Resistance & Propulsion (1) MAR Propeller hull interaction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Resistance & Propulsion (1) MAR Propeller hull interaction"

Transcription

1 Resistance & Propulsion (1) MAR 2010 Propeller hull interaction

2 Propeller hull interaction Propeller operating behind a hull will have different characteristics than the same design operating in open water, due in theory to: 1. Wake gain 2. Thrust deduction 3. Relative rotative efficiency

3 Wake gain Ship speed Mean flow velocity at the propeller plane

4 Thrust deduction V s Thrust force > Towing force V s

5 Relative rotative efficiency P D behind > (same diameter) P D open

6 Propeller hull interaction Interaction reflects on the propulsive efficiency P T P D P E = RV Towed resistance (R) η o = P T P D No interaction η D = η o η D = P E P D Generally η D > η o

7 Propeller hull interaction The 3 main propeller hull interaction effects MAY cause the overall efficiency of the propulsion system to be greater than the efficiency of the propeller.

8 Wake Gain Flow around a propeller is affected by the presence of a hull Potential and viscous nature of the boundary layer contribute to the development of the wake Average speed of the water through the propeller plane is usually different (less) than the hull speed There are 3 contributing factors

9 Wake Gain - Potential wake component Potential flow past a hull causes increased pressure around the stern as the streamlines close. Relative velocity of the flow past the hull is less than the hull speed Appears as a forward wake increasing the wake speed Model based on unbound assumption

10 Wake Gain - Velocity distribution AP FP

11 Wake Gain - Velocity distribution Pressure distribution Velocity distribution AP FP

12 Wake Gain - Frictional wake component Viscous flow causes retardation of the flow inside a ships boundary layer effect increases towards the stern causing a forward velocity component

13 Wake Gain - Velocity distribution Boundary layer Velocity Hull Viscous wake Potential wake

14 Wake Gain - Velocity distribution Mean speed through B.L. is less than the ship speed

15 Wake Gain - Velocity distribution Frictional wake 80 ~ 90% of total wake Single screws mainly operate in the viscous wake (frictional) the effect is important Twin screws operate outside of the viscous wake and the effect is therefore less important

16 Wake Gain - Wave making component Waves generated by the ship have orbital motion Wave crests have forward motion Wave troughs have aft motion

17 Wake Gain - Wave making component Wave component of the wake varies with speed Slow / Medium speed vessel = Crest High speed vessel = trough

18 Total Wake Total wake = Potential wake Viscous + wake + Wavemaking wake Hence Advance speed (Va) is less than the ship speed (V)

19 Total Wake Assuming T (thrust) = R (towed resistance) η o = P T P D = T V a P D η D = P E P D = RV P D V > Va, then RV > T Va η D > η o

20 Wake definition and wake fraction small part of the total wake

21 Wake Gain Text

22 Wake definition and wake fraction Wake in the propeller plane without the action of the propeller is known as the: NOMINAL WAKE metre/sec tunnel speed Axial Velocity (m/s) r 0.51r 0.68r 0.84r 0.92r Radial Position

23 Wake definition and wake fraction

24 Wake definition and wake fraction Wake in the propeller plane with the action of the propeller is known as the: EFFECTIVE WAKE This is difficult to measure

25 Wake definition and wake fraction Wake is defined as a fraction of ship speed or advance velocity at the propeller plane Froude wake fraction w = V V A V a V a = V 1 + w Taylor wake fraction w = V V A V V a = V (1 w)

26 Wake definition and wake fraction Wake fraction depends on length and fulness of the ship and increases with hull roughness A typical moderate speed cargo ship of Cb = 0.70 would expect w = 0.30

27 Thrust Deduction Propeller accelerates flow in front and behind of it resulting in: Increased rate of shear in boundary layer ( + Frictional resistance) Reduced pressure over the rear of the hull (+ Pressure resistance)

28 Thrust Deduction...If separation occurs in the afterbody when towed w/o the propeller, the action of the propeller will supress the separation and reduce the unfavourable pressure gradient...

