# 3rd Grade Texas Mathematics: Unpacked Content

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 3rd Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must know, understand and be able to do. This document may also be used to facilitate discussion among teachers and curriculum staff and to encourage coherence in the sequence, pacing, and units of study for grade-level curricula. This document, along with on-going professional development, is one of many resources used to understand and teach the new math standards. What is in the document? Descriptions of what each standard means a student will know, understand, and be able to do. The unpacking of the standards done in this document is an effort to answer a simple question What does this standard mean that a student must know and be able to do? and to ensure the description is helpful, specific and comprehensive for educators.

2 At A Glance: New to 3rd Grade: Understanding base 10 system. Place value to 100,000 rather than 9,999 Focus on use of number line In Fractions denominators are specified as 2,.3,4,6, and 8. Benchmarking of Fractional parts. Strip diagram and number line Equivalent Fractions on number lines Specify reasoning strategies for comparing fractions with same numerator or same denominator Properties of operations (Commutative, Associative, Distributive) Arrays and area models in multiplication Multiple strategies for multiplication and division including number lines, partial products 10 by 10 multiplication without concrete models Odd/Even Divisibility rule for 2 Determine unknown whole number in multiplication and/or division equation. Area is limited to rectangles Array area model relates to multiplication Decompose composite figures formed by rectangles to find area Find missing length in perimeter Perimeter specifies polygons Adding and subtracting time intervals Dot Plots, frequency table, and scaled intervals Solving problems using data with frequency tables and dot plots Personal Finance Literacy

3 Vocabulary Expanded Notation Partitioning Unit fraction Strip diagrams Compose and decompose fractions Focus on properties of operations (distributive, associative, commutative etc.) Expression Equation Algorithm Consecutive multiples Area model Polygon Composite figures Additive property of area Dot plots, frequency tables, scaled intervals Moved from 3rd Grade: Temperature Multiplication/Division Facts of 11 and 12 Geometric Patterns Symmetry Linear Measurement Read and write time to the nearest one minute increment Probability

4 Instructional Implications for : Emphasis on vocabulary and helping students understand the terms. Many of the terms are going to be new to the students. Multiplication focus. There is more automaticity and less of the concrete model. Students can no longer just do multiplication with arrays. They need to be able to do it automatically. Data analysis is considerably different. This will require more time and focus in the curriculum. There is a larger focus on algorithms and manipulating the algorithms in order to solve for the unknown. Number lines and strip diagrams are going to need to become common-place (use and creation) The meaning of the base 10-system will need to be directly taught and explored. Professional Learning Implications for : Use of number lines, strip diagrams and manipulatives. Creation of number lines to use with a given set of numbers. Work on manipulating the algorithms for the understanding the concepts. The teachers will need to understand the various properties of algorithms and how to manipulate them in order to solve for the unknown. Process standards are embedded all through instruction. Teachers will need to identify the gaps that will need to be addressed in the school year. PD and resources regarding Personal Financial Literacy Initial learning of the teachers grade level TEKS (teachers unpacking the TEKS at their grade level) Vertical study of the strands to know how the TEKS align and progress from 2 nd 4 th grade. Identify academic vocabulary

5 Grade 3 Primary Focal Areas: The Primary Focal Areas are designed to bring focus to the standards at each grade by describing the big ideas that educators can use to build their curriculum and to guide instruction. Place value, operations of whole numbers, and understanding fractional units. The number set is limited to positive rational numbers. Apply place value, comparing and ordering whole numbers, connecting multiplication and division, and understanding and representing fractions as numbers and equivalent fractions. Use multiple representations of problem situations, determine missing values in number sentences, and represent real-world relationships using number pairs in a table and verbal descriptions. Identify and classify two-dimensional figures according to common attributes, decompose composite figures formed by rectangles to determine area, determine the perimeter of polygons, solve problems involving time, and measure liquid volume or weight. Represent and interpret data. Mathematical process standards. (A) apply mathematics to problems arising in everyday life, society, and the workplace; (B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution; (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems; (D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate; (E) create and use representations to organize, record, and communicate mathematical ideas; (F) analyze mathematical relationships to connect and communicate mathematical ideas; and (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

