# Computer Algebra for Computer Engineers

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 p.1/14 Computer Algebra for Computer Engineers Preliminaries Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City

2 p.2/14 Notation R: Real Numbers Q: Fractions C: Complex Z: Integers N: Natural numbers? Z + denotes positive integers {1, 2,...}, and non-negative integers are {0, 1,...}. Z n : Z mod n = {0, 1,...,n 1}

3 p.3/14 Group An Abelian group is a set G and a binary operation + satisfying all the following properties: Closure: For every a,b G,a + b G. Associativity: For every a,b,c G,a + (b + c) = (a + b) + c. Commutativity: For every a,b G,a + b = b + a. Identity: There is an identity element 0 G such that for all a G;a + 0 = a. Inverse: If a G, then there is an element a 1 G such that a + a 1 = 0. Examples of group operations: Go to Wikipedia and find out

4 p.4/14 Rings A Commutative ring with unity is a set R and two binary operations + and, as well as two distinguished elements 0, 1 R such that: R is an Abelian group with respect to addition with additive identity element 0. Multiplication Closure: For every a,b R, a b R. Multiplication Associativity: For every a, b, c R, a (b c) = (a b) c. Multiplication Commutativity: For every a,b R, a b = b a. Multiplication Identity: There is an identity element 1 R such that for all a R, a 1 = a. Distributivity: For every a,b,c R, a (b + c) = a b + a c holds for all a,b,c R.

5 p.5/14 Fields A field F is a commutative ring with unity, where every element in F except 0 has a multiplicative inverse, i.e. a F {0}, â F such that a â = 1. R,Q,C,Z p, where p = prime are fields Arbitrary Z n (i.e. when n p) is not a field Finite fields are also called Galois fields: GF(q) or F q where q = p m. Examples of GF: Z 2,Z 3,Z 5,...,Z p,f 4,F 8,F 9,F 16,...,F q where q = p m Note: Z 2 = F 2 ;Z 3 = F 3 ;...;Z p = F p ; but Z 4 F 4 Fields are unique (up to the labeling of elements).

6 p.6/14 Modulo Arithmetic The set Z n = {0, 1,...,n 1}, where n N, forms a commutative ring with unity. It is called the residue class ring, where addition and multiplication are defined modulo n (modn). Integers x,y are called congruent modulo n (x y mod n) if n is a divisor of their difference: n (x y). (a + b)%n = (a%n + b)%n = (a + b%n)%n = (a%n + b%n)%n (1) (a b)%n = (a%n b)%n = (a b%n)%n = (a%n b%n)%n (2) ( a)%n = (n a)%n (3)

7 p.7/14 Polynomial Rings k[x] denotes the ring of polynomials with coefficients from the field k. Customary to use k for infinite fields, and F q for finite fields Examples: R[x], Q[x], F q [x], Z n [x] Similarly, k[x 1,...,x n ] is the ring of multivariate polynomials with coefficients in k Note k[x 1,...,x n ] is itself a ring, not a field

8 p.8/14 Polynomials Let R be a ring. A polynomial over R in the indeterminate x is an expression of the form a 0 + a 1 x + a 2 x a n x n = a i x i, a i R. Elements a i are coefficients, n is the degree. The element a n is called the leading coefficient; when a n = 1, the polynomial is monic. We ll take a look at multi-variate polynomials a little later. Ordering the monomials of a multi-variate polynomial is very important. Polynomial manipulation is carried out according to the given order. Monomial order defines: Leading terms, leading coefficients, leading monomials, etc. This is straightforward in univariate polynomials. If f(x) = a n x n + + a 1 x + a 0, then LT(f) = a n x n, LC(f) = a n, and LM(f) = x n.

9 p.9/14 Affine Space Given a field k and n Z +, we define n-dimensional affine space over k to be the set: k n = {(a 1,...,a n ) : a 1,...,a n k} In case k 2 = R 2, we get our affine plane. Affine spaces relate to polynomials: A polynomial f = a i x i k[x 1,...,x n ] also gives a corresponding function f : k n k. Hence, the notion of a polynomial function!