29 Thrust Deduction The propeller therefore ALTERS the resistance of the hull by an amount proportional to the thrust. The thrust (T) must therefore EXCEED the towed resistance of the hull (R)

30 Thrust Deduction + P AP P Text FP + P 1 Thrust Augment of resistance P 1 R = ( P P 1 )ds R = T R

31 Thrust Deduction + P 1 P 1 Thrust By defining a as a Resistance augmentation factor a = R R = T R R T = R(1 + a) (1+a) is the Resistance augmentation factor

32 Thrust Deduction Augment of resistance terminology defines an increase in resistance. In practice this is viewed as a THRUST DEDUCTION t = T R T R = T (1 t)

33 Thrust Deduction Thrust deduction can be estimated using semi-empirical formulae. It is common to measure it in model scale using stock propellers (appropriate diameter and loading at the design speed). thrust deduction is a function of streamlining, propeller clearances and fullness

34 Thrust Deduction Typical values of t are: Single screw t = 0.6w twin screw t = w Modern single screw t = 0.3 Cb

35 Relative Rotative Efficiency Efficiency of a propeller behind a hull is not the same as a propeller working in open water Turbulence in the flow is low in open water, in the behind condition the flow is turbulent and unsteady In addition the flow at each radii is different to the open water case

36 Relative Rotative Efficiency High turbulence affect the lift and drag of each radial section. Modern propellers are Wake Adapted to take into account this variation in loading and maximise gains

37 Relative Rotative Efficiency Relative rotative efficiency is defined as the ratio of power delivered to a propeller in producing the same thrust in open water and behind conditions η R = P Dopen P D

38 Relative Rotative Efficiency η R = Efficiency behind hull Efficiency in open water = η B η o η R

39 Propulsive Efficiency and Propulsion factors The relationship between QPC can be refined as follows η D = P E P D η D = P E P T P T P Do P Do P D η D = RV P T η o η r

40 Propulsive Efficiency and Propulsion factors The relationship between QPC can be refined as follows η D = t(1 t)v T V (1 w) η o η r η D = (1 t) (1 w) η o η r

41 Propulsive Efficiency and Propulsion factors By denoting the hull efficiency as: (1 t) η h = (1 w) Single screw Twin screw η h η h

42 Propulsive Efficiency and Propulsion factors Thrust Power (P T ) Thrust " # $%&' " # Thrust Power (P T ) " # " $ BEHIND CONDITION Delivered Power (P D ) OPEN WATER CONDITION Delivered Power (P D open ) " #$%&' " # " $ "#$%&'($) *+%,-(-+%./%-0+) " # " $ " # " Forward Speed (V) Brake Power (P B ) Resistance (R) P e = RxV " # " 5)+#/26-7$800-9-$%9:.;5*4 " # " $ </ $%9: " # " $ =$>-%,?</ $%9: " # $%&' " # " #$%&' 5)+#$22$)800-9-$%9: " # " $ A>'0(800-9-$%9:

43 End of Presentation

Resistance & Propulsion (1) MAR 2010. Presentation of ships wake

Resistance & Propulsion (1) MAR 2010. Presentation of ships wake Resistance & Propulsion (1) MAR 2010 Presentation of ships wake Wake - Overview Flow around a propeller is affected by the presence of a hull Potential and viscous nature of the boundary layer contribute

More information

12 PROPELLERS AND PROPULSION

12 PROPELLERS AND PROPULSION 12 PROPELLERS AND PROPULSION 12.1 Introduction We discuss in this section the nature of steady and unsteady propulsion. In many marine vessels and vehicles, an engine (diesel or gas turbine, say) or an

More information

Application of CFD in connection with ship design

Application of CFD in connection with ship design DANSIS meeting Lyngby, 13 May 2009 Application of CFD in connection with ship design www.force.dk Background Method Examples Summary Claus Daniel Simonsen FORCE Technology Background When a ship, which

More information

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 13.012 Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 Marine Propellers Today, conventional marine propellers remain the standard propulsion mechanism for surface ships and underwater vehicles.

