QUANTUM MECHANICS, BRAS AND KETS


 Hilda Lee
 2 years ago
 Views:
Transcription
1 PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented b a state vector or ket and t s denoted b a smbol such as. Lke an ordnar vector, the ket can be epressed as a lnear combnaton of bass kets wth coeffcents c : The bass ket c. s often abbrevated smpl b. The correspondng bra s c where c s the comple conjugate of c. The ket s an abstract quantt that represents a quantum state. Often, we wsh to be more specfc an eplct representaton that gves us nformaton about (for eample) spatal (poston) dstrbuton of electron denst. To do ths, we project the ket onto the bras that are the egenstates of poston. The resultng functon s called the wave functon (n the poston representaton). An eplct eample of a set of bass wave functons are the hdrogen ground state orbtals used to develop the states of the datomc molecule, lnear chan, etc.: / ( r / a ( r ) e 3 a 4) where a s the Bohr radus and r s the radal dstance of the electron from the th nucleus. (We wll rarel actuall use the eplct forms of these bass functons. Rather we make use of ther mathematcal propertes such as orthogonalt and normalaton see below.) Projectons scalar products: The coeffcents n the lnear combnaton are the projectons of on the bass states,.e. c where the object s a scalar product analogous to the dot product of ordnar vectors. The scalar product of two state vectors (or the projecton of one on the other) s a sum of products of ther respectve projectons on the bass (agan just lke ordnar vectors: a b a b + a b + a b ). Thus,. If we were usng eplct functons of spatal coordnates to represent the states and, we would evaluate the projecton wth an ntegral ( r ) ( r ) dv. all space
2 PH575 SPRING The quantt s often called the overlap ntegral. It represents how much of one functon s contaned n another. The overlap ntegral of orthogonal functons (see below) s ether ero or one. The orthonormal propert usuall assumed for the bass states can be epressed n terms of ther scalar products: j f j; j f j. Ths same statement s often wrtten n terms of the Kronecker delta: j j State vectors are usuall normaled:. Ths leads to the result that The quantt c c c c s the probablt that n a measurement, an electron wll be found n the partcular bass state. The normalaton condton smpl epresses the fact that the electron must be found n some bass state, thus the sum of all probabltes equals. Operators In quantum mechancs, observable phscal quanttes are represented b operators. There are two cases to consder: Case I: An operator L operates on a state vector and elds the same state vector smpl multpled b a constant: L CL. In ths case, s an egenvector of the operator L and the constant C L s an egenvalue. The most mportant eample of ths s gven b the Schrödnger equaton H E where the Hamltonan (energ operator) s, n Cartesan spatal coordnates, ( ) ) ) H knetc + potental energ + V(,, ) + V(,, ) m + + ) ) ) m A state vector that satsfes the Schrödnger equaton s an energ egenfuncton or egenvector wth egenvalue equal to the energ of the state E. An mportant part of the determnaton of the electronc structure of solds s to determne the energ egenvalues for partcular assembles of atoms. Case II: The state vector s NOT an egenvector of the operator L. In ths case the operaton of L on produces a dfferent state vector or lnear combnaton of state vectors, denoted here b : L constant.
