3_407-415.indd 407 Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces

More information

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

SHEEP EYE DISSECTION PROCEDURES

SHEEP EYE DISSECTION PROCEDURES SHEEP EYE DISSECTION PROCEDURES The anatomy of the human eye can be better shown and understood by the actual dissection of an eye. One eye of choice for dissection, that closely resembles the human eye,

More information

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

More information

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same 1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object

More information

LASER VISION CORRECTION: WHAT YOU SHOULD KNOW.

LASER VISION CORRECTION: WHAT YOU SHOULD KNOW. LASER VISION CORRECTION: WHAT YOU SHOULD KNOW. You and your eyes Why LASIK? Our Treatment Looking Ahead What Next? FAX: +91 22 2280 9000 www.eyecareindia.com www.phirozedastoor.com You and your eyes Light

More information

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing.

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. The Sense Organs... (page 409) Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. Ex. Eye structure - protected by bony ridges and

More information

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements

More information

OPTICAL IMAGES DUE TO LENSES AND MIRRORS *

OPTICAL IMAGES DUE TO LENSES AND MIRRORS * 1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are

More information

LASIK. What is LASIK? Eye Words to Know. Who is a good candidate for LASIK?

LASIK. What is LASIK? Eye Words to Know. Who is a good candidate for LASIK? 2014 2015 LASIK What is LASIK? LASIK (laser in situ keratomileusis) is a type of refractive surgery. This kind of surgery uses a laser to treat vision problems caused by refractive errors. You have a refractive

More information

1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM 1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Endoscope Optics. Chapter 8. 8.1 Introduction

Endoscope Optics. Chapter 8. 8.1 Introduction Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize

More information

Seeing Beyond the Symptoms

Seeing Beyond the Symptoms Seeing Beyond the Symptoms Cataracts are one of the leading causes of vision impairment in the United States. 1 However, because cataracts form slowly and over a long period of time, many people suffer

More information

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY Adapted from Foundations of Biology I; Lab 6 Introduction to Microscopy Dr. John Robertson, Westminster College Biology Department,

More information

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Magnification Devices

Magnification Devices LOW VISION AIDS Optical Characteristics of the Low Vision Patient The definition of visual loss includes two components and limited resolving power or acuity, a blur that can't be eliminated with a simple

More information

Excimer Laser Refractive Surgery

Excimer Laser Refractive Surgery Excimer Laser Refractive Surgery In the field of ophthalmology has achieved great technological advances and, undoubtedly, the most representative have focused on refractive surgery, which aims to eliminate

More information

Information For Consent For Cataract Surgery

Information For Consent For Cataract Surgery Information For Consent For Cataract Surgery Your Ophthalmologist has diagnosed you with a visually significant cataract. The following handout will explain your condition and give you the information

More information

FIFTH GRADE TECHNOLOGY

FIFTH GRADE TECHNOLOGY FIFTH GRADE TECHNOLOGY 3 WEEKS LESSON PLANS AND ACTIVITIES SCIENCE AND MATH OVERVIEW OF FIFTH GRADE SCIENCE AND MATH WEEK 1. PRE: Interpreting data from a graph. LAB: Estimating data and comparing results

More information

Lecture Notes for Chapter 34: Images

Lecture Notes for Chapter 34: Images Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject

More information

Chapter 22: Mirrors and Lenses

Chapter 22: Mirrors and Lenses Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;

More information

Understanding astigmatism Spring 2003

Understanding astigmatism Spring 2003 MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

THE COMPOUND MICROSCOPE

THE COMPOUND MICROSCOPE THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how

More information

Visual Acuity, Impairments and Vision Insurance Plan Provisions. Stuart West Specialty Sales Manager Virginia CE Forum 2009 Course # 201718

Visual Acuity, Impairments and Vision Insurance Plan Provisions. Stuart West Specialty Sales Manager Virginia CE Forum 2009 Course # 201718 Visual Acuity, Impairments and Vision Insurance Plan Provisions Stuart West Specialty Sales Manager Virginia CE Forum 2009 Course # 201718 How Vision Works Light passes through the cornea & lens Light

More information

Excimer Laser Eye Surgery

Excimer Laser Eye Surgery Excimer Laser Eye Surgery This booklet contains general information that is not specific to you. If you have any questions after reading this, ask your own physician or health care worker. They know you

More information

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface. Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves

