# Roots and Coefficients of a Quadratic Equation Summary

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and + = (α +β) = α + β + αβ therefore α + β = (α+β) -αβ α 3 x β 3 = α 3 β 3 = (αβ) 3 and α 3 + β 3 = (α + β) 3-3αβ(α + β) Find the quadratic equation whose roots are α and β where α and β β α are the roots of the quadratic equation x 7x 3. From x 7x 3, α + β = 7 and αβ = 3. The sum of the new roots is: α β β α α β β α α 9 6 β (α β) αβ The new product of roots is: α β β α αβ αβ So the new equation is 6x 9x 9 9 6

2 Equations with related roots: If α and β are the roots of the equation, you can obtain an equation with roots α and β by substituting in y=x, thus. Find a quadratic equation with roots α- and β-, where α and β are the roots of the equation x 7x. x 7x Use the variable y where y=x-, so that x (y ). The required equation is therefore: (y ) 7 (y ) Which can be simplified to: y y

3 Series and Sums of Natural Numbers The sum of the first n natural numbers is given by: The sum of the squares of the first n natural numbers is given by: 6 The sum of the cubes of the first n natural numbers is given by: 3 Find: Splitting the expression gives: (r ) r Which gives: 00 (r ) r r ( ) ( ) (69 )

4 Find the sum of the squares of the odd numbers from to 9. The sum of the squares of the odd numbers from to 9 is equal to: Sum of all numbers from to 9 Sum of even numbers from to 9 The sum of the even numbers is: = ( ) r Therefore the sum of all odd numbers from to 9 is: 9 r r =0-9600=08 Find the value of n (r 3 3) r=n n (r 3 3) r=n n (r 3 3) r= n (r 3 3) r= Which gives: n n (r 3 3) r 3 n 3 n r 3 n 3 r= n (n ) 6n n (n ) 3n n n 3 3n 3n

5 Matrices The x identity matrix is called I, where: I When a matrix is multiplied by the identity matrix I, it stays the same. Find A B, where A 8 and B. A B 8 6 Find AB and BA where A 3 and B 6 7 AB BA

6 Transformations Every linear transformation can be represented by a x square matrix, M, of the form. To find the matrix M, representing a given transformation, you find the images of the two points (, 0) and (0, ). Find the matrix, M, representing an enlargement, scale factor, with the origin as the centre of enlargement. By drawing a graph, the images of (, 0) and (0, ) are (, 0) and (0, ). So M. Using the image (, ) to check: as expected. The general form for the matrix of rotation about the origin through angle Ѳ anticlockwise is. The general form for the matrix of a reflection in the line y=(tanѳ) is: Common Transformations is a stretch parallel to the y-axis with a scale factor a. is a stretch parallel to the x-axis with scale factor a. generally represents both a rotation and an enlargement. generally represents both a reflection and an enlargement.

7 Combining Two Transformations If the image of (x, y) under the transformation T is transformed by a second transformation T, represented by the matrix M, the image of (x, y) under the two transformations is given by M M. In general, MM M M. Find the matrix represented by the combined transformations: A stretch parallel to the x-axis of scale factor Followed by a stretch parallel to the y-axis of scale factor. The two matrices are: M and M. The combined transformation is given by M M. M M.

8 Graphs of Rational Functions Rational Functions with a Linear Numerator and Denominator: This is when it is in the form where a, b, c and d are constants. Consider the function sketch its graph.. To understand the function, it is useful to By observation, as x approaches the value -3, the numerator approaches -0 but the denominator approaches 0. As x keeps getting closer to -3, the y value will tend towards infinity without every touching x=-3. Hence the line x=-3 is an asymptote. To find the next asymptote, divide both the numerator and denominator by x. 8 This gives. As x gets very large, both and 3 3 approach the value zero. Therefore as x tends towards infinity, both fractions above tend towards zero. As a result, the curve approaches another asymptote of y=. After finding the x and y intercepts by using x=0 and y=0, you get: x=-3 as the vertical asymptote y= as the horizontal asymptote When x=0, y= When y=0, x= 8 3 3