More information

CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE

CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE CFD ANALYSIS OF CONROLLABLE PICH PROPELLER USED IN MARINE VEHICLE Aditya Kolakoti 1,.V.K.Bhanuprakash 2 & H.N.Das 3 1 M.E in Marine Engineering And Mechanical Handling, Dept of Marine Engineering, Andhra

More information

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard

Introduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The Boundary-Layer Concept Boundary-Layer Thicknesses Laminar Flat-Plate Boundary Layer: Exact Solution Momentum

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

Review of Engine Shafting, Propulsion and Transmission Systems Key Considerations for Industry

Review of Engine Shafting, Propulsion and Transmission Systems Key Considerations for Industry Review of Engine Shafting, Propulsion and Transmission Systems Key Considerations for Industry By Dag Friis Bob McGrath Christian Knapp Ocean Engineering Research Centre MUN Engineering 1 Scope: Components

More information

Application of Advanced CFD Technology to Energy-Saving Hull form Development

Application of Advanced CFD Technology to Energy-Saving Hull form Development 50 Application of Advanced CFD Technology to Energy-Saving Hull form Development MAKOTO NISHIGAKI *1 MAKOTO KAWABUCHI *2 SATORU ISHIKAWA *3 Due to the advancement of computational fluid dynamics (CFD)

More information

Knowing your boat means knowing its wake

Knowing your boat means knowing its wake Knowing your boat means knowing its wake This is an illustrated guide to wave wake that expands upon the basics outlined in the low wake guide Wake up? Slow Down, which is available at: http://dpipwe.tas.gov.au/documents/guide-to-low-wave-wake-boating.pdf

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft.

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 28 1 Propeller Fundamentals A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 2 Propeller blade 4-bladed propeller 3-bladed propeller 3 All propulsors

More information

VISCOSITY. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics

VISCOSITY. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics VISCOSITY Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics DEFINITION A fluid s ability to flow is called viscosity. Viscosity arises from the mutual COHESIVE FORCES between molecules

More information

Prediction of Resistance and Propulsion Power of Ships

Prediction of Resistance and Propulsion Power of Ships Prediction of Resistance and Propulsion Power of Ships Technical University of Denmark Hans Otto Kristensen University of Southern Denmark Marie Lützen Project no. 21-56, Emissionsbeslutningsstøttesystem

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

Chapter 5. Microfluidic Dynamics

Chapter 5. Microfluidic Dynamics Chapter 5 Thermofluid Engineering and Microsystems Microfluidic Dynamics Navier-Stokes equation 1. The momentum equation 2. Interpretation of the NSequation 3. Characteristics of flows in microfluidics

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

Propellers and propulsion

Propellers and propulsion Propellers and propulsion Kul-24.3200 Introduction of Marine Hydrodynamics Aalto University 02/11/2015 Introduction of Marine Hydrodynamics 1 Content of the course Resistance Propulsion Introduction, Momentum

More information

Scale effects on propellers for large container vessels

Scale effects on propellers for large container vessels First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Scale effects on propellers for large container vessels Sven-Brian Müller 1, Moustafa Abdel-Maksoud 2, Gerd Hilbert

More information

DNVGL-CG-0039 Edition December 2015

DNVGL-CG-0039 Edition December 2015 CLASS GUIDELINE DNVGL-CG-0039 Edition December 2015 The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. FOREWORD DNV GL class

More information

Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations.

Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations. Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations. By: Anthony Livanos (10408690) Supervisor: Dr Philippa O Neil Faculty of Engineering University of Western Australia For

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

ECONOMY. October 13 th, Ir. Frans Quadvlieg, Senior Project Manager. MARIN (MAritime Research Institute Netherlands)

ECONOMY. October 13 th, Ir. Frans Quadvlieg, Senior Project Manager. MARIN (MAritime Research Institute Netherlands) MARINE PROPULSION AND FUEL ECONOMY October 13 th, 2009 Ir. Frans Quadvlieg, Senior Project Manager MARIN (MAritime Research Institute Netherlands) CONTENTS: MARIN (short introduction) GREEN awareness GREEN

More information

Submarine Hull Design

Submarine Hull Design VOLKER BERTRAM Submarine Hull Design 1 SAFER, SMARTER, GREENER Navigator Hull Design Aspects Overview of problems and approaches General guidelines for submarine hull design Quiz Hydrodynamic Assessment

