PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB."

Transcription

1 PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato 5. The Alpha from the CAPM 6. The Alpha from the Fama and French three factors model. 7. Makng rankng and obtanng conclusons. Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 1/16

2 1. Load data usng the Edtor wndow and mfle In ths practce you wll use a sample of Equty Mutual Funds from one of the most prestgous mutual fund database, the CRSP (Chcago Research Securty Prces). In ths database there are data from 196 untl 26, and for all mutual fund categores (equty, fxed ncome, balanced, etc). However, gven that ths s only an exercse you wll use data from 55 Equty mutual funds n the Aggressve Growth Category and from January 22 untl December 24. The frequency of the data wll be monthly (24 observatons for each fund). All ths data are n a matlab fle name DATAFUNDS.mat Moreover, you wll need some other addtonal data, as Treasure Blls returns, Market returns, or the Fama and French factors. And these addtonal data are n a fle named ADDITIONAL_DATA.mat. Frst, we must mport data usng the Edtor Wndow. Thus, we must open a new M-Fle Second, wrte some comments at the begnnng that permts you to dentfy ths code. >> %% Ths code has been created to evaluate Equty Mutual Funds - Mater n Fnance >> %% Date: February-212 Thrd, we must use the LOAD functon to mport the varable. >> clear all >> load DATAFUNDS.mat >> load ADDITIONAL_DATA.mat Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 2/16

3 Fourth, we run the program to check the data loaded. To get t, clck on the con save and on the con Run The data you have mported are: rmf: Ths contans the returns of all mutual funds. Each mutual fund s represented n a dfferent column. So rmf s a 24 x 55 matrx. rtblls: It s a vector (24x1) wth the monthly rsk-free rate. rmk: It contans the returns of a Market ndex. smb: A column vector wth the Small-mnus-Bg factor to be use n the Fama and Frech model. hml: A column vector wth the Hgh-mnus-Low factor for the Fama and French model. wml: A column vector wth the momentum factor for the Carhart model. You can fnd all these factors n the followng webpage: If you want, you could plot each of the varables to check that they are rght or there are not extreme outlers, etc. >> plot(rtblls) >> plot(rmk) >> plot(smb) >> plot(hml) >> for =1:3 >> plot(rmf(:,)) >> end Or you can also use a subplot command. Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 3/16

4 2. Learnng to save results from the Edtor wndow. Frst, to save results you wll use the save command. I you want to save all the varables n the workspace >> save DavdResults.mat If you want to save only a varable n a Matlab fle. >> save DavdResults_X1.mat X1 If you want to save only one varable n Excel (may be to do another operatons wth t), the command wll be >> save DavdResults_X1.txt X1 -asc -tabs Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 4/16

5 3. Computng the Sharpe Rato Frst, we compute the average return obtaned by each mutual fund, and we can do t wth the functon mean. >>meanrmf=mean(rmf); Remember that the functon "mean" s computng the average or mean for each column n the matrx. When you have the returns of the mutual funds n rows nstead of n columns, you have to transpose the data [mean(rmf')] Second, we compute the average return obtaned by the rsk-free asset. >> meanrtblls=mean(rtblls); Thrd, we compute the standard devaton of each mutual funds, usng the functon std. >> stdrmf=std(rmf); Fourth, we can compute the Sharpe Rato as >> Sharpe=(meanrMF-meanrtblls)./ stdrmf; It s must be noted that you are usng./ and not /. Because actually you do not want to do a matrx dvson. Instead you need to dvde each mutual fund excess return by ts standard devaton. Addtonally, you could compute the Average Sharpe Rato (or the medan) for all the mutual funds, or plot the Sharpe Ratos to analyze them. >> fgure >> bar(sharpe) Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 5/16

6 >> ttle('sharpe Rato of Equty Mutual Funds') >> medansharpe=medan(sharpe) >> meansharpe=mean(sharpe).5 Sharpe Rato of Equty Mutual Funds Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 6/16