9 Two Distinct Linear Factors in the Denominator These are where the denominator is a factorised quadratic, or one which can be factorised. If the denominator has two real solutions, there will be two vertical asymptotes. If the numerator is also a quadratic, the curve will usually cross the horizontal asymptote. To find the horizontal asymptote, divide through by x. To find the vertical asymptotes, equate the denominator to zero and then solve to find the asymptotes. To find where the curve crosses the x and y axes, substitute in x=0 and y=0. To find where the curve crosses the horizontal asymptote, substitute in the value of the horizontal asymptote (y=a). If the numerator is a linear expression and the denominator has two linear factors, the horizontal asymptote is always y=0, because if you expand the denominator; then divide through by x, y tends towards 0. Rational Functions with a Repeated Factor in the Denominator If the numerator is a quadratic expression, and the denominator is a quadratic expression with equal factors, e.g. ( 3)( 3) There is only one vertical asymptote. Considering the function above, as x approaches, the denominator approaches zero so the vertical asymptote is x=. To find the horizontal asymptote, divide through by x. To find the vertical asymptotes, equate the denominator to zero and then solve to find the asymptotes. To find where the curve crosses the x and y axes, substitute in x=0 and y=0. To find where the curve crosses the horizontal asymptote, substitute in the value of the horizontal asymptote (y=a). Rational Functions with an Irreducible Quadratic in the Denominator Not all curves in the form If the equation no vertical asymptote. have vertical asymptotes. has no real solutions, then the curve will have

10 Stationary Points on the Graphs of Rational Functions Several of the functions in this chapter have one or more stationary points. Now consider the curve: 3 6 By sketching this graph you will see it has a minimum point. To find the minimum point, consider the line y=k intersecting the curve. Therefore, 3 6 Therefore (6 3) This gives 6 3. Since there is a minimum point, the roots must be equal, Thus b -ac=0. As there is no point on the curve for which y=, the minimum value is To find the value of x at the minimum point, sub the value of k (k=y) into equation. This gives x=- Inequalities With inequalities, normal rules apply unless you are multiplying or dividing both sides by a negative number. If you do this, the inequality symbol must be reversed however, This means that you cannot solve an inequality such as because you don t know whether cx+d is positive or negative, so you re unable to multiply both sides out by this. To solve an inequality like, there are two methods. The first method is to multiply out both sides by, which cannot be negative. Or sketch, solve and then, by comparing these two results, write down the solution to the inequality.

11 Conics The Parabola The standard equation for a parabola is. Translation: The translation on the parabola 8 to the parabola with equation 8 Reflection in the line y x: Reflecting 8 in the line y=x results in the new equation 8. Stretch parallel to the x-axis: A stretch, scale factor a, parallel to the x-axis transforms the parabola 8 8 into the new equation Stretch parallel to the y-axis: A stretch, scale factor a, parallel to the y-axis transforms the parabola to the equation 8 7 The Ellipse You can obtain an ellipse from a circle by applying a one-way stretch. Starting with a circle with the equation, then applying a stretch of scale factor a parallel to the x-axis followed by a stretch scale factor b parallel to the y-axis gives the standard equation of an ellipse: Translation: A translation of moves to Reflection in the line y x: To reflect an ellipse in the line y=x, replace the x s with y s and vice versa. Stretch parallel to the x-axis: A stretch parallel to the x-axis scale factor p, goes to Stretch parallel to the y-axis: A stretch, scale factor q, parallel to the y-axis goes to 3

12 The hyperbola The standard equation for a hyperbola is Translation: The translation of moves the hyperbola into a hyperbola with a new equation of: Reflection in the line y x: To reflect a hyperbola in the line y=x, swap around the x and y s. Stretch parallel to the x-axis: A stretch parallel to the x-axis scale factor p, goes to Stretch parallel to the y-axis: A stretch, scale factor q, parallel to the y-axis goes to The rectangular hyperbola The standard equation for a rectangular hyperbola is Translation: The translation of moves the rectangular hyperbola into a rectangular hyperbola with a new equation of. Reflection in the line y x: To reflect a rectangular hyperbola in the line y=x, swap around the x and y s, which will result in the same equation. Stretch parallel to the x-axis: A stretch parallel to the x-axis scale factor p, goes to Stretch parallel to the y-axis: A stretch, scale factor q, parallel to the y-axis goes to

