# CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics: Drawing Lines. Emmanuel Agu

Save this PDF as:

Size: px
Start display at page:

Download "CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics: Drawing Lines. Emmanuel Agu"

## Transcription

1 CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics: Drawing Lines Emmanuel Agu

2 2D Graphics Pipeline Clipping Object World Coordinates Applying world window Object subset window to viewport mapping Simple 2D Drawing Pipeline Display Rasterization Object Screen coordinates

3 Rasterization (Scan Conversion) Convert high-level geometry description to pixel colors in the frame buffer Example: given vertex x,y coordinates determine pixel colors to draw line Two ways to create an image: Scan existing photograph Procedurally compute values (rendering) Viewport Transformation Rasterization

4 Rasterization A fundamental computer graphics function Determine the pixels colors, illuminations, textures, etc. Implemented by graphics hardware Rasterization algorithms Lines Circles Triangles Polygons

5 Rasterization Operations Drawing lines on the screen Manipulating pixel maps (pixmaps): copying, scaling, rotating, etc Compositing images, defining and modifying regions Drawing and filling polygons Previously glbegin(gl_polygon), etc Aliasing and antialiasing methods

6 Line drawing algorithm Programmer specifies (x,y) values of end pixels Need algorithm to figure out which intermediate pixels are on line path Pixel (x,y) values constrained to integer values Actual computed intermediate line values may be floats Rounding may be required. E.g. computed point (10.48, 20.51) rounded to (10, 21) Rounded pixel value is off actual line path (jaggy!!) Sloped lines end up having jaggies Vertical, horizontal lines, no jaggies

7 Line Drawing Algorithm Line: (3,2) -> (9,6)? Which intermediate pixels to turn on?

8 Line Drawing Algorithm Slope-intercept line equation y = mx + b Given two end points (x0,y0), (x1, y1), how to compute m and b? m dy y1 y0 = = b = y0 m * x0 dx x1 x0 (x1,y1) dy (x0,y0) dx

9 Line Drawing Algorithm Numerical example of finding slope m: (Ax, Ay) = (23, 41), (Bx, By) = (125, 96) m = By Bx Ay Ax = = =

10 Digital Differential Analyzer (DDA): Line Drawing Algorithm Walk through the line, starting at (x0,y0) Constrain x, y increments to values in [0,1] range Case a: x is incrementing faster (m < 1) Step in x=1 increments, compute and round y Case b: y is incrementing faster (m > 1) Step in y=1 increments, compute and round x m>1 (x1,y1) m=1 (x0,y0) dx dy m<1

11 DDA Line Drawing Algorithm (Case a: m < 1) yk +1 = yk + m (x1,y1) x = x0 y = y0 Illuminate pixel (x, round(y)) x = x0 + 1 y = y0 + 1 * m Illuminate pixel (x, round(y)) x = x + 1 y = y + 1 * m Illuminate pixel (x, round(y)) (x0, y0) Until x == x1

12 DDA Line Drawing Algorithm (Case b: m > 1) x k + 1 = xk + 1 m (x1,y1) x = x0 y = y0 Illuminate pixel (round(x), y) y = y0 + 1 x = x0 + 1 * 1/m Illuminate pixel (round(x), y) y = y + 1 x = x + 1 /m Illuminate pixel (round(x), y) (x0,y0) Until y == y1

13 DDA Line Drawing Algorithm Pseudocode compute m; if m < 1: { } float y = y0; // initial value for(int x = x0;x <= x1; x++, y += m) else // m > 1 { } float x = x0; setpixel(x, round(y)); // initial value for(int y = y0;y <= y1; y++, x += 1/m) setpixel(round(x), y); Note: setpixel(x, y) writes current color into pixel in column x and row y in frame buffer

14 Line Drawing Algorithm Drawbacks DDA is the simplest line drawing algorithm Not very efficient Round operation is expensive Optimized algorithms typically used. Integer DDA E.g.Bresenham algorithm (Hill, ) Bresenham algorithm Incremental algorithm: current value uses previous value Integers only: avoid floating point arithmetic Several versions of algorithm: we ll describe midpoint version of algorithm