3 PH575 SPRING The matr elements of an operator L are epressed n terms of a partcular bass set. The are scalar products of a bass bra j and the ket produced b the acton of L on,.e. j L L. j When j, the dagonal matr element L L s the epectaton value of the phscal quantt represented b L n the partcular bass state. If, n addton, s an egenvector of L, then L s just the egenvalue C L. For eample, f L s the energ operator H and our bass states are the atomc ground states, then H s the energ of an electron n the ground state of atom. Specfc eamples of the above wth reference to the hdrogen atom atomc orbtals. State of a phscal sstem: Suppose the state of an electron n a Hatom s an unequal superposton of the s and p states. We denote ths state vector or ket b. can be epressed as a lnear combnaton of bass kets, whch s ths case are the egenstates of the Hatom Hamltonan. In ths case the bass kets are s and p. The coeffcents c n ths case are not equal, and for llustraton are set n a : rato. Proper normalaton requres that the squares of the coeffcents sum to : c 5 s + 5 p. The bass kets could also be labeled b the quantum numbers, n, l, m l, of the state: and. The correspondng bra s c where c s the comple conjugate of c. If we want an eplct representaton that gves us nformaton about spatal (poston) dstrbuton of electron denst, we project the ket onto the bras that are the egenstates of poston. The resultng functons s called the wave functons (n the poston representaton). Here, the bass wave functons are the hdrogen orbtals: s (r,,) 3 a er/a ( 4 / ( 4, p (r,,) a 3 ( ) e r/a where a s the Bohr radus and r s the radal dstance of the electron from the nucleus. / Projectons scalar products: Project the state onto the s bass state: The notaton s ths: s Project the state onto the p bass state: The notaton s ths: p
4 PH575 SPRING Projectons are reall ntegrals. The notaton ths case n 3 spatal dmensons: the functon r,, conjugate functon s s means ntegrate over all space, n...d dd. The notaton means nsert v ( ) nto the ntegral and the notaton s means nsert the comple ( r,, ) nto the ntegral. Thus: s ( r,, ) ( r,, )r sn dr d r d. Because we can look up the poston representaton of bass wave functons, we can plug n and evaluate. But because the bass functons of the Hamltonan are orthogonal to one another, the ntegraton s not necessar (but ou should check that t actuall does evaluate to or ero) s s 5 s + 5 p s s s p 5 p s 5 s + 5 p 5 p s + 5 p p 5 The scalar product of two state vectors (or the projecton of one on the other) s a sum of products of ther respectve projectons on the bass (agan just lke ordnar vectors: a b a b + a b + a b ). Suppose another state of the Hatom s represented b s + 3p. Then the projecton of onto s 5 s + 5 p s + 3p s s + s 3p + p s + p 3p. Or we could evaluate the projecton wth the ntegral ( r ) ( r ) dv. all space The quantt s often called the overlap ntegral. It represents how much of one functon s contaned n another. The overlap ntegral of orthogonal functons (see below) s ether ero or one. Operators Case I: The Hamltonan operator H m e operates on a state vector 4 r and elds the same state vector smpl multpled b a constant. Eamples are the
5 PH575 SPRING states s, p 3p H s e a s ; H p e a ( ) p ; H 3p e a 3 ( ) 3p In ths case s, p 3p are egenstates of the operator H, whch s wh we chose them as the bass states. The egenvalues are the energes of the respectve orbtals. Case II: The Hamltonan operator H m e 4 r operates on a state vector and elds a dfferent state vector (multpled b some constant). Eamples are and, whch are NOT egenvalues of H. For eample, H e 5a where the ket s found below: H H 5 s + 5 p e 5a s + e 5a ( ) p e s + 5a 4 p The matr elements of the Hamltonan H are epressed n terms of a partcular bass set. The are scalar products of a bass bra j and the ket produced b the acton of H on,.e. j H H j. If the bass vectors are egenfunctons, the matr s dagonal. For eample: H s,s s H s E s s s E s H s,s s H s E s s s E s. The matr s (n part t s actuall nfnte n dmenson) H s s p p p s s p p p E E E E E E 3 The dagonal matr element L L s called the epectaton value of the phscal quantt represented b L n the partcular bass state.
6 PH575 SPRING Usng the same bass states to epress the L operator, we fnd the matr s NOT dagonal because the p and p states are not egenfunctons of the L operator: L s s p p p s s p p p
State function: eigenfunctions of hermitian operators> normalization, orthogonality completeness
Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators> normalzaton, orthogonalty completeness egenvalues and
More information5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)
5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let Â satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB Â η = a η (13.29) ˆB [ Â η ] = ˆB [a η ] = a
More informationv a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
More informationSCALAR A physical quantity that is completely characterized by a real number (or by its numerical value) is called a scalar. In other words, a scalar
SCALAR A phscal quantt that s completel charactered b a real number (or b ts numercal value) s called a scalar. In other words, a scalar possesses onl a magntude. Mass, denst, volume, temperature, tme,
More information21 Vectors: The Cross Product & Torque
21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rghthand rule for the cross product of two vectors dscussed n ths chapter or the rghthand rule for somethng curl
More informationwhere the coordinates are related to those in the old frame as follows.