10 p.10/14 Polynomials and Functions So when we say, is f = 0?, it may mean Is f the zero polynomial? i.e. are all coefficients zero? Or does f represent the zero function over k n k? For example: F = x 2 + x Z 2 [x]. Note that F is a symbolically non-zero polynomial, but it induces the zero function over f : Z 2 Z 2. Proposition 1 (CLO-Book) Let k be an infinite field, and f k[x 1,...,x n ]. Then f = 0 f : k n k is the zero function. Also, f = g f : k n k and g : k n k are equal as functions. Theorem 1 Fundamental Theorem of Algebra: Every non-constant polynomial f C[x] has a root in C. Note: Algebraically closed fields!

11 p.11/14 Variety Let k be a field, and f 1,...,f s are polynomials in k[x 1,...,x n ]. Then we set: V(f 1,...,f s ) = {(a 1,...,a n ) k n : f i (a 1,...,a n ) = 0,1 i s} We call V(f 1,...,f s ) the affine variety defined by the polynomials. Variety = Set of all solutions to a given set of polynomial equations! Look at some varieties...

12 p.12/14 Variety Some Notes In V (f 1,...,f s ), s = given (finite)! Variety = set of points (that are the solutions to a finite system of equations) Is (a 1,...,a n ) k n an affine variety? Let k = R and let A = {(x,y) R 2 : y > 0}. Not an affine variety. Why?

13 Union & Intersection of Varieties lemma 1 Let V,W k n are affine varieties, then V W and V W are also affine varieties; where: Let V = V(f 1,...,f s ) and W = V(g 1,...,g t ) V W = V(f 1,...,f s,g 1,...,g t ) V W = V(f i g j : 1 i s,1 j t) Q: Is every finite subset of k n an affine variety? Q: Is every finite union/intersection of affine varieties also an affine variety? Infinite union? Q: Given f 1,...,f s, do they have a common solution? Do they have finite solutions? bases. We can answer these questions using Gröbner p.13/14

14 p.14/14 Ideals Definition 1 A subset I R = k[x 1,...,x n ] is an ideal if: 0 I If f,g I, then f + g I If f I and h R then f h I Definition 2 Let f 1,f 2,...,f s k[x 1,...,x n ]. Let s f 1,f 2...,f s = { f i g i : h 1,...h s k[x 1,...,x n ]} (4) i=1 I = f 1,f 2...,f s is an ideal generated by f 1,...,f s and the polynomials are called the generators.

### Intro to Rings, Fields, Polynomials: Hardware Modeling by Modulo Arithmetic

Intro to Rings, Fields, Polynomials: Hardware Modeling by Modulo Arithmetic Priyank Kalla Associate Professor Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla

### ASS.PROF.DR Thamer Information Theory 4th Class in Communication. Finite Field Arithmetic. (Galois field)

Finite Field Arithmetic (Galois field) Introduction: A finite field is also often known as a Galois field, after the French mathematician Pierre Galois. A Galois field in which the elements can take q

### Galois Fields and Hardware Design

Galois Fields and Hardware Design Construction of Galois Fields, Basic Properties, Uniqueness, Containment, Closure, Polynomial Functions over Galois Fields Priyank Kalla Associate Professor Electrical

### Primary Decomposition

Primary Decomposition 1 Prime and Primary Ideals solutions defined by prime ideals are irreducible 2 Finite Dimensional Systems modeling of gene regulatory networks 3 Primary Decomposition definition and

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Appendix A. Appendix. A.1 Algebra. Fields and Rings

Appendix A Appendix A.1 Algebra Algebra is the foundation of algebraic geometry; here we collect some of the basic algebra on which we rely. We develop some algebraic background that is needed in the text.

### Exercise implies that V(I) = V(F ) for any generating set F of the ideal I. In the opposite direction we have a map

44 4. ALGEBRA-GEOMETRY CORRESPONDENCE 4.1. Ideal-variety correspondence The correspondence between algebra and geometry about to be discussed is the core of the area called algebraic geometry, which uses

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

### Quotient Rings of Polynomial Rings

Quotient Rings of Polynomial Rings 8-7-009 Let F be a field. is a field if and only if p(x) is irreducible. In this section, I ll look at quotient rings of polynomial rings. Let F be a field, and suppose

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### (a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### Gröbner Bases and their Applications

Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,

### 3 Congruence arithmetic

3 Congruence arithmetic 3.1 Congruence mod n As we said before, one of the most basic tasks in number theory is to factor a number a. How do we do this? We start with smaller numbers and see if they divide

### Factorization Algorithms for Polynomials over Finite Fields

Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

### Definition: Group A group is a set G together with a binary operation on G, satisfying the following axioms: a (b c) = (a b) c.

