Shielding effect. Coulomb s Law:
|
|
|
- Karen Morgan
- 9 years ago
- Views:
Transcription
1 Shielding effect Effective nuclear charge, Z eff, experienced by an electron is less than the actual nuclear charge, Z Electrons in the outermost shell are repelled (shielded) by electrons in the inner shells. This repulsion counteracts the attraction caused by the positive nuclear charge Coulomb s Law: q r 1 q 2 q1 q2 F 2 r 1
2 Atomic Radii: Periodicity q1 q2 F 2 r As we move from left to right along the period, the effective nuclear charge felt by the outermost electron increases while the distance from the nucleus doesn t change that much (electrons are filling the same shell) Outermost electrons are attracted stronger by the nucleus, and the atomic radius decreases 2
3 Atomic Radii: Periodicity As we move down the group, the principal quantum number increases and the outermost electrons appear farther away from the nucleus the atomic radius increases 3
4 Ionization Energy If sufficient energy is provided, the attraction between the outer electron and the nucleus can be overcome and the electron will be removed from the atom First ionization energy (IE 1 ) The minimum amount of energy required to remove the most loosely bound electron from an isolated gaseous atom to form a 1+ ion Na(g) kj/mol Na + (g) + e 4
5 Ionization Energy Second ionization energy (IE 2 ) The minimum amount of energy required to remove the 2nd electron from a gaseous 1+ ion IE 1 : Ca(g) kj/mol Ca + (g) + e IE 2 : Ca + (g) kj/mol Ca 2+ (g) + e The 2nd electron feels higher nuclear charge (stronger attractive force) since the electronelectron repulsion has been decreased: IE 2 > IE 1 5
6 Ionization Energy: Trends Coulomb s Law: q1 q2 F 2 r IE 1 increases from left to right along a period since the effective nuclear charge (Z eff ) felt by the outermost electrons increases There are some exceptions to this general trend caused by additional stability of filled and halffilled subshells (orbitals with the same l) IE 1 decreases as we go down a group since the outermost electrons are farther from the nucleus 6
7 Example Arrange these elements based on their first ionization energies Sr, Be, Ca, Mg 7
8 Successive Ionization Energies Group and element IA Na [Ne]3s 1 IIA Mg [Ne]3s 2 IIIA Al [Ne]3s 2 3p 1 IE 1 (kj/mol) 496 Na Mg Al + IE 2 (kj/mol) 4,562 Na 2+ 1,451 Mg 2+ 1,817 Al 2+ IE 3 (kj/mol) 6,912 Na 3+ 7,733 Mg 3+ 2,745 Al 3+ IE 4 (kj/mol) 9,540 Na 4+ 10,550 Mg 4+ 11,580 Al 4+ 8
9 Ionization Energy: Periodicity Important conclusions Atoms of noble gases have completely filled outer shell, the smallest radii among the elements in the same period, and the highest ionization energies Atoms of metals, especially those to the left in the periodic chart, ionize easily forming cations and attaining the electron configuration of noble gases Atoms of nonmetals, especially those to the right in the periodic chart, are very unlikely to loose electrons easily their ionization energies are high 9
10 Halogens & Noble Gases H 1s 1 He 1s2 F [He]2s 2 2p 5 Ne [He]2s 2 2p 6 Cl [Ne]3s 2 3p 5 Ar [Ne]3s 2 3p 6 Br [Ar]3d 10 4s 2 4p 5 Kr [Ar]3d 10 4s 2 4p 6 I [Kr]4d 10 5s 2 5p 5 Xe [Kr]4d 10 5s 2 5p 6 At [Xe]4f 14 5d 10 6s 2 6p 5 Rn [Xe]4f 14 5d 10 6s 2 6p 6 10
11 Electron Affinity For most nonmetals, it is much easier to achieve the stable electron configuration of a noble gas by gaining rather than loosing electrons Therefore, nonmetals tend to form anions Electron affinity is a measure of an atom s ability to form negative ions The amount of energy absorbed when an electron is added to an isolated gaseous atom to form an ion with a 1- charge Cl(g) + e Cl (g) kj/mol 11
12 Electron Affinity Sign conventions for electron affinity If electron affinity > 0 energy is absorbed If electron affinity < 0 energy is released Compare cation- and anion-forming processes: IE 1 : Na(g) kj/mol Na + (g) + e EA: Cl(g) + e Cl (g) kj/mol or Cl(g) + e 349 kj/mol Cl (g) 12
