Hydropower. Limitless energy.

Size: px
Start display at page:

Download "Hydropower. Limitless energy."

Transcription

1 Hydropower. Limitless energy.

2 With one hundred years of experience, our focus is on the future Skellefteå Kraft's history started with a hydropower plant in Finnforsfallet outside Skellefteå, northern Sweden. It was the first big power plant construction along the River Skellefte, uniting beautiful architecture and lovely surroundings with a fantastic new technology that caused the town and industry in Skellefteå to flourish. The power plant was ready in 1908, and by 1936 Skellefteå was the most electrified town in Sweden. Throughout the history of the company, Skellefteå Kraft's strategy has included the construction, development and management of hydropower. This has given us over one hundred years of experience and expertise, enabling us to push the development of hydropower towards the energy production of the future.

3 One of Sweden's largest producers of Hydropower Skellefteå Kraft is currently Sweden's fifth largest power producer, and 70 % of our production comes from hydropower. The company runs 14 major hydroelectric plants with annual production of between 30 and 300 GWh, plus a number of smaller plants producing a total of 84 GWh annually. In total, our hydropower yielded 2,602 GWh during Owning and producing Skellefteå Kraft's long-term strategy is to have the lowest flexible electricity production costs in Europe. One key to achieving this is a large proportion of hydroelectric and wind power, energy types for which there are no direct fuel costs. Our energy portfolio is well suited to this strategic goal. We mainly produce hydropower and supplement it with bioenergy and a rapidly growing share of wind power. PREVENTIVE MAINTENANCE Thanks to long-term thinking and preventive initiatives, it is possible to reduce the costs of hydropower and run energy production efficiently. Well-planned maintenance is also a requirement for high reliability. The aim is for plants to function well during the 40-year periods that are calculated to pass between major renovations of equipment and machinery. Part of society The majority of Skellefteå Kraft's hydropower plants are in northern Västerbotten, in the north of Sweden. The region is largely rural and the towns and villages have a significant need for industrial development and increased employment. Skellefteå Kraft's aim is to develop operations, where possible, so that they have a positive effect on the region. Hydropower, among other things, plays an important role in this, as the gains generated bear our major investments in other renewable sources of energy. This is a development that contributes to developing both jobs and economic growth in the region. DISTRIBUTION OF SKELLEFTEÅ KRAFT'S ELECTRICITY PRODUCTION Hydropower Wind power Thermal power Nuclear power During 2010, hydropower accounted for 70 % of the company's electricity production. As other renewable sources of energy expand, hydropower will account for a smaller proportion of Skellefteå Kraft's total electricity production. However, the amount of electricity produced through hydropower will continue to be as much as it is now.

4 A responsible energy choice Skellefteå Kraft is investing significantly to increase production of renewable energy. Wind power and hydropower are entirely renewable sources and the energy comes from naturally flowing sources. The environmental impact from production of electricity from wind, water and biofuel is low compared with fossil fuels. The environmental impact is largely from manufacture of equipment and construction of the plants. Overall, this is compensated for through the increased production of renewable energy. Responsible power production Hydropower is fully renewable and is part of a natural, unending ecocycle. The building of a hydropower plant places huge demands on the power company responsible. Skellefteå Kraft adheres to these requirements and makes significant investments to maintain a good environment in its watercourses. What has to be done depends on the water rights that have to be observed. Sometimes, water is drawn off into old river furrows and combined with submerged weirs, which helps to ensure that some of the natural animal and plant life can continue to thrive. Artificial spawning grounds and fish ladders can be created, making it easier for the fish to migrate and reproduce. In several cases, large quantities of fish are raised and reintroduced every year. Along with the rest of the industry, Skellefteå Kraft runs a number of research projects regarding the environmental issues associated with hydropower. These projects study environmental effects and measures to reduce environmental impact, among other things. Creating opportunities Skellefteå Kraft has its own production within hydroelectric and wind power, as well as bioenergy. Together, these types of energy form an electricity production system with beneficial effects on both electricity prices and carbon dioxide emissions. Thanks to the extension of production of these types of energy, the need for electricity from more expensive and environmentally-damaging sources of production can be reduced. In addition, the ability to store and regulate hydroelectricity is an important requirement for the production of electricity from wind power, which can only be produced when the wind is blowing. In other words, when Skellefteå Kraft chooses to invest in wind power, hydropower is essential. A positive factor in the work to counter climate change Skellefteå Kraft applies a systematic working method to achieve the environmental goals set by the company, with climate impact currently being of huge importance. Thanks to our energy portfolio, we are part of the fight against carbon dioxide emissions and global warming. Possibly the greatest challenge of our time.