Algebraic Structures Abstract algebra is the study of algebraic structures. Such a structure consists of a set together with one or more binary operations, which are required to satisfy certain axioms.

### fg = f g. 3.1.1. Ideals. An ideal of R is a nonempty k-subspace I R closed under multiplication by elements of R:

30 3. RINGS, IDEALS, AND GRÖBNER BASES 3.1. Polynomial rings and ideals The main object of study in this section is a polynomial ring in a finite number of variables R = k[x 1,..., x n ], where k is an

### Unique Factorization

Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

### Non-unique factorization of polynomials over residue class rings of the integers

Comm. Algebra 39(4) 2011, pp 1482 1490 Non-unique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate non-unique factorization

### Part V, Abstract Algebra CS131 Mathematics for Computer Scientists II Note 29 RINGS AND FIELDS

CS131 Part V, Abstract Algebra CS131 Mathematics for Computer Scientists II Note 29 RINGS AND FIELDS We now look at some algebraic structures which have more than one binary operation. Rings and fields

### HTP in Positive Characteristic

HTP in Positive Characteristic Alexandra Shlapentokh East Carolina University November 2007 Table of Contents 1 A Brief History of Diophantine Undecidability over Number Fields The Original Problem Extensions

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### CHAPTER 6: RATIONAL NUMBERS AND ORDERED FIELDS

CHAPTER 6: RATIONAL NUMBERS AND ORDERED FIELDS LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we construct the set of rational numbers Q using equivalence

### Finite Fields and Error-Correcting Codes

Lecture Notes in Mathematics Finite Fields and Error-Correcting Codes Karl-Gustav Andersson (Lund University) (version 1.013-16 September 2015) Translated from Swedish by Sigmundur Gudmundsson Contents

### 26 Ideals and Quotient Rings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed

### r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.

Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

### Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic. Theoretical Underpinnings of Modern Cryptography

Lecture 6: Finite Fields (PART 3) PART 3: Polynomial Arithmetic Theoretical Underpinnings of Modern Cryptography Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) January 29, 2015

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### PROBLEM SET # 2 SOLUTIONS

PROBLEM SET # 2 SOLUTIONS CHAPTER 2: GROUPS AND ARITHMETIC 2. Groups.. Let G be a group and e and e two identity elements. Show that e = e. (Hint: Consider e e and calculate it two ways.) Solution. Since

### MATH 433 Applied Algebra Lecture 13: Examples of groups.

MATH 433 Applied Algebra Lecture 13: Examples of groups. Abstract groups Definition. A group is a set G, together with a binary operation, that satisfies the following axioms: (G1: closure) for all elements

### 3.1 The Definition and Some Basic Properties. We identify the natural class of integral domains in which unique factorization of ideals is possible.

Chapter 3 Dedekind Domains 3.1 The Definition and Some Basic Properties We identify the natural class of integral domains in which unique factorization of ideals is possible. 3.1.1 Definition A Dedekind

### Groups in Cryptography

Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 koc@cs.ucsb.edu Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### CHAPTER 5: MODULAR ARITHMETIC

CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called

### Reduction Modulo Ideals and Multivariate Polynomial Interpolation

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITE BORDEAUX 1 Facoltà di Scienze MM. FF. NN U.F.R. Mathématiques et Informatique Master Thesis Vo Ngoc Thieu Reduction Modulo Ideals and Multivariate Polynomial

### Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices. A Biswas, IT, BESU SHIBPUR

Mathematics of Cryptography Modular Arithmetic, Congruence, and Matrices A Biswas, IT, BESU SHIBPUR McGraw-Hill The McGraw-Hill Companies, Inc., 2000 Set of Integers The set of integers, denoted by Z,