7 4. Obtanng the Treynor Rato In ths rato we can use some of the varables computed n the prevous performance measure. Because the numerator s equal than n the Sharpe rato, we only need to compute the beta (denomnator of Treynor Rato). Frst, we compute the beta of each mutual fund In ths case we can not use matrx operators but we need to compute the beta for each mutual fund ndependently, thus we need to use the command FOR to repeat some operatons a specfc number of tmes. Moreover, we need excess returns to compute the Beta. >> for j=1:55 >> rmf2(:,j)=rmf(:,j)-rtblls; >> rmk2=rmk-rtblls; >> varanrmk2=var(rmk2); >> covarmatrx=cov(rmf2(:,j),rmk2); >> covarmf=covarmatrx(1,2); >> Beta(1,j)=covarMF/varanrMk2; >> end Second, we can compute the Treynor Rato. >> Treynor=(meanrMF-meanrtblls)./Beta; Fnally, to analyze the results we can plot t or compute some statstcs. >> meantreynor=mean(treynor); >> medantreynor=medan(treynor); >> fgure >> bar(treynor) >> ttle( Treynor Rato from Equty Mutual Funds ) Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 7/16

8 .3 Treynor Rato of Equty Mutual Funds Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 8/16

9 5. Computng the Alpha from the CAPM We are computng the alpha as a coeffcent estmated n the followng regresson (solved by Ordnary Least Squeares, OLS) r r r M = ˆ α + ˆ β ( r ) + ε R where = = R r M f r f M To estmate that equaton by OLS we could use the functon regress or regstats. But we are usng regstats because ths functon wll gve us more nformaton (t-statstcs, R-squared, pvalues,...). Moreover, n the regstats functon by default we estmate a model wth a constant or ntercept and ths s the easer for us than n regress, where we have to ntroduce a colum vector of ones to use a constant. [B, BINT]=regress(Y,X) >> help regress REGRESS Multple lnear regresson usng least squares. B = REGRESS(Y,X) returns the vector B of regresson coeffcents n the lnear model Y = X*B. X s an n-by-p desgn matrx, wth rows correspondng to observatons and columns to predctor varables. Y s an n-by-1 vector of response observatons. [B,BINT] = REGRESS(Y,X) returns a matrx BINT of 95% confdence ntervals for B. [STATS]=regstats(Y,X, 'lnear') >> help regstats REGSTATS Regresson dagnostcs for lnear models. STATS = REGSTATS(RESPONSES,DATA,MODEL,WHICHSTATS) creates an output structure STATS contanng the statstcs lsted n WHICHSTATS. WHICHSTATS can be a sngle strng such as 'leverage' or a cell array of strngs such as {'leverage' 'standres' 'studres'}. By default, REGSTATS returns all statstcs. Vald statstc strngs are: Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 9/16

10 Name Meanng 'Q' Q from the QR Decomposton of the desgn matrx 'R' R from the QR Decomposton of the desgn matrx 'beta' Regresson coeffcents 'covb' Covarance of regresson coeffcents 'yhat' Ftted values of the response data 'r' Resduals 'mse' Mean squared error 'rsquare' R-square statstc 'adjrsquare' Adjusted R-square statstc 'leverage' Leverage 'hatmat' Hat (projecton) matrx 's2_' Delete-1 varance 'beta_' Delete-1 coeffcents 'standres' Standardzed resduals 'studres' Studentzed resduals 'dfbetas' Scaled change n regresson coeffcents 'dfft' Change n ftted values 'dffts' Scaled change n ftted values 'covrato' Change n covarance 'cookd' Cook's dstance 'tstat' t statstcs for coeffcents 'fstat' F statstc 'dwstat' Durbn Watson statstc 'all' Create all of the above statstcs Frst, we need to crate the Y and X matrxes. Y varable s very easy to compute gven that t s equal to mutual fund excess returns. >> for j=1:55 >> Y=rMF2(:,j); >> X= rmk2; >> stats=regstats(y, X,'lnear'); >> coefc=stats.beta; >> Beta(j,1)=coefc(2) >> alpha_j(j,1)=coefc(1) >> t_jensen(j,1)=stats.tstat.t(1); >> clear Y X coefc stats >> end Second, we can analyze results by plottng them. >> bar(alpha_j) Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 1/16