6 Number and Operations: TEK (A) Compose and decompose numbers up to 100,000 as a sum of so many 10,000s, so many 1,000s, so many 100s, so many 10s and so many 1s using objects, pictorial models and numbers including expanded notation The student applies mathematical process standards to represent and compare whole numbers understand relationships related to place value. Student understands and can demonstrate the value of a digit in a number and use that to build and take apart numbers. Write numbers in expanded notation. Collapse and expand a number. Explain that numbers are sums of values of the digit in their respective place value. 35,678 is the same as 30, , and 30, , is the same as 35, (B) Describe the mathematical relationship found in the base 10 place value system through the 100,000s place Students have to describe that 100 is ten 10s and that 1000 is ten hundreds up to 100, (C) Represent number on a number line as being between two consecutive multiples of 10, 100, 1,000, or 10,000, and use words to describe relative size of numbers in order to round whole numbers. 3.2(D) Compare and order whole numbers up to 100,000 and represent comparisons using the symbols < and > Student will have an understanding of the number line in order to identify the approximate position of the number (Ballpark Estimate). Students can manipulate number lines with consecutive multiples and place numbers based on those intervals. Students can order number and compare using greater than and less than vocabulary. Order the following numbers from Greatest to Least

7 Numbers and Operations: TEK (A) Represent fractions greater than zero and less than or equal to 1 with denominators of 2, 3, 4, 6, and 8, using concrete objects and pictorial models including strip diagrams and number lines. The student applies mathematical process standards to represent and explain fractional units. Students can write fractions based on a concrete and pictorial model. Students use strip diagrams and number lines to write fractions using the fractions symbols. What is the fraction represented in the following picture? 3.3(B) Determine the corresponding fraction greater than zero and less than or equal to 1 with denominators of 2, 3, 4, 6, and 8 given as a specified point on a number line. Students will locate points on a number line that represent fractions less than 1. Which letter represents 3/6 on the number line? 3.3(C) Explain that the unit fraction 1/b represents the quantity formed by one part of a whole that has been partitioned into b equal pats where b is a non-zero whole number Understand that ¼ is the unit fraction of 4. Understand that the denominator tells you the parts of the whole and that the unit fraction is one part of that whole. Students understand parts and wholes and equal partitioning of fractions. Unit fraction and partitioning are new vocabulary that students must understand.

8 3.3(D) Compose and decompose a fraction a/b with a numerator greater than zero and less than or equal to b as sum of parts 1/b Students can identify that 2/4 is 1/4 plus 1/4. They understand that the numerator is a sum of all the equal parts. Use the unit fraction to create the other fractions. 1/4 + 1/4 = 2/4 + = 3.3(E) Solve problems involving partitioning an object or a set of objects among two or more recipients using pictorial representations of fractions with the denominators of 2, 3, 4, 6, and 8 Students apply fraction knowledge to solve problems involving partitioning objects or a set of objects. Emily answered 2 questions correct on a test that had 3 questions. What fraction of the questions did she answer correctly?

9 3.3(F) Represent equivalent fractions with denominators of 2, 3, 4, 6, and 8 using a variety of objects and pictorial models including number lines. 3.3(G) Explain that two fractions are equivalent if and only if they are both represented by the same point on the number line or represent the same portion of a same size whole for an area model. Students must be able to create a fraction that is equivalent to another fraction in concrete and pictorial numbers and number lines. Students should use many objects for finding equivalent fractions. Stephanie is making a cake and needs to add ½ a cup of flour. She only has a ¼ measuring cup. How many ¼ are in a half? Students must recognize that comparisons are valid only when the two fractions refer to the same whole. For example half is a half, but the fractions are only equivalent if the objects are the same size. Half of one object might be a whole of another object. Students can explain finding the points on the number line and that different fractions appearing on the same point are equivalent. Master Rulers as a tool for finding equivalent fractions in measurement. 3.3(H) Compare two fractions having the same numerator or denominator in problems by reasoning about their sizes and justifying the conclusion using symbols, words, objects, and pictorial model. Students develop the number sense of knowing the importance of numerators and denominators in fractions. Students must know that fractions are different sizes and be able to justify why one fraction is greater than or less than another based on the number sense and understanding of the partitioning of the whole. Explain why ¾ is greater than 3/8 based on the number of parts of a whole.

10 Number and operations: TEK (A) Solve with fluency one-step and two-step problems involving addition and subtraction within 1,000 using strategies based on place value, properties of operations, and the relationship between addition and subtraction The student applies mathematical process standards to develop and use strategies and methods for whole number computations in order to solve problems with efficiency and accuracy. Students must solve problems accurately and efficiently using an appropriate amount of time. Students should be flexible with their problem solving by applying properties of operations.