Chapter 2  Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of noncoplanar vectors Scalar product
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationThe Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the ageold queston: When the hell
More informationThe Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets
. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely
More informationHÜCKEL MOLECULAR ORBITAL THEORY
1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ
More informationMean Molecular Weight
Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of
More informationQuestions that we may have about the variables
Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More informationgreatest common divisor
4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no
More informationGraph Theory and Cayley s Formula
Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll
More informationPERRON FROBENIUS THEOREM
PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()
More information+ + +   This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
More informationLinear Algebra for Quantum Mechanics
prevous ndex next Lnear Algebra for Quantum Mechancs Mchael Fowler 0/4/08 Introducton We ve seen that n quantum mechancs, the state of an electron n some potental s gven by a ψ x t, and physcal varables
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More informationFace Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
More informationRotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
More informationSupport Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationImplementation of Deutsch's Algorithm Using Mathcad
Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages  n "Machnes, Logc and Quantum Physcs"
More information"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
More information2.4 Bivariate distributions
page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together
More informationThe material in this lecture covers the following in Atkins. 11.5 The informtion of a wavefunction (d) superpositions and expectation values
Lecture 7: Expectaton Values The materal n ths lecture covers the followng n Atkns. 11.5 The nformton of a wavefuncton (d) superpostons and expectaton values Lecture onlne Expectaton Values (PDF) Expectaton
More informationChapter 7 Symmetry and Spectroscopy Molecular Vibrations p. 1 
Chapter 7 Symmetry and Spectroscopy Molecular Vbratons p  7 Symmetry and Spectroscopy Molecular Vbratons 7 Bases for molecular vbratons We nvestgate a molecule consstng of N atoms, whch has 3N degrees
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More informationA Note on the Decomposition of a Random Sample Size
A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationRing structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAMReport 201448 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
More informationL10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
More informationA. Te densty matrx and densty operator In general, te manybody wave functon (q 1 ; :::; q 3N ; t) s far too large to calculate for a macroscopc syste
G25.2651: Statstcal Mecancs Notes for Lecture 13 I. PRINCIPLES OF QUANTUM STATISTICAL MECHANICS Te problem of quantum statstcal mecancs s te quantum mecancal treatment of an Npartcle system. Suppose te
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationLinear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
More informationNonlinear data mapping by neural networks
Nonlnear data mappng by neural networks R.P.W. Dun Delft Unversty of Technology, Netherlands Abstract A revew s gven of the use of neural networks for nonlnear mappng of hgh dmensonal data on lower dmensonal
More informationThe Distribution of Eigenvalues of Covariance Matrices of Residuals in Analysis of Variance
JOURNAL OF RESEARCH of the Natonal Bureau of Standards  B. Mathem atca l Scence s Vol. 74B, No.3, JulySeptember 1970 The Dstrbuton of Egenvalues of Covarance Matrces of Resduals n Analyss of Varance
More informationIntroduction: Analysis of Electronic Circuits
/30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,
More informationIMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUAREROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1
Nov Sad J. Math. Vol. 36, No. 2, 2006, 009 IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUAREROOT INTERVAL METHOD FOR MULTIPLE ZEROS Modrag S. Petkovć 2, Dušan M. Mloševć 3 Abstract. A new theorem concerned
More informationLesson 2 Chapter Two Three Phase Uncontrolled Rectifier
Lesson 2 Chapter Two Three Phase Uncontrolled Rectfer. Operatng prncple of three phase half wave uncontrolled rectfer The half wave uncontrolled converter s the smplest of all three phase rectfer topologes.