5 Hydropower. How does it work? It is actually the sun that is the main source of hydropower. When the sun heats the surface water of lakes and seas, it evaporates to form clouds which then release precipitation in the form of snow and rain at higher altitudes. On its way back down towards the lakes and seas, the precipitation runs via streams and rivers to the reservoirs next to the power plants that produce electricity. The hydroelectric plants exploit the drop in height and the water flow in our rivers. This is called potential energy, and is created when the water moves from a higher level (1) to a lower one (4). In order to increase the difference in level and control the process better, dams (1) are often built alongside hydroelectric plants. In order to get potential energy, the water has to pass through a turbine (2) in the hydroelectric plant. The water streams towards the blade wheel in the turbine, which then rotates, creating kinetic energy, which in turn is converted into electrical current in a generator (3). The current runs from the generator to a transformer (5), which increases the voltage and then sends the current out into the power grid. 1. The water is at its highest level at the hydroelectric plant's dam. 2. The water passes through the plant's turbine. 3. The generator converts the turbine's rotation into electrical current. 4. The water is at its lowest level at the hydroelectric plant's outflow. 5. The transformer increases the voltage of the current so that it can be sent a long way through the power grid

6 Operating centre The heart of Skellefteå Kraft's production of hydropower is the operating centre that is also physically located in the heart of the company's head office in Skellefteå. From there, the operating centre has total control of all of the company's hydropower stations. The purpose of the operating centre is to optimise electricity production. This is done in a safe way, round the clock. Tasked to optimise The operating centre is a good example of the way in which Skellefteå Kraft places huge importance on competent personnel. The company's optimisation group creates production plans in both the long and the short term. The personnel who stand at the controls and screens day and night work from these plans, but have to fine tune them based on the actual situation. The major challenge is taking decisions based on the trend in the price of electricity and access to water. This requires knowledge and experience, as well as systems and methods constantly being developed and improved. Safety above all The most important responsibility of the operating centre is to observe any water rights in force. Water rights consist of various permits issued in accordance with the Swedish Environmental Code that determine how dams and equipment can be handled. The water must flow in a safe way through the system of dams and power plants in the river. The operating centre ensures that electricity is produced when it is required, but also that this is achieved in a safe way for both humans and the environment.

7 A selection of our plants 1. Sällsjö Construction of Sällsjö power station commenced in 1962, and the two plants went into operation in 1966 and Electrical output: 160 MW. Normal annual production: 350 GWh. 2. Krångfors When valuable ore was discovered in Boliden, only Finnforsfallet power station could offer electricity. The mine required more, and in 1928 the River Skellefte's second power station was ready in Krångfors. Electrical output: 62 MW. Normal annual production: 350 GWh. 3. Selsfors Competition for the stretch of rapids in the 1930s led to Skellefteå Kraft purchasing Selsfors in Construction of the power station commenced in 1941, and it was ready for use in Electrical output: 61 MW. Normal annual production: 265 GWh. 4. Finnfors Construction on the River Skellefte's first power station commenced in 1906, and it was in operation by Fifty years later, a new power plant was built in Finnfors, this time on the southern side of the river. Electrical output: 54 MW. Normal annual production: 237 GWh. 5. Granfors Granfors power station was constructed in 1948, and at that time had one plant with space for one more. In 1962, the station was expanded and a further plant was commissioned in Electrical output: 40 MW. Normal annual production: 207 GWh. 6. Båtfors When Båtfors was to be expanded in 1955, the City of Skellefteå, along with Gumboda Elektriska AB, formed the company Skellefteå Kraftaktiebolag in order to be able to raise an ordinary bank loan. The two turbines in Båtfors were commissioned in 1961 and 1962 respectively. Electrical output: 42 MW. Normal annual production: 201 GWh. 7. Klippen Construction of the power station at Klippen, 10 km west of Hemavan, started in 1990 and was commissioned in For the construction of the inflow and outflow tunnels, a new technology was used that involved drilling rather than blasting. One advantage is that the tunnel area is reduced without loss of power. Electrical output: 27 MW. Normal annual production: 100 GWh. 8. Storforsen In 2007, Skellefteå Kraft inaugurated its latest power plant, the Storforsen plant in Örån. It was built with a focus on environmental thinking and the station is located wholly underground. Electrical output: 4.4 MW. Normal annual production: 23 GWh. Other large plants Sädva (9), Rebnis (10), Bergnäs (11), Slagnäs (12), Grytfors (13), Rengård (14), Sikfors (15). Around 15 smaller plants complement the larger hydroelectric plants PITEÄLVEN LULEÄLVEN SKELLEFTEÄLVEN 15 Piteå Luleå UMEÄLVEN 8 13 VINDELÄLVEN Skellefteå Umeå 1 INDALSÄLVEN Sundsvall

8 Skellefteå Kraft is one of Sweden's largest power producers with its own production plants for wind power, hydropower and bioenergy. Its work consists of technical development, sales and delivery. With extensive investments in renewable energy production, the company is the driving force in development of environmental energy in Sweden. Skellefteå Kraft has its own power grids and offers energy and maintenance services. In addition, it is also active within property leasing and broadband provision. The company is wholly owned by Skellefteå Municipality and in 2010 it had 640 or so employees and turnover of SEK 4.5 billion. Skellefteå Kraft SE Skellefteå Street address Kanalgatan 71 Tel +46 (0) Fax +46 (0) APRIL 2011

Bioenergy. A sustainable energy source.