More information

3. Resistance of a Ship 3.2 Estimates based on statistical methods

3. Resistance of a Ship 3.2 Estimates based on statistical methods In the preliminary stages of ship design, the resistance coefficient is estimated with approximate methods based on systematic series or statistical regressions to experimental data. A systematic series

More information

Ocean Engineering 63 (2013) Contents lists available at SciVerse ScienceDirect. Ocean Engineering

Ocean Engineering 63 (2013) Contents lists available at SciVerse ScienceDirect. Ocean Engineering Ocean Engineering 63 (203) 9095 Contents lists available at SciVerse ScienceDirect Ocean Engineering ELSEVIER journal homepage: www.elsevier.com/iocate/oceaneng Hydrodynamic development of Inclined Keel

More information

Formula. = base of natural logarithms. = friction factor of the ropes in the grooves. = angle of wrap of the ropes on the traction sheave (radians).

Formula. = base of natural logarithms. = friction factor of the ropes in the grooves. = angle of wrap of the ropes on the traction sheave (radians). Formula It is generally accepted that the maximum available traction is dependent upon three major factors: i) angle of wrap of the ropes around the traction sheave; ii) shape of groove profile; and iii)

More information

Using Single Propeller Performance Data to Predict the Performance of a Counterrotating Pair

Using Single Propeller Performance Data to Predict the Performance of a Counterrotating Pair Using Single Propeller Performance Data to Predict the Performance of a Counterrotating Pair Jessica A. Jacobson, Wayne L. Neu, John B. Hennage, Ryan K. Williams, Clinton D. Jones Department of Aerospace

More information

Fluids in Motion Supplement I

Fluids in Motion Supplement I Fluids in Motion Supplement I Cutnell & Johnson describe a number of different types of flow: Compressible vs incompressible (most liquids are very close to incompressible) Steady vs Unsteady Viscous or

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department of Mechanical Engineering AMEE 401/ AUTO 400 Aerodynamics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy QUESTION 1 HOMEWORK ASSIGNMENT #1 SOLUTION a. Explain the meaning of

More information

Hypersonic Aerodynamics of Aerospace Vehicle Design: Basic Approach and Study

Hypersonic Aerodynamics of Aerospace Vehicle Design: Basic Approach and Study Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 3 (2013), pp. 209-214 Research India Publications http://www.ripublication.com/aasa.htm Hypersonic Aerodynamics of Aerospace

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

2. PROPELLER GEOMETRY

2. PROPELLER GEOMETRY a) Frames of Reference 2. PROPELLER GEOMETRY 10 th International Towing Tank Conference (ITTC) initiated the preparation of a dictionary and nomenclature of ship hydrodynamic terms and this work was completed

More information

Electric Vehicle with Charging Facility in Motion using Wind Energy

Electric Vehicle with Charging Facility in Motion using Wind Energy Electric Vehicle with Charging Facility in Motion using Wind Energy S.M. Ferdous 2,*, Walid Bin Khaled 1, Benozir Ahmed 2, Sayedus Salehin 1, Enaiyat Ghani Ovy 1 1 Department of Mechanical & Chemical Engineering

More information

Hull design boosts fuel economy of ultra large container ships. Tor Svensen, COO DNV Maritime and Oil & Gas

Hull design boosts fuel economy of ultra large container ships. Tor Svensen, COO DNV Maritime and Oil & Gas Hull design boosts fuel economy of ultra large container ships Tor Svensen, COO DNV Maritime and Oil & Gas Major savings 3 mill USD per ship per year 10 new 13,800 TEU container ships Optimized for flexible

More information

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles

The Influence of Aerodynamics on the Design of High-Performance Road Vehicles The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS

More information

Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction

Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction Air Resistance: Distinguishing Between Laminar and Turbulent Flow 0.1 Introduction You have probably heard that objects fall (really, accelerate) at the same rate, independent of their mass. Galileo demonstrated

More information

Professor Emeritus, Physics Dept., University of Western Ontario, London, Canada,

Professor Emeritus, Physics Dept., University of Western Ontario, London, Canada, SMUGGLER AND PIRATE GO-FAST BOATS J.K.E. Tunaley 1 The boats used by smugglers over the ocean are often capable of high speed and are known as go-fast boats. They are based on the design by Donald Aronow