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### some algebra prelim solutions

some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

### An Introduction to Galois Fields and Reed-Solomon Coding

An Introduction to Galois Fields and Reed-Solomon Coding James Westall James Martin School of Computing Clemson University Clemson, SC 29634-1906 October 4, 2010 1 Fields A field is a set of elements on

### 11 Multivariate Polynomials

CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6

### Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

### Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

### MATH 436 Notes: Examples of Rings.

MATH 436 Notes: Examples of Rings. Jonathan Pakianathan November 20, 2003 1 Formal power series and polynomials Let R be a ring. We will now define the ring of formal power series on a variable x with

### SIMPLIFYING ALGEBRAIC FRACTIONS

Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

### Homework Set 2 (Due in class on Thursday, Sept. 25) (late papers accepted until 1:00 Friday)

Math 202 Homework Set 2 (Due in class on Thursday, Sept. 25) (late papers accepted until 1:00 Friday) Jerry L. Kazdan The problem numbers refer to the D Angelo - West text. 1. [# 1.8] In the morning section

### Solutions A ring A is called a Boolean ring if x 2 = x for all x A.

1. A ring A is called a Boolean ring if x 2 = x for all x A. (a) Let E be a set and 2 E its power set. Show that a Boolean ring structure is defined on 2 E by setting AB = A B, and A + B = (A B c ) (B

### Algebra I Notes Review Real Numbers and Closure Unit 00a

Big Idea(s): Operations on sets of numbers are performed according to properties or rules. An operation works to change numbers. There are six operations in arithmetic that "work on" numbers: addition,

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### 5.1 Commutative rings; Integral Domains

5.1 J.A.Beachy 1 5.1 Commutative rings; Integral Domains from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 23. Let R be a commutative ring. Prove the following

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### The Chebotarev Density Theorem

The Chebotarev Density Theorem Hendrik Lenstra 1. Introduction Consider the polynomial f(x) = X 4 X 2 1 Z[X]. Suppose that we want to show that this polynomial is irreducible. We reduce f modulo a prime

### The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

### ALGEBRA HANDOUT 2: IDEALS AND QUOTIENTS. 1. Ideals in Commutative Rings In this section all groups and rings will be commutative.

ALGEBRA HANDOUT 2: IDEALS AND QUOTIENTS PETE L. CLARK 1. Ideals in Commutative Rings In this section all groups and rings will be commutative. 1.1. Basic definitions and examples. Let R be a (commutative!)

### HTP in Positive Characteristic

HTP in Positive Characteristic Alexandra Shlapentokh East Carolina University October 2007 Table of Contents 1 A Brief History of Diophantine Undecidability over Number Fields The Original Problem Extensions

### Algebra. Sample Solutions for Test 1

EPFL - Section de Mathématiques Algebra Fall semester 2008-2009 Sample Solutions for Test 1 Question 1 (english, 30 points) 1) Let n 11 13 17. Find the number of units of the ring Z/nZ. 2) Consider the

### MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials

Hilbert Polynomials For a monomial ideal, we derive the dimension counting the monomials in the complement, arriving at the notion of the Hilbert polynomial. The first half of the note is derived from

### MATH 321 EQUIVALENCE RELATIONS, WELL-DEFINEDNESS, MODULAR ARITHMETIC, AND THE RATIONAL NUMBERS

MATH 321 EQUIVALENCE RELATIONS, WELL-DEFINEDNESS, MODULAR ARITHMETIC, AND THE RATIONAL NUMBERS ALLAN YASHINSKI Abstract. We explore the notion of well-definedness when defining functions whose domain is

### Algebra 3: algorithms in algebra

Algebra 3: algorithms in algebra Hans Sterk 2003-2004 ii Contents 1 Polynomials, Gröbner bases and Buchberger s algorithm 1 1.1 Introduction............................ 1 1.2 Polynomial rings and systems

### Basic Properties of Rings

Basic Properties of Rings A ring is an algebraic structure with an addition operation and a multiplication operation. These operations are required to satisfy many (but not all!) familiar properties. Some

### Hawkes Learning Systems: College Algebra

Hawkes Learning Systems: College Algebra Section 1.2: The Arithmetic of Algebraic Expressions Objectives o Components and terminology of algebraic expressions. o The field properties and their use in algebra.