Bioenergy. A sustainable energy source. Bioenergy. A sustainable energy source. The natural energy cycle Skellefteå Kraft strongly believes that bioenergy will play an important role in future Swedish energy production. Its raw material consists

More information

12.5: Generating Current Electricity pg. 518

12.5: Generating Current Electricity pg. 518 12.5: Generating Current Electricity pg. 518 Key Concepts: 1. Electrical energy is produced by energy transformations. 2. Electrical energy is produced from renewable and non-renewable resources. 4. Electrical

More information

Station #1 Interpreting Infographs

Station #1 Interpreting Infographs Energy Resources Stations Activity Page # 1 Station #1 Interpreting Infographs 1. Identify and explain each of the energy sources (5) illustrated in the infograph. 2. What do the white and black circles

More information

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:

Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros: P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation

More information

T E A C H E R S N O T E S

T E A C H E R S N O T E S T E A C H E R S N O T E S Focus: Students explore energy: its sources, forms, and transformations. Students also consider the benefits of energy-efficient technologies and energy conservation. Learning

More information

Frequently Asked Questions (FAQs) on Hydropower

Frequently Asked Questions (FAQs) on Hydropower Frequently Asked Questions (FAQs) on Hydropower What are the advantages of Hydropower? A renewable source of energy - saves scarce fuel reserves. Non-polluting and hence environment friendly. Long life

More information

Do-Now. 1.) Get out notebook.

Do-Now. 1.) Get out notebook. Do-Now 1.) Get out notebook. 2.) Answer the following questions on the first clean sheet in your notebook. 1.) What are renewable resources? 2.) What are nonrenewable resources? Alternative Sources of

More information

The Energy Triangle Hydro power

The Energy Triangle Hydro power Hydro power The Energy Triangle Hydro power In supplying society with its energy needs, a balance must be struck between three key dimensions: competitiveness, security of supply, and environment and climate.

More information

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY

CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY CANADA S RESOURCES: CONVENTIONAL AND ALTERNATIVE ENERGY Introduction Canadians are among the highest energy consumers in the world. Why? (list 3 possible reasons) Northern climate/very cold temperatures

More information

MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT. By: Payman Hassan Rashed

MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT. By: Payman Hassan Rashed MICRO-HYDROPOWER NEED FOR ENERGY FOR RURAL DEVELOPMENT Significant water resources are found in many developing countries. In areas where adequate water resources are present, harnessing the power of falling

More information

What are the Benefits?

What are the Benefits? Micro hydro power system introduction Not everyone is lucky enough to have a source of running water near their homes. But for those with river-side homes or live-on boats, small water generators (micro-hydro

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Alternative Energy Resources

Alternative Energy Resources Alternative Energy Resources Energy Resource Advantages Disadvantages What are some renewable energy resources? A nonrenewable resource cannot be replaced in a reasonable amount of time. Fossil fuels such

More information

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground. Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

ESBI Carbon Solutions. Partnering with Countries to Achieve their Full Carbon Credit Potential

ESBI Carbon Solutions. Partnering with Countries to Achieve their Full Carbon Credit Potential ESBI Carbon Solutions Partnering with Countries to Achieve their Full Carbon Credit Potential ESB International ESB International (ESBI) is a growing international energy company and one of Europe s leading

More information

Module 7 Forms of energy generation

Module 7 Forms of energy generation INTRODUCTION In rich countries like Australia, our standard of living is dependent on easily available energy. Every time you catch a bus, turn on a light or watch television energy is being used up. Over

More information

Technology Fact Sheet for Mitigation B. Small Hydropower Technology i 1. Introduction 1.1. Historical - All over the World, hydropower sector is

Technology Fact Sheet for Mitigation B. Small Hydropower Technology i 1. Introduction 1.1. Historical - All over the World, hydropower sector is Technology Fact Sheet for Mitigation B. Small Hydropower Technology i 1. Introduction 1.1. Historical - All over the World, hydropower sector is playing a great role in economic development since the last

More information

Sustainable Energy Sources By: Sue Peterson

Sustainable Energy Sources By: Sue Peterson www.k5learning.com Objective sight words (consumption, terrain, integral, orbit, originated, contemporary, remote); concepts (sustainable, renewable, photovoltaics, gasification) Vocabulary consumption

More information

Hydropower. Corps Hydro Plants Non-Federal Plants

Hydropower. Corps Hydro Plants Non-Federal Plants Hydropower Corps Hydro Plants Non-Federal Plants at Corps Dams The U.S. Army Corps of Engineers is the largest owner/operator of hydroelectric powerplants in the United States and one of the largest in

More information

Case Study 5 Use of Wind Turbine Technology

Case Study 5 Use of Wind Turbine Technology Case Study 5 Use of Wind Turbine Technology 1. Context Hong Kong relies on an adequate and reliable electricity supply for its economic development. Our electricity needs are met by the two electricity

More information

A Green Sector Overview

A Green Sector Overview A Green Sector Overview Micro Hydro Electric Power Ontario's Waterpower Resources: Past and Present The first hydroelectric generator in Canada was installed near Ottawa, which was the first city in North

More information

Asian Journal on Energy and Environment

Asian Journal on Energy and Environment As. J. Energy Env. 2005, 6(02), 139-144 Asian Journal on Energy and Environment ISSN 1513-4121 Available online at www.asian-energy-journal.info The Small Hydropower Project as the Important Renewable