13 Complex Numbers A complex number is a number in the form, where a and b are real numbers and. In the complex number, the real number a is called the real part, and the real number b is called the imaginary part of the complex number. - When a=0, the number is said to be wholly imaginary. - When b=0, the number is real. - If a complex number is equal to zero, both a and b are zero. If two complex numbers are equal, their real parts are equal and their imaginary parts are equal. If, then and. If z is a complex number, its complex conjugate is denoted by z*. If, then z* The quadratic formula can be used to find the roots to an equation. If is negative, you will have to introduce i. From chapter one, we have also learnt that the sum of roots is equal to the sum of the equations from the quadratic formula. The quadratic formula can be used to find the roots to an equation. If is negative, you will have to introduce i. From chapter one, we have also learnt that the sum of roots, equal to the sum of the equations from the quadratic formula., is Equations with z or z* can be solved by substituting in or z*. Then you can equate the real and imaginary coefficients.

15 Improper Integrals There are two types of improper integrals: The integral has as one of its limits. The integrand is undefined either at one of its limits, or somewhere between them limits. The function may have a denominator which equals 0 at some point. -Limits of integration between Replace with n, and once you have integrated, allow n to approach infinity. If the integral approaches a finite answer, then the integral can be found. If the integral doesn t approach a finite answer, the integral cannot be found. Determine Substitute n for : [ ] As n, the value of the integral approaches. Therefore the value of the improper integral is. Determine whether the integral value of the integral. has a value. If so, find the Substituting n for, then integrating gives: [ ] As n, the value of this integral does not approach a finite number, and so the integral cannot be found.

16 Integral Undefined at a Particular Value If the integrand is undefined at one of the limits of integration, replace that limit of integration with p, and see what happens as p approaches the limit of integration. If the integral approaches a finite number, the integral can be found. If the integral doesn t approach a finite number, the integral cannot be found. If the integrand is undefined at some point between the two limits of integration, then you need to split the integral into two parts, one to the left, and one to the right of the point where the integrand is undefined and use a similar approach as before. Determine 0 0 When x=0, 0=p. [ ] [ ] [ ] [ 3 ] As p tends towards 0, no finite answer is reached. Therefore, the integral cannot be found.

17 Trigonometry Cosine: The general solution of the equation 36 or for any angle α is: Sine: The general solution of the equation 8 or for any angle α is: Tangent: The general solution of the equation 8 or for any angle α is: Find the general solution, in degrees, of the equation 3 3 is the cosine of 30. So the general solution for Ѳ is: 36 3 Therefore the general solution for Ѳ is: 7 6

18 Find the general solution, in radians to the equation 3 3 As 3 tan π 3, π 3x nπ π 3 3x x nπ π n 3 π π To simplify the equation further, allow m=-n. Therefore, x mπ 3 π 36 Find the general solution, in radians, of the equation π π sin x cos x Dividing both sides by the RHS gives: tan x π As tan () x x π nπ nπ π π

19 Numerical Solution of Equations Interval Bisection If you know there is a root of f(x)=0 between x=a and x=b, you can try. Whether this is positive or negative determines which side of the root lies. Show that the equation x 3 x 9 has a root between and. Use the method of interval bisection twice to obtain an interval of width 0. within which the root must lie. 3 9 () 9 3 () f() is negative and f() is positive, therefore a root lies between and. 87 f() is negative and f(.) is positive, therefore a root lies between and As f(.) is negative and f(.) is positive, there must be a root between. and. Linear Interpolation In solving the equation 3 9, you can deduce from () 3 and () 9 that the root of 3 9 is much more likely to be nearer to than, since () (). By plotting (, -3) and (, 9) on a graph, and connecting them by a straight line, the estimated root is +p. Using similar triangles, we can deduce: Thus the estimated root is +p which is +0.=.