11 3.4(B) Round to the nearest 10 or 100 or use compatible numbers to estimate solutions to addition and subtraction problems Students need to understand when to round and when to use compatible numbers. This includes: Apply rounding principles to estimate solutions to problems. Round the parts of the problem and then solve instead of solving and then rounding the sum or difference. Compatible Numbers: changes to Rounding Numbers: rounds to or or (C) Determine the value of a collection of coins and bills Students must find the value of coins and bills and add the coins and bills together to find the value of the collection. They must apply this skill to word problems and not just in pictorial models. 3.4(D) determine the total number of objects when equally-sized groups of objects are combined or arranged in arrays up to 10 by 10 Students must use repeated addition to find the total objects represented in equally sized groups. They must arrange groups in arrays to develop the meaning of multiplication. 4 X 3 can be represented as follows: (E) Represent multiplication facts by using a variety of approaches, such as repeated addition, equalsize groups, arrays, area models, equal jumps on a number line and skip counting Students must apply multiplication in multiple scenarios and not just in a single familiar scenario. There needs to be a bigger emphasis on using the number line as a model for multiplication

12 3.4(F) Recall facts to multiply up to 10 by 10 with automaticity and recall the corresponding division facts Students need to know the facts. They must connect the multiplication with division. 3.4(G) Use strategies and algorithms, including the standard algorithm, to multiply a two-digit number by a one-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties. Students must use multiple strategies to multiply up to two-digit by one-digit problems, including the standard algorithm. In order to use partial products students must understand expanded notation. Example of Distributive Property 3.4(H) Determine the number of objects in each group when a set of objects is partitioned into equal shares or a set of objects is shared equally Student will understand division as partitioning into equal groups. Grouping and fair sharing is the focus. Students have to understand the meaning of division and develop their own models, not just apply a model.

13 3.4(I) Determine if a number is even or odd using divisibility rules. 3.4(J) Determine a quotient using the relationship between multiplication and division Students must understand partitioning a number into 2 equal groups. This will lead to the understanding of the divisibility rule for 2. Students must understand the relationship between multiplication and division - the fact family relationship. Understanding of the triangular flash card will aid in this process. 3.4(K) Solve one-step and two-step problems involving multiplication and division within 100 using strategies based on objects; pictorial models, including arrays, area models and equal groups; properties of operations; or recall of facts Algebraic Reasoning: TEK (A) Represent and solve oneand two-step problems involving addition and subtraction of whole numbers to a thousand using pictorial models, number lines, and equations Students must apply multiplication and division knowledge into problem solving situations. Students must use mathematical process standards with automaticity. This includes understanding the problem, using various skills and strategies, and choosing the most efficient strategy to solve the problem. The student applies mathematical process standards to analyze and create patterns and relationships. Students must apply addition and subtraction knowledge into problem solving situations. Students must use mathematical process standards with automaticity. This includes understanding the problem, using various skills and strategies, and choosing the most efficient strategy to represent and solve the problem.

14 3.5(B) Represent and solve oneand two-step multiplication and division problems within 100 using arrays, strip diagrams, and equations Students must demonstrate and represent multiplication and division situations. They must be able to take an abstract multiplication or division problem and relate it to a concrete representation of the problem.

15 3.5(C) Describe a multiplication expression as a comparison such as 3x24 represents 3 times as much as (D) Determine the unknown whole number in a multiplication or division equation relating three whole numbers when the unknown is either a missing factor or product. Students need to understand and apply the multiplication expressions like twice and times as much. They must relate language to multiplication situations and apply multiplication in everyday situations. Students must understand the Fact Families and the reciprocal relationship between multiplication and division. Students must be able to apply operation properties to solving for a missing number. 72 = 9 3.5(E) Represent real-world relationships using number pairs in a table and verbal descriptions Students need a deep understand of function tables. They will need to categorize and create subsets of information from a given table. They must take an abstract description of a situation and create a concrete model of what the situation is representing.

16 Geometry and Measurement: TEK (A) Classify and sort two- and three-dimensional solids, including cones, cylinders, spheres, triangular and rectangular prisms, and cubes, based on attributes using formal geometric language 3.6(B) Use attributes to recognize rhombuses, parallelograms, trapezoids, rectangles, and squares as examples of quadrilaterals and draw examples of quadrilaterals that do not belong to any of these subcategories The student applies mathematical process standards to analyze attributes of twodimensional geometric figures to develop generalizations about their properties. Students must understand the attributes of the figures and solids and then apply that understanding to sort and classify the shapes based on those attributes. Some examples of formal geometric language include: edges, vertices, faces, sides, number of angles. Students must know examples and non-examples of the different quadrilaterals. They must be able to represent them in pictorial form.

17 3.6(C) Determine the area of rectangles with whole-number side lengths in problems using multiplication related to the number of rows and the number of unit squares in each row. Students must apply principles of multiplication in arrays to area models. This will include: Use multiplication to find area of an object without the use of an equation. Use repeated addition as a strategy to solve area. 3.6(D) Decompose composite figures formed by rectangles into non-overlapping rectangles to determine the area of the original figure using the additive property of area Students will segment figures into smaller rectangles, find the area of each rectangle, and add to find the sum of all the rectangles together to solve for the area of the entire shape. Students must first understand area and the decomposition of composite figures. They must also understand the attributes of a rectangle to locate the composite figures.