More information

ASSOCIATION INC Geothermal Energy: New Zealand s most reliable sustainable energy resource

ASSOCIATION INC Geothermal Energy: New Zealand s most reliable sustainable energy resource NEW PO Box 11-595 ZEALAND GEOTHERMAL Tel: 64-9-474 2187 ASSOCIATION INC Geothermal Energy: New Zealand s most reliable sustainable energy resource Current Status, Costs and Advantages of Geothermal East

More information

Solar PV panels fitted to roofs. Solar PV panels produce electricity from energy provided by sunlight. 3.5 MWh per system

Solar PV panels fitted to roofs. Solar PV panels produce electricity from energy provided by sunlight. 3.5 MWh per system Solar PV panels fitted to roofs Yearly cost of production Cost per kwh 12.5p Solar PV panels produce electricity from energy provided by sunlight. 3.5 MWh per system 430 per system Solar energy can be

More information

Institut für Energietechnik Department of Energy Systems. Hydroelectric power. Elias Bartos 2/7 2010

Institut für Energietechnik Department of Energy Systems. Hydroelectric power. Elias Bartos 2/7 2010 Institut für Energietechnik Department of Energy Systems Hydroelectric power Elias Bartos 2/7 2010 1 Contents Different types of power plants Potential Economics Conclusion 2 Impoundment A dam is built

More information

The Real Cost of Electrical Energy. Outline of Presentation

The Real Cost of Electrical Energy. Outline of Presentation 2 Outline of Presentation Data Sources Electricity Demand and Supply Cost to Meet Demand Profile Electricity Pricing Cost Impact of Dispatching Generation (Load Following) Simplifying Assumptions Electricity

More information

Renewable Wind. Wind Basics. Energy from Moving Air. The Daily Wind Cycle. Wind Energy for Electricity Generation

Renewable Wind. Wind Basics. Energy from Moving Air. The Daily Wind Cycle. Wind Energy for Electricity Generation Renewable Wind Wind Basics Energy from Moving Air Wind is simply air in motion. It is caused by the uneven heating of the Earth's surface by the sun. Because the Earth's surface is made of very different

More information

Chapter 13 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 13 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question. Chapter 13 Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the correct type of energy utilized to produce tidal power? a.

More information

Electricity Generation from Renewable Energy in Sri Lanka: Future Directions

Electricity Generation from Renewable Energy in Sri Lanka: Future Directions Electricity Generation from Renewable Energy in Sri Lanka: Future Directions Presented by M.M.C. Ferdinando, Secretary, Ministry of Power and Energy R.J. Gunawardana, Additional General Manager (Transmission),

More information

The Polar Climate Zones

The Polar Climate Zones The Polar Climate Zones How cold is it in the polar climate? Polar areas are the coldest of all the major climate zones The Sun is hardly ever high enough in the sky to cause the plentiful ice to melt,

More information

5-Minute Refresher: RENEWABLE ENERGY

5-Minute Refresher: RENEWABLE ENERGY 5-Minute Refresher: RENEWABLE ENERGY Renewable Energy Key Ideas Renewable energy is a source of energy that can be used and replenished naturally in a relatively short period of time. Non renewable energy

More information

A Resource Guide to In State Hydropower Production

A Resource Guide to In State Hydropower Production A Resource Guide to In State Hydropower Production Thursday, October 11, 2007 Fairfax, VT Hydro Facility Owned & Operated by CVPS Published by: Winooski, VT Winooski One Hydro Electric Facility Introduction

More information

AUDIT REPORT, SUMMARY. Summary. Vattenfall a competitive leader in energy transition? (RiR 2015:6) SWEDISH NATIONAL AUDIT OFFICE

AUDIT REPORT, SUMMARY. Summary. Vattenfall a competitive leader in energy transition? (RiR 2015:6) SWEDISH NATIONAL AUDIT OFFICE AUDIT REPORT, SUMMARY 1 Summary Vattenfall a competitive leader in energy transition? (RiR 2015:6) SWEDISH NATIONAL AUDIT OFFICE 1 Vattenfall a competitive leader in energy transition? The Swedish National

More information

Conventional Energy Sources

Conventional Energy Sources 9.2 Conventional Energy Sources Key Question: What benefits and problems come with common sources of energy? Hints The word plant here is not the kind that grows out of the ground. In this section, plants

More information

ESBI Company Profile. ESB International. Bringing Energy Innovation to the World...

ESBI Company Profile. ESB International. Bringing Energy Innovation to the World... ESBI Company Profile ESB International Bringing Energy Innovation to the World... ESB International ESBI is one of Europe s most progressive and commercially focused electricity consultancy firms with

More information

Which floret of broccoli would you choose?