20 Show that the equation has a root between 0 and. Use linear interpolation to find an approximate value of this root. Let () 3 The change of sign indicates that f(x)=0 is between x=0 and x=. Using similar triangles, with the root at x=p, we can deduce that 3 Therefore the required approximate value is 0. The Newton- Raphson Method If you are given an approximation to a root of f(x)=0, such as α, then is generally a better approximation. In its iterative form, the Newton- Raphson method for solving f(x)=0 gives:

21 Use the Newton-Raphson method once, with an initial value of x=3, to find an approximation for a root of the equation 8x x x. Give your answer to three significant figures. Let 8 Differentiation gives: 8 3. When x=3, 7 The required approximation is therefore: (3 ) 7 Step-by-Step Solution of Differential Equations The Euler formula is: This formula is used to find approximate solutions for a differential equation of the form, where f is a given function. In the equation, h is the step length, and (, ) are the points on a curve. The variables x and y satisfy the differential equation, and y= and x=. Use the Euler formula with step length 0. to find an approximation for the value of y when x=. and and 693 Thus, ( 693) 693 This is an approximation of y when x=. This time, and 7 Thus, 693 ( 7) 3 Therefore, when x=., the approximate value of y=.3

22 Linear Laws If you have results for x and y, and you need to prove that these results satisfy a formula, such as y 3 =ax +b, you will need to then calculate the values for y 3 and x, and then plot the graph of y 3 by x. The graph should be linear if it does satisfy the equation. Then, you can work out a and b by calculating the gradient and the y-intercept. : Two variables x and y, which are related by a law of the form y=ax n, can be turned into a linear relation if you use logarithms. From s Two variables x and y, which are related by a law of the form y=ab x, can be turned into a linear relation if you use logarithms.

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### Precalculus Workshop - Functions

Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Able Enrichment Centre - Prep Level Curriculum

Able Enrichment Centre - Prep Level Curriculum Unit 1: Number Systems Number Line Converting expanded form into standard form or vice versa. Define: Prime Number, Natural Number, Integer, Rational Number,

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64

Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions

### g = l 2π g = bd b c d = ac bd. Therefore to write x x and as a single fraction we do the following

OCR Core 1 Module Revision Sheet The C1 exam is 1 hour 30 minutes long. You are not allowed any calculator 1. Before you go into the exam make sureyou are fully aware of the contents of theformula booklet

### Precalculus with Limits Larson Hostetler. `knill/mathmovies/ Assessment Unit 1 Test

Unit 1 Real Numbers and Their Properties 14 days: 45 minutes per day (1 st Nine Weeks) functions using graphs, tables, and symbols Representing & Classifying Real Numbers Ordering Real Numbers Absolute

### Question: What is the quadratic formula? Question: What is the discriminant? Answer: Answer:

Question: What is the quadratic fmula? Question: What is the discriminant? Question: How do you determine if a quadratic equation has no real roots? The discriminant is negative ie Question: How do you

Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition

### Prep for Calculus. Curriculum

Prep for Calculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Higher Education Math Placement

Higher Education Math Placement 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry (arith050) Subtraction with borrowing (arith006) Multiplication with carry

### Chapter R - Basic Algebra Operations (69 topics, due on 05/01/12)

Course Name: College Algebra 001 Course Code: R3RK6-CTKHJ ALEKS Course: College Algebra with Trigonometry Instructor: Prof. Bozyk Course Dates: Begin: 01/17/2012 End: 05/04/2012 Course Content: 288 topics

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### ALGEBRA & TRIGONOMETRY FOR CALCULUS MATH 1340

ALGEBRA & TRIGONOMETRY FOR CALCULUS Course Description: MATH 1340 A combined algebra and trigonometry course for science and engineering students planning to enroll in Calculus I, MATH 1950. Topics include:

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### AQA Level 2 Certificate FURTHER MATHEMATICS

AQA Qualifications AQA Level 2 Certificate FURTHER MATHEMATICS Level 2 (8360) Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the

### Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson

Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson Table of Contents 1.2 Graphs of Equations... 1 1.4 Functions... 9 1.5 Analyzing Graphs of Functions... 14 1.6 A Library of Parent

### The Not-Formula Book for C1

Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

### 5.4 The Quadratic Formula

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### Mathematics Chapter 8 and 10 Test Summary 10M2

Quadratic expressions and equations Expressions such as x 2 + 3x, a 2 7 and 4t 2 9t + 5 are called quadratic expressions because the highest power of the variable is 2. The word comes from the Latin quadratus

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Conic Sections in Cartesian and Polar Coordinates

Conic Sections in Cartesian and Polar Coordinates The conic sections are a family of curves in the plane which have the property in common that they represent all of the possible intersections of a plane

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an

### MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

### Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

### PRE-CALCULUS GRADE 12

PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.