18 3.6(E) Decompose two congruent two-dimensional figures into parts with equal areas and express the area of each part as a unit fraction of the whole and recognize that equal shares of identical wholes need not have the same shape. Students must manipulate the units to find different shapes to represent different parts of a whole. They will represent parts of whole of two congruent shapes in different shapes of the same area. For Example: Partition a shape into 4 parts with equal area and describe the area of each part as ¼ of the area of the shape.

19 Geometry and Measurement TEK (A) Represent fractions of halves, fourths, and eighths as distances from zero on a number line The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving customary and metric measurement. Students will be able to use a number line to show how far from zero each fractional quantity is. Relate this to measurement using rulers. 3.7(B) Determine the perimeter of a polygon or a missing length when given perimeter and the remaining sides lengths in problems Students must be able to solve for perimeter of a polygon. Students must know to add all of the sides of the polygon. They must also understand and be able to apply algebraic situations and reverse operations of addition and subtraction to find the missing length when given the perimeter of a shape.

20 3.7(C) Determine the solutions to problems involving addition and subtraction of time intervals in minutes using pictorial models or tools such as 15 minute even plus a 30 minute event equals 45 minutes. Students must be able to read and write time in minutes. They then must be able to know when to add and subtract minutes to determine when to work backward or forward. They must manipulate chunks of time in intervals such as 15 minutes or half hour. 3.7(D) Determine when it is appropriate to use measurements of liquid volume (capacity) or weight Students must understand the difference between liquid volume (capacity) and weight. They must then determine whether to find volume or weight in a given situation.

21 3.7(E) Determine liquid volume (capacity) or weight using appropriate units and tools Students must understand the units of measurement for volume and weight and know when to use which unit. They also need to know what tools are used to measure each one based on the size of the object. Examples of appropriate units: Volume Metric - liters, milliliters Customary- gallons, quarts, pints, cups, ounces Weight Metric Grams, Kilograms Customary Ounces, Pounds, Tons Examples of appropriate tools: Volume graduated cylinders, measuring cups, other containers of different sizes Weight scales, balances, weights Data Analysis: TEK (A) Summarize a data set with multiple categories using a frequency table, dot plot, a pictograph, or bar graph with scaled intervals The student applies mathematical process standard to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement. Students must read and interpret a frequency table, dot plot, pictograph, and bar graph given a variety of scaled intervals, beyond one to one correspondence. Example of dot plot (line plot):

22 3.8(B) Solve one- and two-step problems using categorical data represented in a frequency table, dot plot, pictograph, or bar graph with scaled intervals Students must interpret and analyze data given in a variety of ways to solve one- and two-step problems. The students must be able to use a problem solving model from the mathematical process standards. Personal Financial Literacy: TEK (A) Explain the connection between human capital/labor and income The student applies mathematical process standards to manage one s financial resources effectively for lifetime financial security. Students must make the connection between a person s education, experience, and abilities to the income in an occupation. For example, higher education (college/trade schools) will usually lead to higher earning potential. There are many websites and books that explore different careers and the preparation needed for those careers where students can research. One book that you may want to use is the children s book A Day s Work by Eve Bunting.

23 3.9(B) Describe the relationship between the availability or scarcity of resources and how that impacts costs Students must define and describe supply and demand situations. This correlates with Social Studies TEKS 7AB and 8BC. Supply is how much of something is available. For example, if you have 9 baseball cards, then your supply of baseball cards is 9. If you have 6 apples, then your supply of apples is 6. Demand is how much of something people want. It sounds a little bit harder to measure, but it really isn't. To measure demand, we can use a very simple numbering system, just like the supply one. If 8 people want baseball cards, then we can say that the demand for baseball cards is 8. If 6 people want apples, then we can say that the demand for apples is (C) Identify the costs and benefits of planned and unplanned spending decisions Students must understand a basic budget and what happens with unplanned expenses arise.

24

25 3.9(D) Explain that credit is used when wants or needs exceeds the ability to pay and that it is the borrower s responsibility to pay it back to the lender, usually with interest Students must understand the concept of credit and basic interest. Example: Borrowing money to buy a car or house. Explain that the payments will include principle and interest to repay the loan. Use a bank or credit website to input costs and length of loan to calculate actual amount repaid. 3.9(E) List reasons to save and explain the benefits of a savings plan, including for college Students must explain why saving money, including a college fund, is important. There are many children s books about savings. Alexander, Who Used to be Rich Last Sunday. Example: Have students choose something for which to save and then create a savings goal chart that will be implemented into their simple budget. Students must determine how much they can save weekly and how many weeks it will take to reach goal. 3.9(F) Identify decision involving income, spending, saving, credit, and charitable giving Students must understand how a simple budget is developed. Students may also create a simple budget that includes income, spending, saving, credit, and charitable giving.