Which floret of broccoli would you choose? Which floret of broccoli would you choose? Thomas Angervall Britta Florén Friederike Ziegler November 2006 A study carried out by SIK for the Stockholm Consumer Co-operative Society. For more information:

More information

For a sustainable energy supply

For a sustainable energy supply For a sustainable energy supply The clear task of natural gas 1 2 We are facing important choices The world is facing critical choices. Take the energy issue, for example. In a short space of time the

More information

Renewable Choice Energy

Renewable Choice Energy Catawba College Table of Contents About Renewable Choice The Problem: Electricity Production Today The Solutions: Renewable Energy Sources Renewable Energy Credits (RECs) Who can participate in Renewable

More information

Pico Power: A Boon for Rural Electrification

Pico Power: A Boon for Rural Electrification Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 7 (2013), pp. 865-872 Research India Publications http://www.ripublication.com/aeee.htm Pico Power: A Boon for Rural Electrification

More information

7613-1 - Page 1. Weather Unit Exam Pre-Test Questions

7613-1 - Page 1. Weather Unit Exam Pre-Test Questions Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which

More information

Wind Power opportunities in Västerbotten, northern Sweden

Wind Power opportunities in Västerbotten, northern Sweden Wind Power opportunities in Västerbotten, northern Sweden - Explore the resources of a truly powerful province Why Sweden One of the world s most globalized and competitive nations Meeting-point for Scandinavia

More information

525-MVA Generator-motor and Thyristor Starter Put into Service at the Tokyo Electric Power Co., Inc. s Kannagawa Hydroelectric Power Station

525-MVA Generator-motor and Thyristor Starter Put into Service at the Tokyo Electric Power Co., Inc. s Kannagawa Hydroelectric Power Station 525-MVA Generator-motor and Thyristor Starter Put into Service at the Tokyo Electric Power Co., Inc. s Kannagawa Hydroelectric Power Station 114 525-MVA Generator-motor and Thyristor Starter Put into Service

More information

A sustainable energy and climate policy for the environment, competitiveness and long-term stability

A sustainable energy and climate policy for the environment, competitiveness and long-term stability 2009-02-05 A sustainable energy and climate policy for the environment, competitiveness and long-term stability The party leaders of Alliance for Sweden entered into an agreement today on a long-term,

More information

Sihwa Tidal Power Plant: a success of environment and energy policy in Korea

Sihwa Tidal Power Plant: a success of environment and energy policy in Korea Sihwa Tidal Power Plant: a success of environment and energy policy in Korea May 2007 Prof. Nohyoung Park Korea University Energy Situations in Korea Korea started its industrial development in the 1970s,

More information

Power Generation Portfolio

Power Generation Portfolio Power Generation Portfolio Håkan Bushke Senior Vice President Electricity Production E.ON Capital Market Day Nordic Stockholm, July 3, 2006 Agenda Nordic and the Swedish power situation E.ON Sverige generation

More information

LRF Skogsägarna s agenda for Forest and Climate

LRF Skogsägarna s agenda for Forest and Climate LRF Skogsägarna s agenda for Forest and Climate LRF Skogsägarna (the Federation of Swedish Family Forest Owners) regards forest as a renewable resource, with a central role in the ongoing transition to

More information

Glossary of Energy Terms. Know Your Power. Towards a Participatory Approach for Sustainable Power Development in the Mekong Region

Glossary of Energy Terms. Know Your Power. Towards a Participatory Approach for Sustainable Power Development in the Mekong Region Glossary of Energy Terms Know Your Power 2012 Towards a Participatory Approach for Sustainable Power Development in the Mekong Region List of terms Terms Page Terms Page Avoided cost 10 Installed capacity

More information

London Underground Environment Strategy

London Underground Environment Strategy London Underground Environment Strategy 2008 2013 mayor of london Transport for London Contents Introduction 3 London Underground Environment strategy 4 Managing environmental impacts 5 Embedding environment

More information

Consider How can you collect solar energy for use in your school? What are other alternatives?

Consider How can you collect solar energy for use in your school? What are other alternatives? 5 a 5 Energy Sources a - Energy from the sun Purpose To explore sourcing our energy from the sun Key concepts Solar energy is a natural and renewable resource Heat energy from the sun can be used to heat

More information

Alternative Energy. Terms and Concepts: Relative quantities of potential energy resources, Solar constant, Economies of scale

Alternative Energy. Terms and Concepts: Relative quantities of potential energy resources, Solar constant, Economies of scale Objectives Key Terms and Concepts Introduction Solar Wind Hydroelectric Power Geothermal Sources Biofuels Summary: Economies of Scale Questions for the video if time permits Alternative Energy Objectives:

More information

Energy from the Sun. Objectives: Materials:

Energy from the Sun. Objectives: Materials: AK Target grades: 3-5 AK GLEs: Reading [3] 1.4.1 [4/5] 2.4.1 [3] 1.6.1 [3] 1.6.2 [4/5] 2.6.2 Set up time: 15 minutes Class time: About one class session Overview: The teacher will provide a basic summary

More information

Energy: renewable sources of energy. Renewable Energy Sources

Energy: renewable sources of energy. Renewable Energy Sources Energy: renewable sources of energy Energy Sources 1 It is technically and economically feasible to phase out net greenhouse gas (GHG) emissions almost entirely by 2050. A report by energy consulting firm

More information

Basic points. Introduction: The big picture, ambitions of the region, the Barents area. Strengths and challenges for Northern Sweden.