15 Bresenham s Line-Drawing Algorithm Problem: Given endpoints (Ax, Ay) and (Bx, By) of a line, want to determine best sequence of intervening pixels First make two simplifying assumptions (remove later): (Ax < Bx) and (0 < m < 1) Define Width W = Bx Ax Height H = By - Ay (Bx,By) (Ax,Ay)

16 Bresenham s Line-Drawing Algorithm Based on assumptions: W, H are +ve H < W As x steps in +1 increments, y incr/decr by <= +/ 1 y value sometimes stays same, sometimes increases by 1 Midpoint algorithm determines which happens

17 Bresenham s Line-Drawing Algorithm (x1,y1) What Pixels to turn on or off? Consider pixel midpoint M(Mx, My) M = (x0 + 1, Y0 + ½) M(Mx,My) Build equation of line through and compare to midpoint If midpoint is above line, y stays same If midpoint is below line, y increases + 1 (x0, y0)

18 Bresenham s Line-Drawing Algorithm Using similar triangles: y x Ay Ax = H W (x,y) (Ax,Ay) (Bx,By) H(x Ax) = W(y Ay) -W(y Ay) + H(x Ax) = 0 Above is ideal equation of line through (Ax, Ay) and (Bx, By) Thus, any point (x,y) that lies on ideal line makes eqn = 0 Double expression (to avoid floats later), and give it a name, F(x,y) = -2W(y Ay) + 2H(x Ax)

19 Bresenham s Line-Drawing Algorithm So, F(x,y) = -2W(y Ay) + 2H(x Ax) Algorithm, If: F(x, y) < 0, (x, y) above line F(x, y) > 0, (x, y) below line Hint: F(x, y) = 0 is on line Increase y keeping x constant, F(x, y) becomes more negative

20 Bresenham s Line-Drawing Algorithm Example: to find line segment between (3, 7) and (9, 11) F(x,y) = -2W(y Ay) + 2H(x Ax) = (-12)(y 7) + (8)(x 3) For points on line. E.g. (7, 29/3), F(x, y) = 0 A = (4, 4) lies below line since F = 44 B = (5, 9) lies above line since F = -8

21 Bresenham s Line-Drawing Algorithm (x1,y1) What Pixels to turn on or off? Consider pixel midpoint M(Mx, My) M = (x0 + 1, Y0 + ½) M(Mx,My) If F(Mx,My) < 0, M lies above line, shade lower pixel (same y as before) If F(Mx,My) > 0, M lies below line, shade upper pixel (x0, y0)

22 Can compute F(x,y) incrementally Initially, midpoint M = (Ax + 1, Ay + ½) F(Mx, My) = -2W(y Ay) + 2H(x Ax) = 2H W Can compute F(x,y) for next midpoint incrementally If we increment x + 1, y stays same, compute new F(Mx,My) F(Mx, My) += 2H If we increment x +1, y + 1 F(Mx, My) -= 2(W H)

23 Bresenham s Line-Drawing Algorithm Bresenham(IntPoint a, InPoint b) { // restriction: a.x < b.x and 0 < H/W < 1 int y = a.y, W = b.x a.x, H = b.y a.y; int F = 2 * H W; // current error term for(int x = a.x; x <= b.x; x++) { setpixel at (x, y); // to desired color value if F < 0 F = F + 2H; else{ Y++, F = F + 2(H W) } } } Recall: F is equation of line

24 Bresenham s Line-Drawing Algorithm Final words: we developed algorithm with restrictions 0 < m < 1 and Ax < Bx Can add code to remove restrictions To get the same line when Ax > Bx (swap and draw) Lines having m > 1 (interchange x with y) Lines with m < 0 (step x++, decrement y not incr) Horizontal and vertical lines (pretest a.x = b.x and skip tests) Important: Read Hill 9.4.1

25 References Hill, chapter 9

### Scan Conversion of Filled Primitives Rectangles Polygons. Many concepts are easy in continuous space - Difficult in discrete space

Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 1 2D Primitives I Point-plotting (Scan Conversion) Lines Circles Ellipses Scan Conversion of Filled Primitives Rectangles Polygons Clipping In graphics must

### Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

### Introduction to Computer Graphics

Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

### B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

### Computer Graphics Lecture Notes

Computer Graphics Lecture Notes DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN (Approved by AICTE, Accredited by NBA, Affiliated to JNTU Kakinada) BHIMAVARAM 534

### Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include

### Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

### Lecture Notes, CEng 477

Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make

### We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

### Introduction Week 1, Lecture 1

CS 430/536 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### Quickstart for Desktop Version

Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

### 2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### Computer Science 217

Computer Science 217 Midterm Exam Fall 2009 October 29, 2009 Name: ID: Instructions: Neatly print your name and ID number in the spaces provided above. Pick the best answer for each multiple choice question.