26

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter A. Elementary

Elementary 111.A. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter A. Elementary Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code,

### 2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1

2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1 The materials are copyrighted (c) and trademarked (tm)

### Mathematics Scope and Sequence, K-8

Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K-8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count

### Third Grade Common Core Standards & Learning Targets

Third Grade Common Core Standards & Learning Targets CCS Standards: Operations and Algebraic Thinking 3.OA.1. Interpret products of whole numbers, e.g., interpret 5 7 as the total number of objects in

### Mathematics K-8 Critical Areas of Focus

Mathematics K-8 Critical Areas of Focus The Common Core State Standards (CCSS) for Mathematics include critical areas for instruction in the introduction for each grade, K-8. The critical areas are designed

### Mathematics K-8 Critical Areas of Focus

Mathematics K-8 Critical Areas of Focus The Common Core State Standards (CCSS) for Mathematics include critical areas for instruction in the introduction for each grade, K-8. The critical areas are designed

### Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

### Jackson Area Catholic Schools. Mathematics Academic Standards for Third Grade. A. Understand and use number notation and place value

Jackson Area Catholic Schools Mathematics Academic Standards for Numbers and Operations A. Understand and use number notation and place value N.ME.03.01 N.ME.03.02 The student will read and write numbers

### Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

### 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B. Whole Numbers

Whole Numbers Scope and Sequence for Primary Mathematics, U.S. Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced or specifically addressed. Understand

### Indicator 2: Use a variety of algebraic concepts and methods to solve equations and inequalities.

3 rd Grade Math Learning Targets Algebra: Indicator 1: Use procedures to transform algebraic expressions. 3.A.1.1. Students are able to explain the relationship between repeated addition and multiplication.

### Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

### Third Grade Math Standards and I Can Statements

Third Grade Math Standards and I Can Statements Standard - CC.3.OA.1 Interpret products of whole numbers, e.g., interpret 5 7 as the total number of objects in 5 groups of 7 objects each. For example,

### Unit 1: Extending Whole Number Operations

Unit 1: Extending Whole Number Operations Learning Goals 13 Days 5.3A S 2 Estimate to determine solutions to mathematical and real-world problems involving addition, subtraction, multiplication, and division

### AERO/Common Core Alignment 3-5

AERO/Common Core Alignment 3-5 Note: In yellow are the AERO Standards and inconsistencies between AERO and Common Core are noted by the strikethrough ( eeeeee) notation. AERO Common Core Mapping 1 Table

### Math, Grades 1-3 TEKS and TAKS Alignment

111.13. Mathematics, Grade 1. 111.14. Mathematics, Grade 2. 111.15. Mathematics, Grade 3. (a) Introduction. (1) Within a well-balanced mathematics curriculum, the primary focal points are adding and subtracting

### Bedford Public Schools

Bedford Public Schools Grade 4 Math The fourth grade curriculum builds on and extends the concepts of number and operations, measurement, data and geometry begun in earlier grades. In the area of number

### Unit 3 Multiplication and Division

WEEK DATES TEK DESCRIPTION 9 Oct 19-23 3.4F, 3.4E, 3.4D Unit 3 Multiplication and Division Unit 3 Multiplication and Division 4 district bi-weekly scanned tests 10 Oct 26-30 3.4G 2x1 digit multiplication

### Huntsville City Schools Second Grade Math Pacing Guide

Huntsville City Schools Second Grade Math Pacing Guide 2016-2017 Thoughtful and effective planning throughout the school year is crucial for student mastery of standards. Once a standard is introduced,

### COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving

### California Common Core State Standards Comparison- FOURTH GRADE

1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others 4. Model with mathematics. Standards

### Grade 3 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 3 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 3 Mathematics Assessment Reporting Category 1: Numbers, Operations, and Quantitative Reasoning The student will

### 3 rd 5 th Grade Math Core Curriculum Anna McDonald School

3 rd 5 th Grade Math Core Curriculum Anna McDonald School Our core math curriculum is only as strong and reliable as its implementation. Ensuring the goals of our curriculum are met in each classroom,

### Content Elaborations. Standards

Grade Two Mathematics Domain Operations and Algebraic Thinking Cluster Represent and solve problems involving addition and subtraction Pacing Quarter 1: Stepping Stones Modules 1, 2, 3 Quarter 2: Stepping

### Maths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.

Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100

### ISAT Mathematics Performance Definitions Grade 4

ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourth-grade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers

### Grade 5 Math Content 1

Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.