11 Remember that you can ntroduce ttles wth the command "ttle', and the text n the axes wth the commands "xlabel", "ylabel" >> hst(alpha_j) >> meanalpha=mean(alpha_j);.2 Alpha`s Jensen from Equty Mutual Funds.15.1 alpha number of mutual fund 12 hstogram from alpha`s Jensen Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 11/16

12 6. Computng the Alpha from the FF model We are computng the alpha as a coeffcent estmated n the followng multvarate regresson (solved by Ordnary Least Squeares, OLS) R R R M SMB HML = ˆ α + β ( RM ) + β ( SMB) + β ( HML) ε where = r r = r M f ˆ r f ˆ To estmate that equaton by OLS we use the functon regstats. [stats]=regstats(y,x,'lnear') ˆ Frst, we need to crate the Y and X matrxes. >> for j=1:55 >> Y=rMF2(:,j); >> X= [rmk2, SMB, HML]; >> stats=regstats(y, X,'lnear'); >> coefc=stats.beta; >> alphaff(j,1)=coefc(1) >> t_ff(j,1)=stats.tstat.t(1); >> clear Y X coefc stats >> end Second, we can analyze results by plottng them. >> bar(alphaff) >> hst(alphaff) Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 12/16

13 >> meanalphaff=mean(alphaff);.1 Alpha`s FF model from Equty Mutual Funds.5 alpha FF number of mutual fund 14 hstogram from alpha FF model Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 13/16

14 Thrd, we can analyze the dfferences between usng Jensen s Alpha and Alpha from the FF three factors model. >> Dff_alpha=alpha-alphaFF >> fgure >> plot(dff_alpha, s-r ) >> ttle( Dfference among Alphas ), grd on.15 Dfference among Alphas Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 14/16

15 7. Makng rankngs and obtanng conclusons. One of the most relevance functons of performance measures s to acheve rankngs of the mutual funds. These rankngs are publshed n newspapers, magaznes, etc. and are used by nvestors to allocate ther funds. Frst, we can sort the mutual funds wth the functon sort. >> help sort SORT order. for vectors, SORT(X) sorts the elements of X n ascendng >> [SharpeRank, SharpeRank2]=sort(Sharpe) You must note that n SharpeRank varable you have the Sharpe Rato values for each mutual fund ranked by Sharpe Rato. But n the varable SharpeRank2 you have the number (from colums n rmf) of the mutual fund n that poston. >> [TreynorRank, TreynorRank2]=sort(Treynor) >> [alpharank, alpharank2]=sort(alpha) >> [alphaffrank, alphaffrank2]=sort(alphaff) Now, we can bult a new matrx wth the ndex of each funds n the rankngs computed prevously. >> TableRank=[SharpeRank2, TreynorRank2, alpharank2, alphaffrank2 ] TableRank = The worst fund Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 15/16

16 The best fund Fnally, we can analyze all performance measures together usng the command subplot >> subplot(2,2,1) >> bar(sharpe) >> subplot(2,2,2) >> bar(treynor)... >>....6 Sharpe.3 Treynor alpha.1 alphaff Jesús Davd Moreno (Assocate Professor Unversty Carlos III) 16/16

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Online Appendix for Forecasting the Equity Risk Premium: The Role of Technical Indicators

Online Appendix for Forecasting the Equity Risk Premium: The Role of Technical Indicators Onlne Appendx for Forecastng the Equty Rsk Premum: The Role of Techncal Indcators Chrstopher J. Neely Federal Reserve Bank of St. Lous neely@stls.frb.org Davd E. Rapach Sant Lous Unversty rapachde@slu.edu

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15

The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15 The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Lecture 14: Implementing CAPM

Lecture 14: Implementing CAPM Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should

More information

Examples of Multiple Linear Regression Models

Examples of Multiple Linear Regression Models ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A cross-sectonal sample of 7 cars sold n

More information

MULTIPLE LINEAR REGRESSION IN MINITAB

MULTIPLE LINEAR REGRESSION IN MINITAB MULTIPLE LINEAR REGRESSION IN MINITAB Ths document shows a complcated Mntab multple regresson. It ncludes descrptons of the Mntab commands, and the Mntab output s heavly annotated. Comments n { } are used