### Contents. Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!)

Page Contents Introduction and Notes pages 2-3 (These are important and it s only 2 pages ~ please take the time to read them!) Systematic Search for a Change of Sign (Decimal Search) Method Explanation

### Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25

Math 115 Spring 014 Written Homework 10-SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### Tangent and normal lines to conics

4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints

### + k, and follows all the same rules for determining. y x 4. = + c. ( ) 2

The Quadratic Function The quadratic function is another parent function. The equation for the quadratic function is and its graph is a bowl-shaped curve called a parabola. The point ( 0,0) is called the

### Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Testing Center Student Success Center x x 18 12x I. Factoring and expanding polynomials

Testing Center Student Success Center Accuplacer Study Guide The following sample questions are similar to the format and content of questions on the Accuplacer College Level Math test. Reviewing these

### Montana Common Core Standard

Algebra 2 Grade Level: 10(with Recommendation), 11, 12 Length: 1 Year Period(s) Per Day: 1 Credit: 1 Credit Requirement Fulfilled: Mathematics Course Description This course covers the main theories in

### WASSCE / WAEC ELECTIVE / FURTHER MATHEMATICS SYLLABUS

Visit this link to read the introductory text for this syllabus. 1. Circular Measure Lengths of Arcs of circles and Radians Perimeters of Sectors and Segments measure in radians 2. Trigonometry (i) Sine,

### PURE MATHEMATICS AM 27

AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and

### Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

### PURE MATHEMATICS AM 27

AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

### Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

### SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

### ) represents the original function, will a, r 1

Transformations of Quadratic Functions Focus on Content: Download Problem Sets Problem Set #1 1. In the graph below, the quadratic function displayed on the right has been reflected over the y-axis producing

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

### Chapter 1 Algebraic fractions Page 11 Chapter 2 Functions Page 22. Chapter 8 Differentiation Page 88. Chapter 3 Exponentials and Logarithms Page 33

Chapter 8 Differentiation Page 88 Chapter 1 Algebraic fractions Page 11 Chapter Functions Page Chapter 7 Further Trig Page 77 C3 Chapter 3 Exponentials and Logarithms Page 33 Chapter 6 Trigonometry Page

### ( ) 2 = 9x 2 +12x + 4 or 8x 2 " y 2 +12x + 4 = 0; (b) Solution: (a) x 2 + y 2 = 3x + 2 " \$ x 2 + y 2 = 1 2

Conic Sections (Conics) Conic sections are the curves formed when a plane intersects the surface of a right cylindrical doule cone. An example of a doule cone is the 3-dimensional graph of the equation

### Test Bank Exercises in. 7. Find the intercepts, the vertical asymptote, and the slant asymptote of the graph of

Test Bank Exercises in CHAPTER 5 Exercise Set 5.1 1. Find the intercepts, the vertical asymptote, and the horizontal asymptote of the graph of 2x 1 x 1. 2. Find the intercepts, the vertical asymptote,

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### 5-1. Lesson Objective. Lesson Presentation Lesson Review

5-1 Using Transformations to Graph Quadratic Functions Lesson Objective Transform quadratic functions. Describe the effects of changes in the coefficients of y = a(x h) 2 + k. Lesson Presentation Lesson

### 9-5 Complex Numbers and De Moivre's Theorem

Graph each number in the complex plane and find its absolute value 1 z = 4 + 4i 3 z = 4 6i For z = 4 6i, (a, b) = ( 4, 6) Graph the point ( 4, 6) in the complex plane For z = 4 + 4i, (a, b) = (4, 4) Graph

### Formula Sheet. 1 The Three Defining Properties of Real Numbers

Formula Sheet 1 The Three Defining Properties of Real Numbers For all real numbers a, b and c, the following properties hold true. 1. The commutative property: a + b = b + a ab = ba. The associative property:

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### Mathematical Procedures

CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,

### Pre-Calculus Review Lesson 1 Polynomials and Rational Functions

If a and b are real numbers and a < b, then Pre-Calculus Review Lesson 1 Polynomials and Rational Functions For any real number c, a + c < b + c. For any real numbers c and d, if c < d, then a + c < b

### Unit Overview. Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks

Content Area: Math Unit Title: Functions and Their Graphs Target Course/Grade Level: Advanced Math Duration: 4 Weeks Unit Overview Description In this unit the students will examine groups of common functions

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

### Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions 1969-005 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

### POLAR COORDINATES DEFINITION OF POLAR COORDINATES

POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand

### 1.2. Mathematical Models: A Catalog of Essential Functions

1.2. Mathematical Models: A Catalog of Essential Functions Mathematical model A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon

### Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.

Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote

### Estimated Pre Calculus Pacing Timeline

Estimated Pre Calculus Pacing Timeline 2010-2011 School Year The timeframes listed on this calendar are estimates based on a fifty-minute class period. You may need to adjust some of them from time to

### with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,

### EL-9900 Handbook Vol. 1

Graphing Calculator EL-9900 Handbook Vol. Algebra For Advanced Levels For Basic Levels Contents. Fractions - Fractions and Decimals. Pie Charts - Pie Charts and Proportions 3. Linear Equations 3- Slope

### REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95

REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets

### Graphing Quadratic Functions

Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x

### EQ: How can regression models be used to display and analyze the data in our everyday lives?

School of the Future Math Department Comprehensive Curriculum Plan: ALGEBRA II (Holt Algebra 2 textbook as reference guide) 2016-2017 Instructor: Diane Thole EU for the year: How do mathematical models

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Calculus Card Matching

Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information

### Lesson 17: Graphing the Logarithm Function

Lesson 17 Name Date Lesson 17: Graphing the Logarithm Function Exit Ticket Graph the function () = log () without using a calculator, and identify its key features. Lesson 17: Graphing the Logarithm Function

### Pre-Calculus III Linear Functions and Quadratic Functions

Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### 1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

### Mrs. Turner s Precalculus page 0. Graphing Conics: Circles, Ellipses, Parabolas, Hyperbolas. Name: period:

Mrs. Turner s Precalculus page 0 Graphing Conics: Circles, Ellipses, Parabolas, Hyperbolas Name: period: 9.0 Circles Notes Mrs. Turner s Precalculus page 1 The standard form of a circle is ( x h) ( y r

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### EL-9650/9600c/9450/9400 Handbook Vol. 1

Graphing Calculator EL-9650/9600c/9450/9400 Handbook Vol. Algebra EL-9650 EL-9450 Contents. Linear Equations - Slope and Intercept of Linear Equations -2 Parallel and Perpendicular Lines 2. Quadratic Equations

### Rockhurst High School Algebra 1 Topics

Rockhurst High School Algebra 1 Topics Chapter 1- Pre-Algebra Skills Simplify a numerical expression using PEMDAS. Substitute whole numbers into an algebraic expression and evaluate that expression. Substitute

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### Time: 1 hour 10 minutes

[C00/SQP48] Higher Time: hour 0 minutes Mathematics Units, and 3 Paper (Non-calculator) Specimen Question Paper (Revised) for use in and after 004 NATIONAL QUALIFICATIONS Read Carefully Calculators may

### Biggar High School Mathematics Department. National 4 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 4 Learning Intentions & Success Criteria: Assessing My Progress Expressions and Formulae Topic Learning Intention Success Criteria I understand this Algebra

### Geometry and Arithmetic

Geometry and Arithmetic Alex Tao 10 June 2008 1 Rational Points on Conics We begin by stating a few definitions: A rational number is a quotient of two integers and the whole set of rational numbers is

### This is Conic Sections, chapter 8 from the book Advanced Algebra (index.html) (v. 1.0).

This is Conic Sections, chapter 8 from the book Advanced Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/)

### MATHEMATICS PAPER 2. Samir Daniels Mathematics Paper 2 Page 1

MATHEMATICS PAPER 2 Geometry... 2 Transformations... 3 Rotation Anticlockwise around the origin... 3 Trigonometry... 4 Graph shifts... 4 Reduction Formula... 4 Proving Identities... 6 Express in terms

### APPLICATIONS OF DIFFERENTIATION

4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,

### Final Exam Practice--Problems

Name: Class: Date: ID: A Final Exam Practice--Problems Problem 1. Consider the function f(x) = 2( x 1) 2 3. a) Determine the equation of each function. i) f(x) ii) f( x) iii) f( x) b) Graph all four functions