13 Electron Affinity: Trends EA becomes more negative on going from left to right along a period There are some exceptions to this general trend caused by additional stability of filled and halffilled subshells (orbitals with the same l) EA becomes less negative as we go down a group because the attraction of the outermost electrons to the nucleus weakens 13
14 Electron Affinity: Periodicity Important conclusions Noble gases have completely filled outer shell and therefore zero electron affinity Nonmetals, especially halogens, gain electrons easily forming anions and attaining the electron configuration of noble gases Metals are usually quite unlikely to gain electrons and form anions 14
15 Ionic Radii When atom looses an electron, its radius always decreases Cations (positive ions) are always smaller than their respective neutral atoms When atom gains an electron, its radius always increases Anions (negative ions) are always larger than their respective neutral atoms 15
16 Isoelectronic Species Species of different elements having the same electron configuration N [He]2s 2 2p 3 O F Ne Na Mg Al [He]2s 2 2p 4 [He]2s 2 2p 5 [He]2s 2 2p 6 [He]2s 2 2p 6 3s 1 [He]2s 2 2p 6 3s 2 [He]2s 2 2p 6 3s 2 3p 1 N 3 [He]2s 2 2p 6 O 2 F Ne Na + Mg 2+ Al 3+ [He]2s 2 2p 6 [He]2s 2 2p 6 [He]2s 2 2p 6 [He]2s 2 2p 6 [He]2s 2 2p 6 [He]2s 2 2p 6 16
17 Radii of Isoelectronic Ions In an isoelectronic series of ions The number of electrons remains the same The nuclear charge increases with increasing atomic number, and therefore the ionic radius decreases 17
18 Electronegativity Measures the tendency of an atom to attract electrons when chemically combined with another element If element likes electrons high electronegativity (electronegative element) If element dislikes electrons low electronegativity (electropositive element) Sounds like the electron affinity but different Electron affinity measures the degree of attraction of an electron by a single atom forming an anion Electronegativity measures the attraction of electrons to the atom in chemical compounds 18
19 Electronegativity The scale for electronegativity was suggested by Linus Pauling It is a semi-qualitative scale based on data collected from studying many compounds 19
20 Example Arrange these elements based on their electronegativity Se, Ge, Br, As Be, Mg, Ca, Ba 20
21 Oxidation Numbers When an element with high electronegativity (nonmetal) reacts with an element with low electronegativity (metal), they tend to form a chemical compound in which electrons are stronger attracted to the nonmetal atoms This brings us to the important concept of oxidation numbers, or oxidation states The number of electrons gained or lost by an atom of the element when it forms a chemical compounds with other elements 21
22 Oxidation Numbers: Rules 1) The oxidation number of the atoms in any free, uncombined element, is zero 2) The sum of the oxidation numbers of all atoms in a compound is zero 3) The sum of the oxidation numbers of all atoms in an ion is equal to the charge of the ion 22
23 Oxidation Numbers: Rules 4) The oxidation number of fluorine in all its compounds is 1 5) The oxidation number of other halogens in their compounds is usually 1 6) The oxidation number of hydrogen is +1 when it is combined with more electronegative elements (most nonmetals) and 1 when it is combined with more electropositive elements (metals) 7) The oxidation number of oxygen in most compounds is 2 8) Oxidation numbers for other elements are determined by the number of electrons they need to gain or lose in order to attain the electron configuration of a noble gas 23
24 Oxidation Numbers: Examples H 2 O CH 4 NH 4 Cl NaH CaBr 2 CO CO 2 Mg 3 N 2 CaH 2 KCl P 4 O 10 (NH 4 ) 2 S RbNO 3 BeF 2 SrSO 4 SO 2 24
25 Reading Assignment Go through Lecture 10 notes Read Sections 4-4 through 4-6 of Chapter 4 Read Chapter 6 completely Learn Key Terms from Chapter 6 (p ) 25
26 Important Dates Thursday (10/6) review session on electron configurations, 6:00-8:00 p.m. in Room 105 Heldenfels Homework #3 due by 9:00 p.m. Monday (10/10) and Tuesday (10/11) lecture quiz #3 based on Chapters 5&6 26
6.5 Periodic Variations in Element Properties
324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends
Copyrighted by Gabriel Tang B.Ed., B.Sc.
Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested
SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni
SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the
REVIEW QUESTIONS Chapter 8
Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
Chapter 7 Periodic Properties of the Elements
Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.
Chapter 8 Basic Concepts of the Chemical Bonding
Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question
Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.
Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical
Unit 2 Periodic Behavior and Ionic Bonding
Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements
ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!
179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".
Name period AP chemistry Unit 2 worksheet Practice problems
Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct
Chemistry: The Periodic Table and Periodicity
Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What
A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.
CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the
CHEMISTRY BONDING REVIEW
Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.
Trends of the Periodic Table Diary
Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the
Periodic Table Questions
Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is
Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set
Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You
IONISATION ENERGY CONTENTS
IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation
Questions on Chapter 8 Basic Concepts of Chemical Bonding
Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,
Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten
Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table
The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010
The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of
Bonding Practice Problems
NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which
IONISATION ENERGY CONTENTS
IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation
Test Review Periodic Trends and The Mole
Test Review Periodic Trends and The Mole The Mole SHOW ALL WORK ON YOUR OWN PAPER FOR CREDIT!! 1 2 (NH42SO2 %N 24.1 %H 6.9 %S 27.6 %O 41.3 % Al %C 35.3 %H 4.4 %O 47.1 Al(C2H3O23 13.2 3 How many moles are
5.4 Trends in the Periodic Table
5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more
Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts
Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where
Chapter 3, Elements, Atoms, Ions, and the Periodic Table
1. Which two scientists in 1869 arranged the elements in order of increasing atomic masses to form a precursor of the modern periodic table of elements? Ans. Mendeleev and Meyer 2. Who stated that the
Section 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
Unit 3 Study Guide: Electron Configuration & The Periodic Table
Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.
Theme 3: Bonding and Molecular Structure. (Chapter 8)
Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,
Look at a periodic table to answer the following questions:
Look at a periodic table to answer the following questions: 1. What is the name of group 1? 2. What is the name of group 2? 3. What is the name of group 17? 4. What is the name of group 18? 5. What is
CHAPTER 8 THE PERIODIC TABLE
CHAPTER 8 THE PERIODIC TABLE 8.1 Mendeleev s periodic table was a great improvement over previous efforts for two reasons. First, it grouped the elements together more accurately, according to their properties.
B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal
1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and
Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.
Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged
Chapter 8 Concepts of Chemical Bonding
Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding
Lewis Dot Structures of Atoms and Ions
Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron
Periodic Table Trends in Element Properties Ron Robertson
Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together
neutrons are present?
AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest
Chapter 3. Elements, Atoms, Ions, and the Periodic Table
Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's
Ions & Their Charges Worksheet
Ions & Their Charges Worksheet Name Date Teacher Diagram of charges based on groups on the periodic table including transition metals and noble gases: IA IIA Transition IIIA IVA VA VIA VIIA VIIIA metals
Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.
Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a
CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES
CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES PRACTICE EXAMPLES 1A 1B A B A Atomic size decreases from left to right across a period, and from bottom to top in a family. We expect the smallest
List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.
Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals
Be (g) Be + (g) + e - O (g) O + (g) + e -
2.13 Ionisation Energies Definition :First ionisation energy The first ionisation energy is the energy required when one mole of gaseous atoms forms one mole of gaseous ions with a single positive charge
We will not be doing these type of calculations however, if interested then can read on your own
Chemical Bond Lattice Energies and Types of Ions Na (s) + 1/2Cl 2 (g) NaCl (s) ΔH= -411 kj/mol Energetically favored: lower energy Like a car rolling down a hill We will not be doing these type of calculations
KEY. Honors Chemistry Assignment Sheet- Unit 3
KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.