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

Regression Models for a Binary Response Using EXCEL and JMP

Regression Models for a Binary Response Using EXCEL and JMP SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

The Analysis of Outliers in Statistical Data

The Analysis of Outliers in Statistical Data THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate

More information

Linear Regression Analysis for STARDEX

Linear Regression Analysis for STARDEX Lnear Regresson Analss for STARDEX Malcolm Halock, Clmatc Research Unt The followng document s an overvew of lnear regresson methods for reference b members of STARDEX. Whle t ams to cover the most common

More information

Study on CET4 Marks in China s Graded English Teaching

Study on CET4 Marks in China s Graded English Teaching Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Marginal Returns to Education For Teachers

Marginal Returns to Education For Teachers The Onlne Journal of New Horzons n Educaton Volume 4, Issue 3 MargnalReturnstoEducatonForTeachers RamleeIsmal,MarnahAwang ABSTRACT FacultyofManagementand Economcs UnverstPenddkanSultan Idrs ramlee@fpe.ups.edu.my

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

Gender differences in revealed risk taking: evidence from mutual fund investors

Gender differences in revealed risk taking: evidence from mutual fund investors Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

Economic Interpretation of Regression. Theory and Applications

Economic Interpretation of Regression. Theory and Applications Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit

LOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS - T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

MATLAB Workshop 15 - Linear Regression in MATLAB

MATLAB Workshop 15 - Linear Regression in MATLAB MATLAB: Workshop 15 - Lnear Regresson n MATLAB page 1 MATLAB Workshop 15 - Lnear Regresson n MATLAB Objectves: Learn how to obtan the coeffcents of a straght-lne ft to data, dsplay the resultng equaton

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA

ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA Duc Vo Beauden Gellard Stefan Mero Economc Regulaton Authorty 469 Wellngton Street, Perth, WA 6000, Australa Phone: (08)

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

IDENTIFICATION AND CONTROL OF A FLEXIBLE TRANSMISSION SYSTEM

IDENTIFICATION AND CONTROL OF A FLEXIBLE TRANSMISSION SYSTEM Abstract IDENTIFICATION AND CONTROL OF A FLEXIBLE TRANSMISSION SYSTEM Alca Esparza Pedro Dept. Sstemas y Automátca, Unversdad Poltécnca de Valenca, Span alespe@sa.upv.es The dentfcaton and control of a

More information

DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS?

DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS? DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS? Fernando Comran, Unversty of San Francsco, School of Management, 2130 Fulton Street, CA 94117, Unted States, fcomran@usfca.edu Tatana Fedyk,

More information

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC Approxmatng Cross-valdatory Predctve Evaluaton n Bayesan Latent Varables Models wth Integrated IS and WAIC Longha L Department of Mathematcs and Statstcs Unversty of Saskatchewan Saskatoon, SK, CANADA

More information

8 Algorithm for Binary Searching in Trees

8 Algorithm for Binary Searching in Trees 8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

More information

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2 EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 petr.nazarov@crp-sante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS

INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS 21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts

Scale Dependence of Overconfidence in Stock Market Volatility Forecasts Scale Dependence of Overconfdence n Stoc Maret Volatlty Forecasts Marus Glaser, Thomas Langer, Jens Reynders, Martn Weber* June 7, 007 Abstract In ths study, we analyze whether volatlty forecasts (judgmental

More information

total A A reag total A A r eag

total A A reag total A A r eag hapter 5 Standardzng nalytcal Methods hapter Overvew 5 nalytcal Standards 5B albratng the Sgnal (S total ) 5 Determnng the Senstvty (k ) 5D Lnear Regresson and albraton urves 5E ompensatng for the Reagent

More information

Control Charts with Supplementary Runs Rules for Monitoring Bivariate Processes

Control Charts with Supplementary Runs Rules for Monitoring Bivariate Processes Control Charts wth Supplementary Runs Rules for Montorng varate Processes Marcela. G. Machado *, ntono F.. Costa * * Producton Department, Sao Paulo State Unversty, Campus of Guaratnguetá, 56-4 Guaratnguetá,