### CS 4204 Computer Graphics

CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Triangle Scan Conversion using 2D Homogeneous Coordinates

Triangle Scan Conversion using 2D Homogeneous Coordinates Marc Olano 1 Trey Greer 2 University of North Carolina Hewlett-Packard ABSTRACT We present a new triangle scan conversion algorithm that works

### http://school-maths.com Gerrit Stols

For more info and downloads go to: http://school-maths.com Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

### Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

### Computer Graphics. Lecture 1:

Computer Graphics Thilo Kielmann Lecture 1: 1 Introduction (basic administrative information) Course Overview + Examples (a.o. Pixar, Blender, ) Graphics Systems Hands-on Session General Introduction http://www.cs.vu.nl/~graphics/

### Shader Model 3.0. Ashu Rege. NVIDIA Developer Technology Group

Shader Model 3.0 Ashu Rege NVIDIA Developer Technology Group Talk Outline Quick Intro GeForce 6 Series (NV4X family) New Vertex Shader Features Vertex Texture Fetch Longer Programs and Dynamic Flow Control

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### ( ) ( ) Math 0310 Final Exam Review. # Problem Section Answer. 1. Factor completely: 2. 2. Factor completely: 3. Factor completely:

Math 00 Final Eam Review # Problem Section Answer. Factor completely: 6y+. ( y+ ). Factor completely: y+ + y+ ( ) ( ). ( + )( y+ ). Factor completely: a b 6ay + by. ( a b)( y). Factor completely: 6. (

### A Linear Online 4-DSS Algorithm

A Linear Online 4-DSS Algorithm V. Kovalevsky 1990: algorithm K1990 We consider the recognition of 4-DSSs on the frontier of a region in the 2D cellular grid. Algorithm K1990 is one of the simplest (implementation)

### COMP-557: Fundamentals of Computer Graphics McGill University, Fall 2010

COMP-557: Fundamentals of Computer Graphics McGill University, Fall 2010 Class times 2:25 PM - 3:55 PM Mondays and Wednesdays Lecture room Trottier Building 2120 Instructor Paul Kry, kry@cs.mcgill.ca Course

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Plotting: Customizing the Graph

Plotting: Customizing the Graph Data Plots: General Tips Making a Data Plot Active Within a graph layer, only one data plot can be active. A data plot must be set active before you can use the Data Selector

### Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

### 13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### Estimating the Average Value of a Function

Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

### Factoring Polynomials

Factoring Polynomials 8A Factoring Methods 8-1 Factors and Greatest Common Factors Lab Model Factoring 8-2 Factoring by GCF Lab Model Factorization of Trinomials 8-3 Factoring x 2 + bx + c 8-4 Factoring

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### Graphics Module Reference

Graphics Module Reference John M. Zelle Version 3.2, Spring 2005 1 Overview The package graphics.py is a simple object oriented graphics library designed to make it very easy for novice programmers to

### Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine

### Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive

### + 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

### OpenGL & Delphi. Max Kleiner. http://max.kleiner.com/download/openssl_opengl.pdf 1/22

OpenGL & Delphi Max Kleiner http://max.kleiner.com/download/openssl_opengl.pdf 1/22 OpenGL http://www.opengl.org Evolution of Graphics Assembler (demo pascalspeed.exe) 2D 3D Animation, Simulation (Terrain_delphi.exe)

### YOU CAN COUNT ON NUMBER LINES

Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and

### Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy

Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy Claus SCHEIBLAUER 1 / Michael PREGESBAUER 2 1 Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria

### ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

### SECTION 1-6 Quadratic Equations and Applications

58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

### Touchstone -A Fresh Approach to Multimedia for the PC

Touchstone -A Fresh Approach to Multimedia for the PC Emmett Kilgariff Martin Randall Silicon Engineering, Inc Presentation Outline Touchstone Background Chipset Overview Sprite Chip Tiler Chip Compressed