More information

PROPELLER DESIGN AND CAVITATION Prof. Dr. S. Beji 1

PROPELLER DESIGN AND CAVITATION Prof. Dr. S. Beji 1 PROPELLER DESIGN AND CAVITATION Prof. Dr. S. Beji 1 Introduction Propuslion: Propulsion is the act or an instance of driving or pushing forward of a body, i.e. ship, by a propeller (in our case a screw

More information

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces. When an object is pushed or pulled, we say that a force is exerted on it. Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

More information

Model Rocket Aerodynamics

Model Rocket Aerodynamics Model Rocket Aerodynamics Some Terminology Free stream the flow far away from a moving body Mach number fraction of the local speed of sound v free stream velocity (m/s) M free stream Mach number ρ air

More information

Section 1. Movement. So if we have a function x = f(t) that represents distance as a function of time, then dx is

Section 1. Movement. So if we have a function x = f(t) that represents distance as a function of time, then dx is Worksheet 4.4 Applications of Integration Section 1 Movement Recall that the derivative of a function tells us about its slope. What does the slope represent? It is the change in one variable with respect

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

Use of Magnus Effect Rotors as Wind Turbines for Solar Chimney Power Plants

Use of Magnus Effect Rotors as Wind Turbines for Solar Chimney Power Plants Use of Magnus Effect Rotors as Wind Turbines for Solar Chimney Power Plants Presented by: Mohammed Abdul Hamid Abdul Latif Advisor: Prof. Mohamed Amr Serag El-Din Outline Introduction Objectives Methodology

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

FAILURE OF A CONTROLLABLE PITCH PROPELLER SYSTEM AT NO LOAD OPERATION

FAILURE OF A CONTROLLABLE PITCH PROPELLER SYSTEM AT NO LOAD OPERATION FAILURE OF A CONTROLLABLE PITCH PROPELLER SYSTEM AT NO LOAD OPERATION ~ Herbert Roeser TransMarine Propulsion Systems, Inc. It is often assumed that failure of a mechanical system can occur only under

More information

Commercial CFD Software Modelling

Commercial CFD Software Modelling Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be

More information

Brainstorming and Barnstorming: Basics of Flight

Brainstorming and Barnstorming: Basics of Flight Brainstorming and Barnstorming: Basics of Flight Flight History First flight: The Wright Flyer 1903 Break Speed of Sound: Bell X-1A 1947 Land on Moon: Apollo 11 1969 Circumnavigate Earth on one tank of

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Chapter 4 Aerodynamics of Flight

Chapter 4 Aerodynamics of Flight Chapter 4 Aerodynamics of Flight Forces Acting on the Aircraft Thrust, drag, lift, and weight are forces that act upon all aircraft in flight. Understanding how these forces work and knowing how to control

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

More information

Basic Principles of Ship Propulsion

Basic Principles of Ship Propulsion Basic Principles of Ship Propulsion Contents Introduction...5 Scope of this Paper...5 Chapter 1...6 Ship Definitions and Hull Resistance...6 Ship types...6 A ship s load lines...6 Indication of a ship

More information

Turn off all electronic devices

Turn off all electronic devices Balloons 1 Balloons 2 Observations about Balloons Balloons Balloons are held taut by the gases inside Some balloon float in air while others don t Hot-air balloons don t have to be sealed Helium balloons

More information

Introduction to Aerospace Engineering Formulas

Introduction to Aerospace Engineering Formulas Introduction to Aerospace Engineering Formulas Aerodynamics Formulas. Definitions p = The air pressure. (P a = N/m 2 ) ρ = The air density. (kg/m 3 ) g = The gravitational constant. (Value at sea level

More information

GENERAL HULL FORM EQUATIONS

GENERAL HULL FORM EQUATIONS GENERAL HULL FORM EQUATIONS Displacement to Length Ratio Long Tons Displacement.01 LWL 3 LT.01 LWL 3 Prismatic Coefficient Cu. Ft. Displacement M idsection Area LWL A m LWL Block Coefficient Cu. Ft. Displacement