### Lesson List

2016-2017 Lesson List Table of Contents Operations and Algebraic Thinking... 3 Number and Operations in Base Ten... 6 Measurement and Data... 9 Number and Operations - Fractions...10 Financial Literacy...14

### Vocabulary, Signs, & Symbols product dividend divisor quotient fact family inverse. Assessment. Envision Math Topic 1

1st 9 Weeks Pacing Guide Fourth Grade Math Common Core State Standards Objective/Skill (DOK) I Can Statements (Knowledge & Skills) Curriculum Materials & Resources/Comments 4.OA.1 4.1i Interpret a multiplication

### SUPPORTING INFORMATION GRADE 1. Texas Education Agency

SUPPORTING INFORMATION GRADE 1 Texas Education Agency The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express

### Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

### Topic: 1 - Understanding Addition and Subtraction

8 days / September Topic: 1 - Understanding Addition and Subtraction Represent and solve problems involving addition and subtraction. 2.OA.1. Use addition and subtraction within 100 to solve one- and two-step

### New York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and Quick Review Math Handbook Book 1

New York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and The lessons that address each Performance Indicator are listed, and those in which the Performance Indicator

### 4 th Grade Texas Mathematics: Unpacked Content

4 th Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student

### Building number sense and place value and money understanding

Unit: 1 Place Value, Money, and Sense s to be mastered in this unit: 3.N.1 Skip count by 25 s, 50 s, 100 s to 1,000 3.N.2 Read and write whole numbers to 1,000 place 3.N.3 Compare and order numbers to

### 1) Make Sense and Persevere in Solving Problems.

Standards for Mathematical Practice in Second Grade The Common Core State Standards for Mathematical Practice are practices expected to be integrated into every mathematics lesson for all students Grades

### Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

### CARMEL CLAY SCHOOLS MATHEMATICS CURRICULUM

GRADE 4 Standard 1 Number Sense Students understand the place value of whole numbers and decimals to two decimal places and how whole numbers 1 and decimals relate to simple fractions. 4.1.1 Read and write

### GRADE 2 MATHEMATICS. Students are expected to know content and apply skills from previous grades.

GRADE 2 MATHEMATICS Students are expected to know content and apply skills from previous grades. Mathematical reasoning and problem solving processes should be incorporated throughout all mathematics standards.

### Mathematics Curriculum Framework

1 THIS PAGE INTENTIONALLY LEFT BLANK 2 Archdiocese of Louisville According to Principles and Standards for School from the National Council of Teachers of, new knowledge, tools, and ways of doing and communicating

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

### 5 th Grade Remediation Guide

5 th Grade Remediation Guide Focused remediation helps target the skills students need to more quickly access and practice on-grade level content. This chart is a reference guide for teachers to help them

### Everyday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration

CCSS EDITION Overview of -6 Grade-Level Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting

### EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

### Overview of PreK-6 Grade-Level Goals. Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting

Overview of -6 Grade-Level Goals Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting Goal 1: Verbally count in

### CCSS Mathematics Implementation Guide Grade 5 2012 2013. First Nine Weeks

First Nine Weeks s The value of a digit is based on its place value. What changes the value of a digit? 5.NBT.1 RECOGNIZE that in a multi-digit number, a digit in one place represents 10 times as much

### Excel Math Fourth Grade Standards for Mathematical Practice

Excel Math Fourth Grade Standards for Mathematical Practice The Common Core State Standards for Mathematical Practice are integrated into Excel Math lessons. Below are some examples of how we include these

### Pocantico Hills School District Grade 1 Math Curriculum Draft

Pocantico Hills School District Grade 1 Math Curriculum Draft Patterns /Number Sense/Statistics Content Strands: Performance Indicators 1.A.1 Determine and discuss patterns in arithmetic (what comes next

### 4TH GRADE FIRST QUARTER MATHEMATICS STANDARDS. Vocabulary. answers using mental computation and estimation strategies including rounding.

4TH GRADE FIRST QUARTER MATHEMATICS STANDARDS Critical Area: Developing understanding and fluency with multi-digit multiplication, and developing understanding of dividing to find quotients involving multi-digit

### 5 th Grade Texas Mathematics: Unpacked Content

5 th Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student

### Concepts of Elementary Mathematics Enduring Understandings & Essential Questions

Concepts of Elementary Mathematics & First through Fourth Grade Content Areas: Numbers and Operations Algebra Geometry Measurement Data Analysis and Probability Above all, students should feel enchanted

### Students are able to represent and solve problems involving multiplication and division.

Grade 3 Learning Targets and I Can Statements Operations and Algebraic Thinking Students are able to represent and solve problems involving multiplication and division. o I understand the product of multiplication

### MISSOURI MATHEMATICS CORE ACADEMIC STANDARDS CROSSWALK TO MISSOURI GLES/CLES CONTENT ALIGNMENTS AND SHIFTS Grade 4 DRAFT

CONTENT ALIGNMENTS AND SHIFTS Grade 4 Grade 4 Critical Areas In Grade 4, instructional time should focus on three critical areas: 1. developing understanding and fluency with multi-digit multiplication,