More information6. EIGENVALUES AND EIGENVECTORS 3 = 3 2
EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a nonzero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :
More information1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 /  Communcaton Networks II (Görg) SS20  www.comnets.unbremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
More informationINTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations
WEIGHTED RESIDUA METHOD INTRODUCTION Drect stffness method s lmted for smple D problems PMPE s lmted to potental problems FEM can be appled to many engneerng problems that are governed by a dfferental
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationThe quantum mechanics based on a general kinetic energy
The quantum mechancs based on a general knetc energy Yuchuan We * Internatonal Center of Quantum Mechancs, Three Gorges Unversty, Chna, 4400 Department of adaton Oncology, Wake Forest Unversty, NC, 7157
More informationCHAPTER 7 VECTOR BUNDLES
CHAPTER 7 VECTOR BUNDLES We next begn addressng the queston: how do we assemble the tangent spaces at varous ponts of a manfold nto a coherent whole? In order to gude the decson, consder the case of U
More informationIntroduction to Statistical Physics (2SP)
Introducton to Statstcal Physcs (2SP) Rchard Sear March 5, 20 Contents What s the entropy (aka the uncertanty)? 2. One macroscopc state s the result of many many mcroscopc states.......... 2.2 States wth
More informationEfficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
More informationREGULAR MULTILINEAR OPERATORS ON C(K) SPACES
REGULAR MULTILINEAR OPERATORS ON C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. The purpose of ths paper s to characterze the class of regular contnuous multlnear operators on a product of
More informationNMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582
NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!
More informationSemiconductor sensors of temperature
Semconductor sensors of temperature he measurement objectve 1. Identfy the unknown bead type thermstor. Desgn the crcutry for lnearzaton of ts transfer curve.. Fnd the dependence of forward voltage drop
More informationConversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
More informationDo Hidden Variables. Improve Quantum Mechanics?
Radboud Unverstet Njmegen Do Hdden Varables Improve Quantum Mechancs? Bachelor Thess Author: Denns Hendrkx Begeleder: Prof. dr. Klaas Landsman Abstract Snce the dawn of quantum mechancs physcst have contemplated
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationBasic Image Compression Algorithm and Introduction to JPEG Standard
Basc Image Compresson Algorthm and Introducton to JPEG Standard PaoYen Ln Emal: r97942117@ntu.edu.tw Graduate Insttute of Communcaton Engneerng atonal Tawan Unversty, Tape, Tawan, ROC Abstract Because
More information2. Linear Algebraic Equations
2. Lnear Algebrac Equatons Many physcal systems yeld smultaneous algebrac equatons when mathematcal functons are requred to satsfy several condtons smultaneously. Each condton results n an equaton that
More informationCopulas. Modeling dependencies in Financial Risk Management. BMI Master Thesis
Copulas Modelng dependences n Fnancal Rsk Management BMI Master Thess Modelng dependences n fnancal rsk management Modelng dependences n fnancal rsk management 3 Preface Ths paper has been wrtten as part
More informationProbabilities and Probabilistic Models
Probabltes and Probablstc Models Probablstc models A model means a system that smulates an obect under consderaton. A probablstc model s a model that produces dfferent outcomes wth dfferent probabltes
More informationAPPLICATIONS OF VARIATIONAL PRINCIPLES TO DYNAMICS AND CONSERVATION LAWS IN PHYSICS
APPLICATIONS OF VAIATIONAL PINCIPLES TO DYNAMICS AND CONSEVATION LAWS IN PHYSICS DANIEL J OLDE Abstract. Much of physcs can be condensed and smplfed usng the prncple of least acton from the calculus of
More informationLoop Parallelization
  Loop Parallelzaton C52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I,J]+B[I,J] ED FOR ED FOR analyze
More informationLeast Squares Fitting of Data
Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 19982016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationPRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and mfle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
More informationOttovonGuerickeUniversität Magdeburg Fakultät für Mathematik Institut für Analysis & Numerik
OttovonGuerckeUnverstät Magdeburg Fakultät für Mathematk Insttut für Analyss & Numerk WeerstraßInsttut für Angewandte Analyss & Stochastk Berln On the Effcency and Condton of the Core Routne of the
More informationGoals Rotational quantities as vectors. Math: Cross Product. Angular momentum
Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationBrigid Mullany, Ph.D University of North Carolina, Charlotte
Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationSeries Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3
Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons
More informationHYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION
HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR Emal: ghapor@umedumy Abstract Ths paper
More informationSupplementary material: Assessing the relevance of node features for network structure
Supplementary materal: Assessng the relevance of node features for network structure Gnestra Bancon, 1 Paolo Pn,, 3 and Matteo Marsl 1 1 The Abdus Salam Internatonal Center for Theoretcal Physcs, Strada
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationA Simple Economic Model about the Teamwork Pedagogy
Appled Mathematcal Scences, Vol. 6, 01, no. 1, 130 A Smple Economc Model about the Teamwork Pedagog Gregor L. Lght Department of Management, Provdence College Provdence, Rhode Island 0918, USA glght@provdence.edu
More informationDescribing Communities. Species Diversity Concepts. Species Richness. Species Richness. SpeciesArea Curve. SpeciesArea Curve
peces versty Concepts peces Rchness pecesarea Curves versty Indces  mpson's Index  hannonwener Index  rlloun Index peces Abundance Models escrbng Communtes There are two mportant descrptors of a communty:
More informationGibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)
Gbbs Free Energy and Chemcal Equlbrum (or how to predct chemcal reactons wthout dong experments) OCN 623 Chemcal Oceanography Readng: Frst half of Chapter 3, Snoeynk and Jenkns (1980) Introducton We want
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationThe Noether Theorems: from Noether to Ševera
14th Internatonal Summer School n Global Analyss and Mathematcal Physcs Satellte Meetng of the XVI Internatonal Congress on Mathematcal Physcs *** Lectures of Yvette KosmannSchwarzbach Centre de Mathématques
More informationn + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (InClass) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
More informationA machine vision approach for detecting and inspecting circular parts
A machne vson approach for detectng and nspectng crcular parts DuMng Tsa Machne Vson Lab. Department of Industral Engneerng and Management YuanZe Unversty, ChungL, Tawan, R.O.C. Emal: edmtsa@saturn.yzu.edu.tw
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More informationChapter 14 Simple Linear Regression
Sldes Prepared JOHN S. LOUCKS St. Edward s Unverst Slde Chapter 4 Smple Lnear Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng
More informationTexas Instruments 30Xa Calculator
Teas Instruments 30Xa Calculator Keystrokes for the TI30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check
More informationWe are now ready to answer the question: What are the possible cardinalities for finite fields?
Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the
More informationSimple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
More informationRELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT
Kolowrock Krzysztof Joanna oszynska MODELLING ENVIRONMENT AND INFRATRUCTURE INFLUENCE ON RELIABILITY AND OPERATION RT&A # () (Vol.) March RELIABILITY RIK AND AVAILABILITY ANLYI OF A CONTAINER GANTRY CRANE
More informationPOLYSA: A Polynomial Algorithm for Nonbinary Constraint Satisfaction Problems with and
POLYSA: A Polynomal Algorthm for Nonbnary Constrant Satsfacton Problems wth and Mguel A. Saldo, Federco Barber Dpto. Sstemas Informátcos y Computacón Unversdad Poltécnca de Valenca, Camno de Vera s/n
More informationIntroduction to Regression
Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. 
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationProductForm Stationary Distributions for Deficiency Zero Chemical Reaction Networks
Bulletn of Mathematcal Bology (21 DOI 1.17/s11538195174 ORIGINAL ARTICLE ProductForm Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz
More informationPassive Filters. References: Barbow (pp 265275), Hayes & Horowitz (pp 3260), Rizzoni (Chap. 6)
Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called
More informationExamples of Multiple Linear Regression Models
ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A crosssectonal sample of 7 cars sold n
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationV1 V. Electronic Spectroscopy. Eigen value: lowest U el is the ground state by electronic dipole selection rule;
V1 V. Electronc Spectroscopy What we have done so far s use B O approxmaton to elmnate φ el (q,q) For example dd datomc, put asde φ el and focused on vbratonal & rotatonal soluton Now must consder electronc
More informationCalculating the Trend Data
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY  LIGO  CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Techncal Note LIGOT990110B  D 3/29/07 Calculatng the Trend Data
More informationThe eigenvalue derivatives of linear damped systems
Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by YeongJeu Sun Department of Electrcal Engneerng IShou Unversty Kaohsung, Tawan 840, R.O.C emal: yjsun@su.edu.tw
More information