More information

Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

More information

The influence of ship operational parameters on fuel consumption

The influence of ship operational parameters on fuel consumption Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 2013, 36(108) z. 1 pp. 2013, 36(108) z. 1 s. ISSN 1733-8670 The influence of ship operational parameters

More information

ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD ME 39: Rocket Propulsion Nozzle Thermodynamics and Isentropic Flow Relations J. M. Meyers, PhD 1 Assumptions for this Analysis 1. Steady, one-dimensional flow No motor start/stopping issues to be concerned

More information

A SAILING SPEED ADVISORY FOR THE BEREZINA

A SAILING SPEED ADVISORY FOR THE BEREZINA BSc Research Project A SAILING SPEED ADVISORY FOR THE BEREZINA Authors: R. van der Bles, J. Termorshuizen, S.M.A. Tjin-A-Djie, E.G. de Waal 1st Supervisor: M. Godjevac, PhD. 2nd Supervisor: Prof.dr.ir.

More information

OPTIMIZING ENERGY EFFICIENCY

OPTIMIZING ENERGY EFFICIENCY Courtesy of Finnlines Oy, photographed by Hannu Laakso. Energopac incorporated in model tests, photographed by HSVA. CFD capabilities within Wärtsilä are state-of-the-art. OPTIMIZING ENERGY EFFICIENCY

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Effect of Propeller on Airplane Dynamics

Effect of Propeller on Airplane Dynamics Effect of Propeller on Airplane Dynamics The propeller creates considerable unfavorable forces that need to be trimmed out to keep the airplane flying in a desirable manner. Many airplanes are rigged to

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Propellers. Inboard propellers and speed calculation Marine Engines 2.1L 16L

Propellers. Inboard propellers and speed calculation Marine Engines 2.1L 16L Propellers Inboard propellers and speed calculation Marine Engines 2.1L 16L Foreword The purpose of this information is to provide installers, designers or users with a simple and effective help in choosing

More information

PEMP RMD M.S. Ramaiah School of Advanced Studies

PEMP RMD M.S. Ramaiah School of Advanced Studies Radial Turbines Session delivered by: Prof. Q.H. Nagpurwala 1 Session Objectives This session is intended to introduce the following: Types of radial gas turbines Constructional features Radial gas turbines

More information

AUTODESK SIMULATION MULTIPHYSICS 2013

AUTODESK SIMULATION MULTIPHYSICS 2013 AUTODESK SIMULATION MULTIPHYSICS 2013 Which Analysis to Use? FANKOM MÜHENDİSLİK 2/4/2013 AUTODESK SIMULATION MULTIPHYSICS Which Analysis to Use? Use the following guidelines to help choose the correct

More information

Laminar flow in a baffled stirred mixer (COMSOL)

Laminar flow in a baffled stirred mixer (COMSOL) AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Laminar flow in a baffled stirred mixer (COMSOL) Sanna Hyvönen, 355551 Nelli Jämsä, 223188 Abstract In this simulation

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Engineering Mechanics Dr. G Saravana Kumar Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Engineering Mechanics Dr. G Saravana Kumar Department of Mechanical Engineering Indian Institute of Technology, Guwahati Engineering Mechanics Dr. G Saravana Kumar Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module 5 Lecture 12 Application of Friction Part-3 Today, we will see some more

More information

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Department of Ocean Engineering Indian Institute of Technology, Madras

Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Department of Ocean Engineering Indian Institute of Technology, Madras Ship Resistance and Propulsion Prof. Dr. P. Krishnankutty Department of Ocean Engineering Indian Institute of Technology, Madras Lecture - 10 Model Tests and Ship Resistance Prediction Method III Back

More information

Frictional Resistance Calculations on a Ship using CFD

Frictional Resistance Calculations on a Ship using CFD Frictional Resistance Calculations on a Ship using CFD Dunna Sridhar M E Student Marine Engineering A U C E., Visakhapatnam T V K Bhanuprakash Professor Dept. of Marine Engineering A U C E., Visakhapatnam

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS

THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS 13\' MAX M. MONK, Ph.D., Dr.Eng. Technical Assistant, National Advisory Committee for Aeronautics RIlPRINTED FROM THII JOURNAL OF THE