### Year 2 Maths Objectives

Year 2 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS count in steps of 1, 2, 3, and 5 from 0, and in tens from any two-digit number, forward or

### Read and write numbers to at least 1000 in numerals and in words.

Year 1 Year 2 Year 3 Number, place value, rounding, approximation and estimation Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. Count, read and write

### Year 1 Maths Expectations

Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all

### Next Generation Standards and Objectives for Mathematics in West Virginia Schools

Next Generation Standards and Objectives for Mathematics in West Virginia Schools Descriptive Analysis of Third Grade Objectives Descriptive Analysis of the Objective a narrative of what the child knows,

### Danville District No. 118 Mathematics Fifth Grade Curriculum and Scope and Sequence First Quarter

Danville District No. 118 Mathematics Fifth Grade Curriculum and Scope and Sequence First Quarter Common Core Operations and Algebraic Thinking (5.OA) Common Core Number and Operations in Base Ten (5.NBT)

### Multiplying Fractions by a Whole Number

Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Apply understanding of operations

### Topic 1: Understanding Addition and Subtraction

Topic 1: Understanding Addition and Subtraction 1-1: Writing Addition Number Sentences Essential Understanding: Parts of a whole is one representation of addition. Addition number sentences can be used

### Everyday Mathematics GOALS

Copyright Wright Group/McGraw-Hill GOALS The following tables list the Grade-Level Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the

### Archdiocese of Washington Catholic Schools Academic Standards Mathematics

5 th GRADE Archdiocese of Washington Catholic Schools Standard 1 - Number Sense Students compute with whole numbers*, decimals, and fractions and understand the relationship among decimals, fractions,

### Common Core State Standards DECONSTRUCTED. Booklet I: Kindergarten to Second Grade, Math FOR INTERNAL USE ONLY

Common Core State Standards DECONSTRUCTED Booklet I: Kindergarten to Second Grade, Math How to use this booklet You cannot teach a Common Core Standard you must teach the skills inside of each standard.

### Kindergarten Math I can statements

Kindergarten Math I can statements Student name:. Number sense Date Got it Nearly I can count by 1s starting anywhere from 1 to 10 and from 10 to 1, forwards and backwards. I can look at a group of 1 to

### Correlation to the Common Core State Standards. Math in Focus

Correlation to the Common Core State Standards Math in Focus Correlation to the Common Core State Standards Table of Contents Explanation of Correlation.......................... 1 Grade 1...........................................

### Grade 5 Math Curriculum Guide

Grade 5 Math Curriculum Guide Lesson 1 1 st Nine Weeks Unit 1: Number and Operations in Base Ten Understand Place Value 5.NBT.1. Recognize that in a multi-digit number, a digit in one place represents

### Kindergarten Common Core Standards & Learning Targets

Kindergarten Common Core Standards & Learning Targets CCS Standards: Counting and Cardinality K.CC.1. Count to 100 by ones and by tens. K.CC.2. Count forward beginning from a given number within the known

### GRADE 3 OVERALL EXPECTATIONS. Subject: Mathematics

GRADE 3 OVERALL EXPECTATIONS Subject: Mathematics The mathematics expectations are arranged in five interwoven strands of knowledge: number, data handling, shape and space, pattern and function and measurement.

### COMMON CORE STATE STANDARDS FOR MATHEMATICS K-5 Overview

COMMON CORE STATE STANDARDS FOR MATHEMATICS K-5 Overview Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Kindergarten Counting and Cardinality Operations and Algebraic Thinking Number

### Grades K 8. Scope and Sequence. Math K 4. Intermediate 3 5. Courses 1 3

Grades K 8 Scope and Sequence 4 Intermediate 3 5 Courses 1 3 K 4 4 Scope and Sequence The Scope and Sequence for the K 4 mathematics series is intended to help educators view the progression of mathematical

### 3-5 Mathematics Common Core State Standards Grouped by Domains

Domain: Operations and Algebraic Thinking Third: Understand properties of multiplication and the relationship between multiplication and division. operation, multiply, divide, factor, product, quotient,

### 1A: Understand numbers, ways of representing numbers, relationships among numbers, and number systems.

NCTM STANDARD 1: Numbers and Operations Kindergarten Grade 2 1A: Understand numbers, ways of representing numbers, relationships among numbers, and number systems. Kindergarten Grade One Grade Two 1. Count

### RIT scores between 191 and 200

Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,

### Year 3 End of year expectations

Number and Place Value Count in 4s, 8s, 50s and 100s from any number Read and write numbers up to 1000 in numbers and words Compare and order numbers up to 1000 Recognise the place value of each digit