More information

THE EYES IN MARFAN SYNDROME

THE EYES IN MARFAN SYNDROME THE EYES IN MARFAN SYNDROME Marfan syndrome and some related disorders can affect the eyes in many ways, causing dislocated lenses and other eye problems that can affect your sight. Except for dislocated

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

refractive surgery a closer look

refractive surgery a closer look 2011-2012 refractive surgery a closer look How the eye works Light rays enter the eye through the clear cornea, pupil and lens. These light rays are focused directly onto the retina, the light-sensitive

More information

MAZAHERI LASIK METHOD FOR VISUAL ENHANCEMENT TECHNICAL FIELD OF THE INVENTION. [0001] The present invention is directed, in general, to

MAZAHERI LASIK METHOD FOR VISUAL ENHANCEMENT TECHNICAL FIELD OF THE INVENTION. [0001] The present invention is directed, in general, to MAZAHERI LASIK METHOD FOR VISUAL ENHANCEMENT TECHNICAL FIELD OF THE INVENTION [0001] The present invention is directed, in general, to a surgical procedure and, more particularly, to surgical procedure

More information

Eye Injuries. The Eyes The eyes are sophisticated organs. They collect light and focus it on the back of the eye, allowing us to see.

Eye Injuries. The Eyes The eyes are sophisticated organs. They collect light and focus it on the back of the eye, allowing us to see. Eye Injuries Introduction The design of your face helps protect your eyes from injury. But injuries can still damage your eyes. Sometimes injuries are severe enough that you could lose your vision. Most

More information

Making Vision a Health Priority. Speaker s Guide

Making Vision a Health Priority. Speaker s Guide Making Vision a Health Priority Speaker s Guide SLIDE 1 Introduction of the speaker. The purpose of this presentation is to provide information about vision changes that can occur with age and to talk

More information

Trulign Toric Accommodating Intraocular Lenses PATIENT INFORMATION BROCHURE

Trulign Toric Accommodating Intraocular Lenses PATIENT INFORMATION BROCHURE Trulign Toric Accommodating Intraocular Lenses PATIENT INFORMATION BROCHURE Table of Contents Page Glossary 2 Introducing Trulign Toric Accommodating IOL 5 What is a cataract 5 What is corneal astigmatism

More information

First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between

First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details

More information

Microscope Lab Introduction to the Microscope Lab Activity

Microscope Lab Introduction to the Microscope Lab Activity Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool

More information

Patient Information Content

Patient Information Content KORNMEHL LASER EYE ASSOCIATES Patient Information Content Near Vision Loss Understanding Near Vision Loss Why is My Near Vision Changing? In our 40 s and 50 s, we begin to experience the naturally frustrating

More information

Surgical Solutions for Enhancing Your Vision SURGICAL SOLUTIONS FOR ENHANCING YOUR VISION. www.silversteineyecenters.com 1

Surgical Solutions for Enhancing Your Vision SURGICAL SOLUTIONS FOR ENHANCING YOUR VISION. www.silversteineyecenters.com 1 Surgical Solutions for Enhancing Your Vision SURGICAL SOLUTIONS FOR ENHANCING YOUR VISION www.silversteineyecenters.com 1 Introduction Types and Causes of Vision Impairment Laser Surgery for Refractive

More information

LASIK & Refractive Surgery

LASIK & Refractive Surgery LASIK & Refractive Surgery LASIK PRK ICL RLE Monovision + + + For over 30 years, The Eye Institute of Utah has been giving people vision for life... The Eye Institute of Utah was the first medical facility

More information

Astigmatism. image. object

Astigmatism. image. object TORIC LENSES Astigmatism In astigmatism, different meridians of the eye have different refractive errors. This results in horizontal and vertical lines being focused different distances from the retina.

More information

MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.

MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope. MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize

More information

Refractive Errors & Correction

Refractive Errors & Correction Super Vision 6 Chapter Lasik is currently the most sophisticated procedure for correction of refractive errors. Lasik is an acronym for Laser Assisted Insitu Keratomileusis. In Lasik, Excimer laser is

More information

Vitreo-Retinal and Macular Degeneration Frequently Asked Questions

Vitreo-Retinal and Macular Degeneration Frequently Asked Questions Vitreo-Retinal and Macular Degeneration Frequently Asked Questions What is a Vitreo-Retinal specialist? Retinal specialists are eye physicians and surgeons who focus on diseases in the back of the eye

More information

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus

More information

INFORMED CONSENT FOR PHAKIC IMPLANT SURGERY

INFORMED CONSENT FOR PHAKIC IMPLANT SURGERY INFORMED CONSENT FOR PHAKIC IMPLANT SURGERY INTRODUCTION This information is being provided to you so that you can make an informed decision about having eye surgery to reduce or eliminate your nearsightedness.