More information

Practice Problems on Bernoulli s Equation. V car. Answer(s): p p p V. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Sep 15

Practice Problems on Bernoulli s Equation. V car. Answer(s): p p p V. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Sep 15 bernoulli_0 A person holds their hand out of a car window while driving through still air at a speed of V car. What is the maximum pressure on the person s hand? V car 0 max car p p p V C. Wassgren, Purdue

More information

Objectives 184 CHAPTER 4 RESISTANCE

Objectives 184 CHAPTER 4 RESISTANCE Objectives Define drag. Explain the difference between laminar and turbulent flow. Explain the difference between frictional drag and pressure drag. Define viscosity and explain how it can be measured.

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057

Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057 Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057 To: Mr. J. A. Mesmason, Crew Chief Nautilus Salvage, Inc., 20000 Buena Vista Avenue, Vulcania, Hawaii 96807 From: J. Liu, T.

More information

Class Examples. Mapundi Kondwani Banda. Applied Mathematics Division - Mathematical Sciences Stellenbosch University

Class Examples. Mapundi Kondwani Banda. Applied Mathematics Division - Mathematical Sciences Stellenbosch University Class Examples Mapundi Kondwani Banda MKBanda@sun.ac.za Applied Mathematics Division - Mathematical Sciences Stellenbosch University October 7, 2013 Chapter 15: Problem 15.1 The 12 Mg jump jet is capable

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Aspects of the Design Procedure for Propellers Providing Maximum Bollard Pull

Aspects of the Design Procedure for Propellers Providing Maximum Bollard Pull Suntec Convention Centre, Singapore Organised by the ABR Company Ltd Day 3 Paper No. 2 Aspects of the Design Procedure for Propellers Providing Maximum Bollard Pull Dr Paul Mertes, Schottel GmbH & Co,

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Mass, energy, power and time are scalar quantities which do not have direction.

Mass, energy, power and time are scalar quantities which do not have direction. Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

More information

BASIC AERODYNAMICS Lift Drag

BASIC AERODYNAMICS Lift Drag BASIC AERODYNAMICS The forces that affect a parachute are invisible, but not incomprehensible. Learn what makes a parachute fly well and you will know what makes it fly badly. There are two basic ways

More information

The Effects of Length on the Powering of Large Slender Hull Forms

The Effects of Length on the Powering of Large Slender Hull Forms SUMMARY The Effects of Length on the Powering of Large Slender Hull Forms James Roy, Nigel Gee and Associates Ltd, UK Nigel Gee, Nigel Gee and Associates Ltd, UK For a constant deadweight, increasing ship

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

Effiziente Propulsion mit Voith Schneider Propellern Dirk Jürgens Innovationen bei Schiffsantrieben, Hamburg, 13.9.2007

Effiziente Propulsion mit Voith Schneider Propellern Dirk Jürgens Innovationen bei Schiffsantrieben, Hamburg, 13.9.2007 Effiziente Propulsion mit Voith Schneider Propellern Dirk Jürgens Innovationen bei Schiffsantrieben, Hamburg, 13.9.2007 Future Voith Water Tractor Development Using Sophisticated Simulation Models 2 Voith

More information

CFD Simulation of Foam Spread in Rotational Symmetry

CFD Simulation of Foam Spread in Rotational Symmetry Bror Persson and Ludovic Romanov *) CFD Simulation of Foam Spread in Rotational Symmetry SP AR :3 Fire Technology Borås *) Ecole Nationale Supérieure en Informatique Automatique Mécanique Energétique et

More information

POWER SCREWS (ACME THREAD) DESIGN

POWER SCREWS (ACME THREAD) DESIGN POWER SCREWS (ACME THREAD) DESIGN There are at least three types of power screw threads: the square thread, the Acme thread, and the buttress thread. Of these, the square and buttress threads are the most

More information

- Vortex Interactions with Wakes - Wing elements, fuselage, and landing gear

- Vortex Interactions with Wakes - Wing elements, fuselage, and landing gear - Vortex Interactions with Wakes -, fuselage, and landing gear Ulrich Jung, Christian Breitsamter Introduction Experimental technique Results and Analysis Fuselage Landing gear Conclusions / Prospects

More information