### 4th Grade Topic 1 - Multiplication and Division: Meanings and Facts

4th Grade Topic 1 - Multiplication and Division: Meanings and Facts Approximately 9 days Standard Objective Notes 1-1 OA1 recognize multiplication as repeated addition G21, G22, G23, G35 1-2 OA5 use patterns

### Math Common Core Standards Fourth Grade

Operations and Algebraic Thinking (OA) Use the four operations with whole numbers to solve problems. OA.4.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 7 as a statement

### Florida Department of Education Curriculum Framework

Florida Department of Education Curriculum Framework July 2014 Program Title: Adult Basic Education (ABE) Program Type: Adult Basic Education Mathematics Career Cluster: N/A ADULT GENERAL EDUCATION Program

### 4 th Grade. Math Common Core I Can Checklists

4 th Grade Math Common Core I Can Checklists Math Common Core Operations and Algebraic Thinking Use the four operations with whole numbers to solve problems. 1. I can interpret a multiplication equation

### Voyager Sopris Learning Vmath, Levels C-I, correlated to the South Carolina College- and Career-Ready Standards for Mathematics, Grades 2-8

Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156-159 Module 4: Lesson 7: 220-223 2. Reason both contextually

### Year 1. Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on.

Year 1 Add with numbers up to 20 Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on. +1 +1 +1 Children should: Have access to a wide

### Curriculum overview for Year 1 Mathematics

Curriculum overview for Year 1 Counting forward and back from any number to 100 in ones, twos, fives and tens identifying one more and less using objects and pictures (inc number lines) using the language

### -- Martensdale-St. Marys Community School Math Curriculum

-- Martensdale-St. Marys Community School Standard 1: Students can understand and apply a variety of math concepts. Benchmark; The student will: A. Understand and apply number properties and operations.

### Grade 5 Common Core State Standard

2.1.5.B.1 Apply place value concepts to show an understanding of operations and rounding as they pertain to whole numbers and decimals. M05.A-T.1.1.1 Demonstrate an understanding that 5.NBT.1 Recognize

### Grade 3 Math Expressions Vocabulary Words

Grade 3 Math Expressions Vocabulary Words Unit 1, Book 1 Place Value and Multi-Digit Addition and Subtraction OSPI words not used in this unit: add, addition, number, more than, subtract, subtraction,

### Standards-Based Progress Mathematics. Progress in Mathematics

SADLIER Standards-Based Progress Mathematics Aligned to SADLIER Progress in Mathematics Grade 5 Contents Chapter 1 Place Value, Addition, and Subtraction......... 2 Chapter 2 Multiplication....................................

### Add and subtract 1-digit and 2-digit numbers to 20, including zero. Measure and begin to record length, mass, volume and time

Year 1 Maths - Key Objectives Count to and across 100 from any number Count, read and write numbers to 100 in numerals Read and write mathematical symbols: +, - and = Identify "one more" and "one less"

### Maths Year 2 Step 1 Targets Number and place value count in steps of 2 and 5 from 0; forwards and backwards. use number facts to solve problems

Maths Year 2 Step 1 Targets Number and place value count in steps of 2 and 5 from 0; forwards and backwards. Begin to use the term multiple identify and represent numbers using different representations

### GO Math! is built. for the COMMON CORE. Includes Complete Common Core Correlation Grades K 6

GO Math! is built for the COMMON CORE Includes Complete Common Core Correlation Grades K 6 It s New! NEW Write-in Student Edition Children record, represent, solve, and explain as they discover and build

### Year 1 maths expectations (New Curriculum)

Year 1 maths expectations Counts to and across 100, forwards and backwards, beginning with 0 or one, or from any given number Counts, reads and writes numbers to 100 in numerals; counts in multiples of

### Kindergarten Grade Texas Mathematics: Unpacked Content

Kindergarten Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a

### Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade

Math-U-See Correlation with the Common Core State Standards for Mathematical Content for Fourth Grade The fourth-grade standards highlight all four operations, explore fractions in greater detail, and

### Place Value Chart. Number Sense 345,562 > 342,500 24,545 < 38, ,312=212,312

INDIANA ACADEMIC STANDARDS Number Sense 4.NS.1 Read and write whole numbers up to 1,000,000. Use words, models, standard form, and expanded form to represent and show equivalent forms of whole numbers

### Arizona s College and Career Ready Standards Mathematics

Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples Third Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June

### Florida Department of Education/Office of Assessment January Grade 3 FCAT 2.0 Mathematics Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Grade 3 FCAT 2.0 Mathematics Achievement Level Descriptions Grade 3 FCAT 2.0 Mathematics Reporting Category Number: Operations, Problems,

### C R O S S W A L K. Next Generation Mathematics Content Standards and Objectives for WV Schools

C R O S S W A L K Next Generation Mathematics Content Standards and Objectives for WV Schools Introduction to the Next Generation West Virginia Content Standards and Objectives Crosswalk to the West Virginia