Basic points. Introduction: The big picture, ambitions of the region, the Barents area. Strengths and challenges for Northern Sweden. Basic points Introduction: The big picture, ambitions of the region, the Barents area Strengths and challenges for Northern Sweden. Possibilities for companies in the region Own reflections Global challenges:

More information

Renewable Energy. SESE Curriculum Link: Content Strand Environmental Awareness and Care Strand Unit Environmental Awareness

Renewable Energy. SESE Curriculum Link: Content Strand Environmental Awareness and Care Strand Unit Environmental Awareness key message: Fossil fuels are becoming scarce and are non-renewable. We need to use renewable sources of energy which are less damaging to the environment. SESE Curriculum Link: Content Strand Environmental

More information

Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS

Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS Electricity: The Mysterious Force What exactly is the mysterious force we call electricity? It is simply moving electrons. And what exactly are electrons? They are tiny particles found in atoms. Everything

More information

This rain is known as acid rain.

This rain is known as acid rain. Rain is very important for life. All living things need water to live, even people. Rain brings us the water we need. But in many places in the world even where you live, rain has become a menace. Because

More information

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2012 SCORING GUIDELINES Question 2 The Fremont School District uses oil to heat school buildings. Go Green! is a new project the district will implement. The superintendent has

More information

NOTE. Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand

NOTE. Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand Journal of Hydrology (NZ) 44 (2): 131-135, 2005 New Zealand Hydrological Society (2005) NOTE Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand W. E. Bardsley Department

More information

S1 Topic 9. Energy and Generating Electricity. Level: S1. Topic: Energy (Unit 4) Introduction:

S1 Topic 9. Energy and Generating Electricity. Level: S1. Topic: Energy (Unit 4) Introduction: S1 Topic 9 Energy and Generating Electricity Level: S1 Topic: Energy (Unit 4) Introduction: This set of ELA materials is designed for students whose academic ability is comparatively high. The whole unit,

More information

CLIMATE, WATER & LIVING PATTERNS THINGS

CLIMATE, WATER & LIVING PATTERNS THINGS CLIMATE, WATER & LIVING PATTERNS NAME THE SIX MAJOR CLIMATE REGIONS DESCRIBE EACH CLIMATE REGION TELL THE FIVE FACTORS THAT AFFECT CLIMATE EXPLAIN HOW THOSE FACTORS AFFECT CLIMATE DESCRIBE HOW CLIMATES

More information

ENVIRONMENTALLY PREFERABLE POWER CHALLENGES TO DEVELOPMENT:

ENVIRONMENTALLY PREFERABLE POWER CHALLENGES TO DEVELOPMENT: www.canelect.ca ENVIRONMENTALLY PREFERABLE POWER CHALLENGES TO DEVELOPMENT: W IND T ECHNOLOGY Canadian Electricity Association, 2008. All rights reserved. No part of this work covered by the copyright

More information

HYDROMATRIX Jebel Aulia - Sudan

HYDROMATRIX Jebel Aulia - Sudan HYDROMATRIX Jebel Aulia - Sudan www.andritz.com HYDROMATRIX - Concept Jebel Aulia - Sudan HYDROMATRIX is a new concept of hydraulic energy generation, which has been developed by an American engineer in

More information

District Heating & Cooling in Helsinki

District Heating & Cooling in Helsinki District Heating & Cooling in Helsinki Marko Riipinen International Energy Agency CHP/DHC Collaborative & Clean Energy Ministerial CHP/DHC Working Group Joint Workshop 12-13 February 2013 IEA Headquarters,

More information

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?

VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants? VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,

More information

Energy Technology. Marco Ordonez

Energy Technology. Marco Ordonez Energy Technology Marco Ordonez Solar Power Solar Power The conversion of sunlight into electricity. Solar Power can be done directly using photovoltaic's, or indirectly using concentrated power. Concentrated

More information

7: The electricity market

7: The electricity market 7: The electricity market 94 : Facts 2008 : Energy and Water Resources in Norway The power sector in Norway is regulated by the Energy Act. Market-based power trading is one of the principles incorporated

More information

T@W Good Practice Form

T@W Good Practice Form T@W Good Practice Form Setting Title: Public-private Partnership Leading to a New CHP Plant Utilising Fibre Sludge and Biomass Country: Location: Sweden Mariestad in West Sweden Region Start date: 1999

More information

Water and Renewable Energy Resources in the Red Sea Region. Eng. Sayed Mansour Eng. Mahmoud Eisa

Water and Renewable Energy Resources in the Red Sea Region. Eng. Sayed Mansour Eng. Mahmoud Eisa Water and Renewable Energy Resources in the Red Sea Region Eng. Sayed Mansour Eng. Mahmoud Eisa Wind Atlas In 1996, a wind atlas of Suez Gulf area was issued in cooperation with the Danish, including wind

More information

ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12

ANALYZING ENERGY. Time and Student Grouping Energy Source Analysis and Consequence Wheel: One class period. Grade Levels: 6-12 ANALYZING ENERGY Lesson Concepts: Students will analyze the advantages and disadvantages of nine different energy sources. They will use their knowledge to predict what would happen if the world did not