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Volume visualization I Elvins

Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting

### Computer Graphics Labs

Computer Graphics Labs Abel J. P. Gomes LAB. 2 Department of Computer Science and Engineering University of Beira Interior Portugal 2011 Copyright 2009-2011 All rights reserved. LAB. 2 1. Learning goals

### The Handshake Problem

The Handshake Problem Tamisha is in a Geometry class with 5 students. On the first day of class her teacher asks everyone to shake hands and introduce themselves to each other. Tamisha wants to know how

### College Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1

College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

### REAL-TIME IMAGE BASED LIGHTING FOR OUTDOOR AUGMENTED REALITY UNDER DYNAMICALLY CHANGING ILLUMINATION CONDITIONS

REAL-TIME IMAGE BASED LIGHTING FOR OUTDOOR AUGMENTED REALITY UNDER DYNAMICALLY CHANGING ILLUMINATION CONDITIONS Tommy Jensen, Mikkel S. Andersen, Claus B. Madsen Laboratory for Computer Vision and Media

### Important Question with Answer

Important Question with Answer Q1. What do you mean by computer graphics? Ans. The branch of science and technology concerned with methods and techniques for converting data to or from visual presentation

### Picture Maze Generation by Successive Insertion of Path Segment

1 2 3 Picture Maze Generation by Successive Insertion of Path Segment 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32. ABSTRACT Tomio Kurokawa 1* 1 Aichi Institute of Technology,

### Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

### Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

Cork Education and Training Board Programme Module for 3 Dimensional Computer Graphics Leading to Level 5 FETAC 3 Dimensional Computer Graphics 5N5029 3 Dimensional Computer Graphics 5N5029 1 Version 3

### Solving Quadratic Equations by Factoring

4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

### Cortona3D Viewer. User's Guide. Copyright 1999-2011 ParallelGraphics

Cortona3D Viewer User's Guide Copyright 1999-2011 ParallelGraphics Table of contents Introduction 1 The Cortona3D Viewer Window 1 Navigating in Cortona3D Viewer 1 Using Viewpoints 1 Moving around: Walk,

### VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

### Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011

Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### OpenEXR Image Viewing Software

OpenEXR Image Viewing Software Florian Kainz, Industrial Light & Magic updated 07/26/2007 This document describes two OpenEXR image viewing software programs, exrdisplay and playexr. It briefly explains

### Visualization of 2D Domains

Visualization of 2D Domains This part of the visualization package is intended to supply a simple graphical interface for 2- dimensional finite element data structures. Furthermore, it is used as the low

### 2.2 Creaseness operator

2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

### CHAPTER 1 Splines and B-splines an Introduction

CHAPTER 1 Splines and B-splines an Introduction In this first chapter, we consider the following fundamental problem: Given a set of points in the plane, determine a smooth curve that approximates the

### Lezione 4: Grafica 3D*(II)

Lezione 4: Grafica 3D*(II) Informatica Multimediale Docente: Umberto Castellani *I lucidi sono tratti da una lezione di Maura Melotti (m.melotti@cineca.it) RENDERING Rendering What is rendering? Rendering

### Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

### Getting Started With DraftSight A Guide For AEC Users

Getting Started With DraftSight A Guide For AEC Users DraftSight.com Facebook.com/DraftSight Welcome to DraftSight a valuable tool for any AEC professional! DraftSight is more than a free, professional-grade

### The Secrets of Cutting Plan and Profile Sheets in AutoCAD Civil 3D Michelle Rasmussen - Application Engineer, IMAGINiT Technologies

12/4/2008-10:00 am - 11:30 am Room:Palazzo O-P (5th) The Secrets of Cutting Plan and Profile Sheets in AutoCAD Civil 3D Michelle Rasmussen - Application Engineer, IMAGINiT Technologies CV304-1P In this

### Administrative - Master Syllabus COVER SHEET

Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for

### 2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### 12-1 Representations of Three-Dimensional Figures

Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

### DATA VISUALIZATION OF THE GRAPHICS PIPELINE: TRACKING STATE WITH THE STATEVIEWER

DATA VISUALIZATION OF THE GRAPHICS PIPELINE: TRACKING STATE WITH THE STATEVIEWER RAMA HOETZLEIN, DEVELOPER TECHNOLOGY, NVIDIA Data Visualizations assist humans with data analysis by representing information