### Introduction to polynomials

Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Finite fields: further properties

Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting,

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Non-parametricity of rational translates of regular Galois extensions

arxiv:1612.08035v1 [math.nt] 23 Dec 2016 Non-parametricity of rational translates of regular Galois extensions Joachim König December 26, 2016 We generalize a result of F. Legrand about the existence of

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### Introduction to Finite Fields (cont.)

Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

### 6. Fields I. 1. Adjoining things

6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

### THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION. In Memory of Robert Barrington Leigh. Saturday, March 5, 2016

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION In Memory of Robert Barrington Leigh Saturday, March 5, 2016 Time: 3 1 2 hours No aids or calculators permitted. The grading is designed

### Constructing Zero Divisor Graphs

Constructing Zero Divisor Graphs Alaina Wickboldt, Louisiana State University Alonza Terry, Xavier University of Louisiana Carlos Lopez, Mississippi State University SMILE 2011 Outline Introduction/Background

### Groups, Rings, and Fields. I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, S S = {(x, y) x, y S}.

Groups, Rings, and Fields I. Sets Let S be a set. The Cartesian product S S is the set of ordered pairs of elements of S, A binary operation φ is a function, S S = {(x, y) x, y S}. φ : S S S. A binary

### 3 Monomial orders and the division algorithm

3 Monomial orders and the division algorithm We address the problem of deciding which term of a polynomial is the leading term. We noted above that, unlike in the univariate case, the total degree does

### Abelian groups/1. 1 Definition

Abelian groups 1 Definition An Abelian group is a set A with a binary operation satisfying the following conditions: (A1) For all a,b,c A, we have a (b c) = (a b) c (the associative law). (A2) There is

### Algebraic Systems, Fall 2013, September 1, 2013 Edition. Todd Cochrane

Algebraic Systems, Fall 2013, September 1, 2013 Edition Todd Cochrane Contents Notation 5 Chapter 0. Axioms for the set of Integers Z. 7 Chapter 1. Algebraic Properties of the Integers 9 1.1. Background

### Topics in Number Theory

Chapter 8 Topics in Number Theory 8.1 The Greatest Common Divisor Preview Activity 1 (The Greatest Common Divisor) 1. Explain what it means to say that a nonzero integer m divides an integer n. Recall

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### 4 Unique Factorization and Applications

Number Theory (part 4): Unique Factorization and Applications (by Evan Dummit, 2014, v. 1.00) Contents 4 Unique Factorization and Applications 1 4.1 Integral Domains...............................................

### 4.4 Clock Arithmetic and Modular Systems

4.4 Clock Arithmetic and Modular Systems A mathematical system has 3 major properies. 1. It is a set of elements 2. It has one or more operations to combine these elements (ie. Multiplication, addition)

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Lecture #5 (Dihedral group, Symmetric group, The Quaternion group, Klein-4 group) MTH 232, Abstract Algebra

Lecture #5 (Dihedral group, Symmetric group, The Quaternion group, Klein-4 group) MTH 232, Abstract Algebra February 20, 2012 Dihedral groups An important family of examples of groups is the class of groups

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### MTH 06 LECTURE NOTES (Ojakian) Topic 2: Functions

MTH 06 LECTURE NOTES (Ojakian) Topic 2: Functions OUTLINE (References: Iyer Textbook - pages 4,6,17,18,40,79,80,81,82,103,104,109,110) 1. Definition of Function and Function Notation 2. Domain and Range

### Introduction to finite fields

Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at

### Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

Algebraic Geometry Andreas Gathmann Notes for a class taught at the University of Kaiserslautern 2002/2003 CONTENTS 0. Introduction 1 0.1. What is algebraic geometry? 1 0.2. Exercises 6 1. Affine varieties

### Integral Domains. As always in this course, a ring R is understood to be a commutative ring with unity.

Integral Domains As always in this course, a ring R is understood to be a commutative ring with unity. 1 First definitions and properties Definition 1.1. Let R be a ring. A divisor of zero or zero divisor

### Mathematics of Cryptography

CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is