More information

5 Multiple regression analysis with qualitative information

5 Multiple regression analysis with qualitative information 5 Multple regresson analyss wth qualtatve nformaton Ezequel Urel Unversty of Valenca Verson: 9-13 5.1 Introducton of qualtatve nformaton n econometrc models. 1 5. A sngle dummy ndependent varable 5.3 Multple

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jean-perre.barrot@cnes.fr 1/Introducton The

More information

ErrorPropagation.nb 1. Error Propagation

ErrorPropagation.nb 1. Error Propagation ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then

More information

Macro Factors and Volatility of Treasury Bond Returns

Macro Factors and Volatility of Treasury Bond Returns Macro Factors and Volatlty of Treasury Bond Returns Jngzh Huang Department of Fnance Smeal Colleage of Busness Pennsylvana State Unversty Unversty Park, PA 16802, U.S.A. Le Lu School of Fnance Shangha

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Fuzzy Regression and the Term Structure of Interest Rates Revisited

Fuzzy Regression and the Term Structure of Interest Rates Revisited Fuzzy Regresson and the Term Structure of Interest Rates Revsted Arnold F. Shapro Penn State Unversty Smeal College of Busness, Unversty Park, PA 68, USA Phone: -84-865-396, Fax: -84-865-684, E-mal: afs@psu.edu

More information

Portfolio Loss Distribution

Portfolio Loss Distribution Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

Underwriting Risk. Glenn Meyers. Insurance Services Office, Inc.

Underwriting Risk. Glenn Meyers. Insurance Services Office, Inc. Underwrtng Rsk By Glenn Meyers Insurance Servces Offce, Inc. Abstract In a compettve nsurance market, nsurers have lmted nfluence on the premum charged for an nsurance contract. hey must decde whether

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

H 1 : at least one is not zero

H 1 : at least one is not zero Chapter 6 More Multple Regresson Model The F-test Jont Hypothess Tests Consder the lnear regresson equaton: () y = β + βx + βx + β4x4 + e for =,,..., N The t-statstc gve a test of sgnfcance of an ndvdual

More information

Survival analysis methods in Insurance Applications in car insurance contracts

Survival analysis methods in Insurance Applications in car insurance contracts Survval analyss methods n Insurance Applcatons n car nsurance contracts Abder OULIDI 1 Jean-Mare MARION 2 Hervé GANACHAUD 3 Abstract In ths wor, we are nterested n survval models and ther applcatons on

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Analysis of Covariance

Analysis of Covariance Chapter 551 Analyss of Covarance Introducton A common tas n research s to compare the averages of two or more populatons (groups). We mght want to compare the ncome level of two regons, the ntrogen content

More information

The announcement effect on mean and variance for underwritten and non-underwritten SEOs

The announcement effect on mean and variance for underwritten and non-underwritten SEOs The announcement effect on mean and varance for underwrtten and non-underwrtten SEOs Bachelor Essay n Fnancal Economcs Department of Economcs Sprng 013 Marcus Wkner and Joel Anehem Ulvenäs Supervsor: Professor

More information

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*

HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt

More information

PAS: A Packet Accounting System to Limit the Effects of DoS & DDoS. Debish Fesehaye & Klara Naherstedt University of Illinois-Urbana Champaign

PAS: A Packet Accounting System to Limit the Effects of DoS & DDoS. Debish Fesehaye & Klara Naherstedt University of Illinois-Urbana Champaign PAS: A Packet Accountng System to Lmt the Effects of DoS & DDoS Debsh Fesehaye & Klara Naherstedt Unversty of Illnos-Urbana Champagn DoS and DDoS DDoS attacks are ncreasng threats to our dgtal world. Exstng

More information

Nonlinear data mapping by neural networks

Nonlinear data mapping by neural networks Nonlnear data mappng by neural networks R.P.W. Dun Delft Unversty of Technology, Netherlands Abstract A revew s gven of the use of neural networks for nonlnear mappng of hgh dmensonal data on lower dmensonal