More information

Brochure Introducing HVDC

Brochure Introducing HVDC Brochure Introducing HVDC ABB and HVDC The world s first commercial high-voltage direct current (HVDC) link, situated between the Swedish mainland and the island Gotland, was delivered by ABB already in

More information

Vision of Jämtland and Trøndelag A living laboratory as a fossil free region

Vision of Jämtland and Trøndelag A living laboratory as a fossil free region Vision of Jämtland and Trøndelag A living laboratory as a fossil free region Jiehong Kong SINTEF Energy Research Teknologi for et bedre samfunn 1 Introduction SINTEF Energy Research Electric Power Systems

More information

Norwegian Energy Production and Consumption

Norwegian Energy Production and Consumption Norwegian Energy Production and Consumption Peter Føllesdal Brown Assistant Director General Energy and Water Resources Department, MPE Oslo, 13 May 2015 Norway and EU Commissioner Miguel Arias Cañete

More information

ADVANTAGES AND DISADVANTAGES OF ENERGY SOURCES. Prepared by Sandra Vasa-Sideris, PhD, Southern Polytechnic State University, for use by students

ADVANTAGES AND DISADVANTAGES OF ENERGY SOURCES. Prepared by Sandra Vasa-Sideris, PhD, Southern Polytechnic State University, for use by students ADVANTAGES AND DISADVANTAGES OF ENERGY SOURCES Prepared by Sandra Vasa-Sideris, PhD, Southern Polytechnic State University, for use by students Questions to consider Where are the nonrenewable sources

More information

Understanding and Measuring School Electronics

Understanding and Measuring School Electronics Understanding and Measuring School Electronics MATERIALS NEEDED: 1. 6 energy monitoring devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost

More information

1. Nuclear - In YOUR OWN WORDS (not your partner s words) explain how this energy source works.

1. Nuclear - In YOUR OWN WORDS (not your partner s words) explain how this energy source works. ENERGY RESOURCES ACTIVITY Integrated Science 4 Name: Date: Period: Directions: In groups, you will be going from station to station answering questions about differing energy resource. Each individual

More information

Electric Power Systems An Overview. Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas

Electric Power Systems An Overview. Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Electric Power Systems An Overview Y. Baghzouz Professor of Electrical Engineering University of Nevada, Las Vegas Overview Power Generation Conventional power generation Power generation from renewables

More information

Energy and Society. Professor Ani Aprahamian

Energy and Society. Professor Ani Aprahamian Energy and Society Professor Ani Aprahamian Wednesday, September 14th Nieuwland Science Hall 123; 6 pm - 7pm Dr. Peter Burns - "Nuclear Energy: Past Mistakes, Current Challenges, Future Prospects" Thursday,

More information

FIELD TRIP TO A POWER PLANT - A Reading Guide

FIELD TRIP TO A POWER PLANT - A Reading Guide TITLE: TOPIC: FIELD TRIP TO A POWER PLANT - A Reading Guide Energy and the sources of energy used in power plants GRADE LEVEL: Secondary CONTENT STANDARD: Earth and Space Science CONTENT OBJECTIVE: For

More information

Hybrid Renewable Energy Systems for North-Eastern Poland

Hybrid Renewable Energy Systems for North-Eastern Poland Hybrid Renewable Energy Systems for North-Eastern Poland * Janusz PIECHOCKI, Piotr SOLOWIEJ, Maciej NEUGEBAUER Department of Electrical, Power, Electronic and Control Engineering, University of Warmia

More information

Renewable Energy Research

Renewable Energy Research Renewable Energy Research Georgia Power and Southern Company have been active in renewable energy research for many years. Over the last five years we have invested six million dollars in renewable energy

More information

Energy transformations

Energy transformations Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement

More information

Generating your own ENERGY. A planning guide for householders, communities and businesses

Generating your own ENERGY. A planning guide for householders, communities and businesses Generating your own ENERGY 1 1 A planning guide for householders, communities and businesses Climate change is happening now Climate change is one of the biggest challenges facing the world and one that

More information

Basics. this is a form of solar energy, as the sun drives water evaporation from the ocean and winds carry the moisture overland

Basics. this is a form of solar energy, as the sun drives water evaporation from the ocean and winds carry the moisture overland Hydropower Basics this is a form of solar energy, as the sun drives water evaporation from the ocean and winds carry the moisture overland largest form of alternative energy used today (but only 2% of

More information

RENEWABLE ENERGY DEVELOPMENT AND BUSINESS OPPORTUNITIES IN VIETNAM

RENEWABLE ENERGY DEVELOPMENT AND BUSINESS OPPORTUNITIES IN VIETNAM BITEC, Bangkok Friday 3 rd June 2011 RENEWABLE ENERGY DEVELOPMENT AND BUSINESS OPPORTUNITIES IN VIETNAM M.Eng. Nguyen Dang Anh Thi Deputy Director, Energy Conservation Center of Ho Chi Minh City, Vietnam

More information

FACT SHEET 6: HYDRO ELECTRICITY

FACT SHEET 6: HYDRO ELECTRICITY FACT SHEET 6: HYDRO ELECTRICITY Hydro comes from the Greek word hydra, meaning water. Hydro electricity is electricity produced from the energy contained in the downhill flow of water from rivers and lakes.