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

An Addicus Nonfiction Book

An Addicus Nonfiction Book An Addicus Nonfiction Book Copyright 2001 by Ernest W. Kornmehl, Robert K. Maloney, and Jonathan M. Davidorf. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

More information

What are your options for correcting astigmatism?

What are your options for correcting astigmatism? What are your options for correcting astigmatism? If you depend upon eyeglasses, you may have experienced the inconvenience of not being able to find your glasses when you really need them. Eyeglasses

More information

WHAT IS A CATARACT, AND HOW IS IT TREATED?

WHAT IS A CATARACT, AND HOW IS IT TREATED? 4089 TAMIAMI TRAIL NORTH SUITE A103 NAPLES, FL 34103 TELEPHONE (239) 262-2020 FAX (239) 435-1084 DOES THE PATIENT NEED OR WANT A TRANSLATOR, INTERPRETOR OR READER? YES NO TO THE PATIENT: You have the right,

More information

PATIENT INFORMATION BOOKLET

PATIENT INFORMATION BOOKLET (060110) VISIONCARE S IMPLANTABLE MINIATURE TELESCOPE ( BY DR. ISAAC LIPSHITZ ) AN INTRAOCULAR TELESCOPE FOR TREATING SEVERE TO PROFOUND VISION IMPAIRMENT DUE TO BILATERAL END-STAGE AGE-RELATED MACULAR

More information

The Vertex Power of Ophthalmic Lenses

The Vertex Power of Ophthalmic Lenses The Vertex Power of Ophthalmic Lenses Douglas A. Kerr Issue 6 December 7, 2010 ABSTRACT The ability of a lens to converge or diverge rays of light that arrive on separate, parallel paths is quantified

More information

Vision Correction Surgery Patient Information

Vision Correction Surgery Patient Information Vision Correction Surgery Patient Information Anatomy of the eye: The eye is a complex organ composed of many parts, and normal vision requires these parts to work together. When a person looks at an object,

More information

IMAGE ASSISTANT: OPHTHALMOLOGY

IMAGE ASSISTANT: OPHTHALMOLOGY IMAGE ASSISTANT: OPHTHALMOLOGY Summary: The Image Assistant has been developed to provide medical doctors with a software tool to search, display, edit and use medical illustrations of their own specialty,

More information

Rediscover quality of life thanks to vision correction with technology from Carl Zeiss. Patient Information

Rediscover quality of life thanks to vision correction with technology from Carl Zeiss. Patient Information Rediscover quality of life thanks to vision correction with technology from Carl Zeiss Patient Information 5 2 It was really w Vision defects: Light that goes astray For clear vision the eyes, cornea and

More information

Intralase SBK Laser Vision Correction. kelownalaservision.com. Safe surgery Quicker recovery Great results. Ask about

Intralase SBK Laser Vision Correction. kelownalaservision.com. Safe surgery Quicker recovery Great results. Ask about I was expecting to be out for two or three days and in fact, with Intralase SBK, I was ready to go the next day. Margaret S. Ask about Intralase SBK Laser Vision Correction Safe surgery Quicker recovery

More information

INFORMED CONSENT FOR PHAKIC LENS IMPLANT SURGERY

INFORMED CONSENT FOR PHAKIC LENS IMPLANT SURGERY INTRODUCTION INFORMED CONSENT FOR PHAKIC LENS IMPLANT SURGERY This information is being provided to you so that you can make an informed decision about having eye surgery to reduce or eliminate your nearsightedness.

More information

COW S EYE dissection. Dissecting a Cow s Eye Step-by-Step Instructions. Safety first!

COW S EYE dissection. Dissecting a Cow s Eye Step-by-Step Instructions. Safety first! COW S EYE dissection Dissecting a Cow s Eye Step-by-Step Instructions One way to figure out how something works is to look inside it. To learn about how your eyes work, you can dissect, or take apart,

More information