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Although ordinary least-squares (OLS) regression

Although ordinary least-squares (OLS) regression egresson through the Orgn Blackwell Oxford, TEST 0141-98X 003 5 31000 Orgnal Joseph Teachng G. UK Artcle Publshng Esenhauer through Statstcs the Ltd Trust Orgn 001 KEYWODS: Teachng; egresson; Analyss of

More information

Management Quality, Financial and Investment Policies, and. Asymmetric Information

Management Quality, Financial and Investment Policies, and. Asymmetric Information Management Qualty, Fnancal and Investment Polces, and Asymmetrc Informaton Thomas J. Chemmanur * Imants Paegls ** and Karen Smonyan *** Current verson: December 2007 * Professor of Fnance, Carroll School

More information

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007.

Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN

More information

Multiple-Period Attribution: Residuals and Compounding

Multiple-Period Attribution: Residuals and Compounding Multple-Perod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens

More information

This study examines whether the framing mode (narrow versus broad) influences the stock investment decisions

This study examines whether the framing mode (narrow versus broad) influences the stock investment decisions MANAGEMENT SCIENCE Vol. 54, No. 6, June 2008, pp. 1052 1064 ssn 0025-1909 essn 1526-5501 08 5406 1052 nforms do 10.1287/mnsc.1070.0845 2008 INFORMS How Do Decson Frames Influence the Stock Investment Choces

More information

NON-PARAMETRIC REGRESSION ESTIMATION FOR DATA WITH EQUAL VALUES

NON-PARAMETRIC REGRESSION ESTIMATION FOR DATA WITH EQUAL VALUES European Scentfc Journal February 24 edton vol., No.4 ISSN: 857 788 (Prnt) e - ISSN 857-743 NON-PARAMETRIC REGRESSION ESTIMATION FOR DATA WITH EQUAL VALUES N. Alp Erll, PhD Department of Econometrcs, Unversty

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

1 De nitions and Censoring

1 De nitions and Censoring De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

THE EFFECT OF PREPAYMENT PENALTIES ON THE PRICING OF SUBPRIME MORTGAGES

THE EFFECT OF PREPAYMENT PENALTIES ON THE PRICING OF SUBPRIME MORTGAGES THE EFFECT OF PREPAYMENT PENALTIES ON THE PRICING OF SUBPRIME MORTGAGES Gregory Ellehausen, Fnancal Servces Research Program George Washngton Unversty Mchael E. Staten, Fnancal Servces Research Program

More information

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

More information

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there

More information

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals.

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals. Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBS-XIII (2005) recommended that the general responsbltes for a Lead

More information

Proactive Secret Sharing Or: How to Cope With Perpetual Leakage

Proactive Secret Sharing Or: How to Cope With Perpetual Leakage Proactve Secret Sharng Or: How to Cope Wth Perpetual Leakage Paper by Amr Herzberg Stanslaw Jareck Hugo Krawczyk Mot Yung Presentaton by Davd Zage What s Secret Sharng Basc Idea ((2, 2)-threshold scheme):

More information

Multicomponent Distillation

Multicomponent Distillation Multcomponent Dstllaton need more than one dstllaton tower, for n components, n-1 fractonators are requred Specfcaton Lmtatons The followng are establshed at the begnnng 1. Temperature, pressure, composton,

More information

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

More information

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton

More information

International University of Japan Public Management & Policy Analysis Program

International University of Japan Public Management & Policy Analysis Program Internatonal Unversty of Japan Publc Management & Polcy Analyss Program Practcal Gudes To Panel Data Modelng: A Step by Step Analyss Usng Stata * Hun Myoung Park, Ph.D. kucc65@uj.ac.jp 1. Introducton.

More information

Meta-Analysis of Hazard Ratios

Meta-Analysis of Hazard Ratios NCSS Statstcal Softare Chapter 458 Meta-Analyss of Hazard Ratos Introducton Ths module performs a meta-analyss on a set of to-group, tme to event (survval), studes n hch some data may be censored. These

More information