More information

Oregon Renewable. Energy. Resources. Inside this Brief. Background Brief on. Overview of Renewable Energy. Renewable Portfolio Standard

Oregon Renewable. Energy. Resources. Inside this Brief. Background Brief on. Overview of Renewable Energy. Renewable Portfolio Standard Background Brief on September 2014 Inside this Brief Overview of Renewable Energy Renewable Portfolio Standard Energy Facility Siting Renewable Energy Legislation Staff and Agency Contacts State Capitol

More information

WIND AND SOLAR ENERGY DEVELOPMENTS IN IRAN

WIND AND SOLAR ENERGY DEVELOPMENTS IN IRAN WIND AND SOLAR ENERGY DEVELOPMENTS IN IRAN H. Kazemi Karegar a,b, A.Zahedi a,v. Ohis a, G. taleghani b and M. Khalaji b a Department of Electrical & Computer Systems Engineering, PO Box 35, Monash University,

More information

Solar urban planning. The National state of the art in Sweden

Solar urban planning. The National state of the art in Sweden Solar urban planning The National state of the art in Sweden Entity Lund University Developers Elisabeth Kjellsson Date 2009-11-15 1 INDICE Solar urban planning...1 1. Political, Legal and economic framework...3

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Offshore Wind: some of the Engineering Challenges Ahead

Offshore Wind: some of the Engineering Challenges Ahead Offshore Wind: some of the Engineering Challenges Ahead David Infield CDT in Wind Energy Systems Institute of Energy and Environment University of Strathclyde International context (from IPCC report) Greenhouse

More information

ACCELERATING GREEN ENERGY TOWARDS 2020. The Danish Energy Agreement of March 2012

ACCELERATING GREEN ENERGY TOWARDS 2020. The Danish Energy Agreement of March 2012 ACCELERATING GREEN ENERGY TOWARDS The Danish Energy Agreement of March 2012 The most ambitious energy plan of the world In March 2012 a historic new Energy Agreement was reached in Denmark. The Agreement

More information

GRID CONNECTION Introduction Technical The grid Electricity production

GRID CONNECTION Introduction Technical The grid Electricity production GRID CONNECTION Introduction It was in London in 1882 that the Edison Company first produced electricity centrally that could be delivered to customers via a distribution network or grid. Since then electricity

More information

Environmental Science 101 Energy. Web-Based Course. Lecture Outline: Terms You Should Know: Learning Objectives: Reading Assignment:

Environmental Science 101 Energy. Web-Based Course. Lecture Outline: Terms You Should Know: Learning Objectives: Reading Assignment: Environmental Science 101 Energy 1 Web-Based Course Lecture Outline: 5. RENEWABLE ENERGY RESOURCES MODULE 5.1 Improving Energy Efficiency A. Improving Energy Efficiency MODULE 5.2 Geothermal, Hydro and

More information

Demand Response Market Overview. Glossary of Demand Response Services

Demand Response Market Overview. Glossary of Demand Response Services Demand Response Market Overview Glossary of Demand Response Services Open Energi has partnered with Tarmac to provide Demand Response What s inside... Market Overview Balancing Electricity Supply and Demand

More information

COFELY DISTRICT ENERGY DELIVERING LOW CARBON SUSTAINABLE ENERGY SOLUTIONS

COFELY DISTRICT ENERGY DELIVERING LOW CARBON SUSTAINABLE ENERGY SOLUTIONS COFELY DISTRICT ENERGY DELIVERING LOW CARBON SUSTAINABLE ENERGY SOLUTIONS UK s largest provider of Direct Energy schemes COFELY District Energy is the UK s largest district energy company serving users

More information

In science, energy is the ability to do work. Work is done when a force causes an

In science, energy is the ability to do work. Work is done when a force causes an What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

More information

Summary This lesson will introduce the concept of the water cycle by using a simple demonstration.

Summary This lesson will introduce the concept of the water cycle by using a simple demonstration. Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Weather: 4.H.3 Water Cycle Grade Level 4 Sessions Seasonality

More information

UPM Grow with Biofore. Vesiyhdistyksen Jätevesijaoston seminaari Esa Laurinsilta 25.11.2015

UPM Grow with Biofore. Vesiyhdistyksen Jätevesijaoston seminaari Esa Laurinsilta 25.11.2015 UPM Grow with Biofore Vesiyhdistyksen Jätevesijaoston seminaari Esa Laurinsilta 25.11.2015 A new concept to describe a new direction THE FOREST OF NEW OPPORTUNITIES The world is changing Resource scarcity

More information

World Water and Climate Atlas

World Water and Climate Atlas International Water Management Institute World Water and Climate Atlas Direct access to water and climate data improves agricultural planning The IWMI World Water and Climate Atlas provides rapid access

More information

Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies. Chien Wang (MIT)

Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies. Chien Wang (MIT) Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies Chien Wang (MIT) 1. A large-scale installation of windmills Desired Energy Output: supply 10% of the estimated world

More information