### Computer Graphics. Computer graphics deals with all aspects of creating images with a computer

Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware Software Applications Computer graphics is using computers to generate and display images based on

### ClarisWorks 5.0. Graphics

ClarisWorks 5.0 Graphics Level 1 Training Guide DRAFT Instructional Technology Page 1 Table of Contents Objectives... Page 3 Course Description and Organization... Page 4 Technology Requirements... Page

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Learning Modern 3D Graphics Programming. Jason L. McKesson

Learning Modern 3D Graphics Programming Jason L. McKesson Learning Modern 3D Graphics Programming Jason L. McKesson Copyright 2012 Jason L. McKesson Table of Contents About this Book... iv Why Read This

### MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

### 8. MACROS, Modules, and Mouse

8. MACROS, Modules, and Mouse Background Macros, Modules and the Mouse is a combination of concepts that will introduce you to modular programming while learning how to interface with the mouse. Macros

Attention: This material is copyright 1995-1997 Chris Hecker. All rights reserved. You have permission to read this article for your own education. You do not have permission to put it on your website

### Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

### x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x

Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

### Polynomials and Quadratics

Polynomials and Quadratics Want to be an environmental scientist? Better be ready to get your hands dirty!.1 Controlling the Population Adding and Subtracting Polynomials............703.2 They re Multiplying

### The Nile Programming Language: Declarative Stream Processing for Media Applications. Dan Amelang Viewpoints Research Institute UCSD PhD Student

The Nile Programming Language: Declarative Stream Processing for Media Applications Dan Amelang Viewpoints Research Institute UCSD PhD Student Southern California Programming Languages and Systems Workshop

### Workstation Applications for Windows. NVIDIA MAXtreme User s Guide

Workstation Applications for Windows NVIDIA MAXtreme User s Guide Software Version: 6.00.xx NVIDIA Corporation February 2004 NVIDIA MAXtreme Published by NVIDIA Corporation 2701 San Tomas Expressway Santa

### CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!

### FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

### FPGA Based Hardware Accelerator for Parallel Robot Kinematic Calculations

AUTOMATYKA/ AUTOMATICS 03 Vol. 7 No. http://dx.doi.org/0.7494/automat.03.7..87 Grzegorz Karpiel*, Konrad Gac*, Maciej Petko* FPGA Based Hardware Accelerator for Parallel Robot Kinematic Calculations. Introduction

### Prerequisites: TSI Math Complete and high school Algebra II and geometry or MATH 0303.

Course Syllabus Math 1314 College Algebra Revision Date: 8-21-15 Catalog Description: In-depth study and applications of polynomial, rational, radical, exponential and logarithmic functions, and systems

### Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA

Are Image Quality Metrics Adequate to Evaluate the Quality of Geometric Objects? Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA ABSTRACT

### Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.

COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions

### Institution : Majmaah University. Academic Department : College of Science at AzZulfi. Programme : Computer Science and Information Course :

Institution : Majmaah University. Academic Department : College of Science at AzZulfi. Programme : Computer Science and Information Course : Computer Graphics (CSI-425) Course Coordinator : Mr. ISSA ALSMADI

### Adobe Illustrator CS5 Part 1: Introduction to Illustrator

CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Illustrator CS5 Part 1: Introduction to Illustrator Summer 2011, Version 1.0 Table of Contents Introduction...2 Downloading

### VA (Video Acceleration) API. Jonathan Bian 2009 Linux Plumbers Conference

VA (Video Acceleration) API Jonathan Bian 2009 Linux Plumbers Conference Motivation for creating a new API Lack of a video decode acceleration API for Unixlike OS that fully exposes fixed function video

### COLLEGE ALGEBRA LEARNING COMMUNITY

COLLEGE ALGEBRA LEARNING COMMUNITY Tulsa Community College, West Campus Presenter Lori Mayberry, B.S., M.S. Associate Professor of Mathematics and Physics lmayberr@tulsacc.edu NACEP National Conference

### Problem Solving Basics and Computer Programming

Problem Solving Basics and Computer Programming A programming language independent companion to Roberge/Bauer/Smith, "Engaged Learning for Programming in C++: A Laboratory Course", Jones and Bartlett Publishers,