CHAPTER 12: CHEMICAL BONDING
CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist
PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.
1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left
TRENDS IN THE PERIODIC TABLE
Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1
3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A
1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.
It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.
So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability
Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11
Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties
Chapter 8 Atomic Electronic Configurations and Periodicity
Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from
Trends of the Periodic Table Basics
Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the
Unit 3.2: The Periodic Table and Periodic Trends Notes
Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas
Chapter 7. Electron Structure of the Atom. Chapter 7 Topics
Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of
Periodic Trends for Electronegativity... 1. Periodic Trends for Ionization Energy... 3. Periodic Trends for Electron Affinity... 5
Periodic Trends Periodic trends are certain patterns that describe specific aspects of the elements in the periodic table, such as size and properties with electrons. The main periodic trends include:
Laboratory 11: Molecular Compounds and Lewis Structures
Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular
The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.
CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron
Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.
The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.
Chapter 2 Atoms, Molecules, and Ions
Chapter 2 Atoms, Molecules, and Ions 1. Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen, a ration of 3:1 by mass. In ethane,
Chapter 5 TEST: The Periodic Table name
Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based
Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories
Chemical misconceptions 115. Ionisation energy. Ionisation energy, structure of the atom, intra-atomic forces.
Chemical misconceptions 115 Ionisation energy Target level Topics Rationale This is a diagnostic probe designed for post-16 students studying chemistry. Ionisation energy, structure of the atom, intra-atomic
CHAPTER 8 PERIODIC RELATIONSHIPS AMONG THE ELEMENTS
CHAPTER 8 PERIODIC RELATIONSHIPS AMONG THE ELEMENTS Problem Categories Conceptual: 8.55, 8.56, 8.69, 8.89, 8.90, 8.101, 8.109, 8.112, 8.117, 8.121, 8.122, 8.127, 8.128, 8.129, 8.133, 8.138. Descriptive:
Elements, Atoms & Ions
Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,
Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)
BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in
CHAPTER REVIEW. 3. What category do most of the elements of the periodic table fall under?
CHAPTER REVIEW EVIEW ANSWERS 1. alkaline-earth metals 2. halogens 3. metals. electron affinity 5. actinides 6. answers should involve the transmutation of one element to another by a change in the number
EXPERIMENT 4 The Periodic Table - Atoms and Elements
EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements
AP CHEMISTRY 2009 SCORING GUIDELINES
AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron
CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY
CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY 8.1 Elements are listed in the periodic table in an ordered, systematic way that correlates with a periodicity of their chemical and physical properties.
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy
Sample Exercise 8.1 Magnitudes of Lattice Energies
Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three
Ionic and Metallic Bonding
Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose
Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number
Name: ate: 1. In the modern, the elements are arranged in order of increasing. atomic number. mass number. oxidation number. valence number 5. s the elements in Group I are considered in order of increasing
ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)
ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.
Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions
Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned
Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson
Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real
Chapter 2 Atoms, Ions, and the Periodic Table
Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)
Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.
hem 150 Answer Key roblem et 2 1. omplete the following phrases: Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.
CHAPTER 6 Chemical Bonding
CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain
Thermodynamics of Crystal Formation
Thermodynamics of Crystal Formation! All stable ionic crystals have negative standard enthalpies of formation, ΔH o f, and negative standard free energies of formation, ΔG o f. Na(s) + ½ Cl 2 (g) NaCl(s)
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
Chapter Outline. Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table
Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table Atomic Bonding in Solids Bonding Energies and Forces Periodic Table Chapter Outline
H 2O gas: molecules are very far apart
Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat
19.1 Bonding and Molecules
Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and
CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.
Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence
Exam 2 Chemistry 65 Summer 2015. Score:
Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of
Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework
Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other
APS Science Curriculum Unit Planner
APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table
7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions
7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams
A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)
Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is
2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England
CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered
The Periodic Table: Periodic trends
Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has
Molecular Models & Lewis Dot Structures
Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.
Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½
Unit, Lesson : Answers to Homework Summary: The allowed values for quantum numbers for each principal quantum level n : n l m l m s corresponding sub-level number of orbitals in this sub-level n = s n
