The descriptive complexity of the family of Banach spaces with the π-property

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The descriptive complexity of the family of Banach spaces with the π-property"

Transcription

1 Arab. J. Math. (2015) 4:35 39 DOI /s Araban Journal of Mathematcs Ghadeer Ghawadrah The descrptve complexty of the famly of Banach spaces wth the π-property Receved: 25 March 2014 / Accepted: 4 August 2014 / Publshed onlne: 27 August 2014 The Author(s) Ths artcle s publshed wth open access at Sprngerlnk.com Abstract We show that the set of all separable Banach spaces that have the π-property s a Borel subset of the set of all closed subspaces of C( ), where s the Cantor set, equpped wth the standard Effros-Borel structure. We show that f α<ω 1, the set of spaces wth Szlenk ndex at most α whch have a shrnkng FDD s Borel. Mathematcs Subject Classfcaton 46B20 54H05 1 Introducton Let C( ) be the space of contnuous functons on the Cantor space.itswellknownthatc( ) s sometrcally unversal for all separable Banach spaces. We denote SE the set of all closed subspaces of C( ) equpped wth the standard Effros-Borel structure. In [1], Bossard consdered the topologcal complexty of the somorphsm relaton and of many subsets of SE. In addton, t has been shown that the set of all separable Banach spaces that have the bounded approxmaton property (BAP) s a Borel subset of SE, and that the set of all separable Banach spaces that have the metrc approxmaton property (MAP) s also Borel [5]. We recall that the Banach space X has the π λ -property f there s a net of fnte rank projectons (S α ) on X convergng strongly to the dentty on X wth lmsup α S α λ (see [2]). We say that the Banach space X has the π-property f t has the π λ -property for some λ 1. In ths note we show that the set of all separable Banach spaces that have the π-property s a Borel subset of SE. Ths bears some consequences on the complexty of the class of spaces wth fnte-dmensonal decompostons. For nstance, we show that n the set of spaces whose Szlenk ndex s bounded by some countable ordnal, the subset consstng of spaces whch have a shrnkng fnte-dmensonal decomposton s Borel. G. Ghawadrah (B) Unversté Pars VI Case 247, 4 Place Jusseu, Pars Cedex 05, France E-mal:

2 36 Arab. J. Math. (2015) 4: Manresults Here s the man techncal lemma. Lemma 2.1 Suppose (x n ) n=1 s a dense sequence n a Banach space X. Then, X has the π-property f and only f λ >1 c (0, 1 4 ) Q K ɛ >0 λ >λ R N R σ 1,...,σ N Q R α 1,...,α N Q R α σ ( j)x j λ α x. (2.1) K, R x σ ( j)x j ɛ (2.2) α R σ ( j)x j α R R σ ( j)σ j (t) x t c α x. (2.3) t=1 where K, R, N vary over N and ɛ, λ, and λ vary over Q. Proof Indeed, suppose X has the π λ -property. Then there exsts a sequence (P n ) of fnte rank projectons such that P n <λ,foralln and P n converge strongly to the dentty. By perturbng P n, we may suppose that P n maps nto the fnte-dmensonal subspace [x 1,...,x Rn ] for some R n n N but we stll have (2.2)and P n <λ. Then, for every N, we may perturb P n slghtly so that P n <λ and P n (x ) belongs to the Q-lnear span of the x j for all N, such that (2.1), (2.2)and(2.3) stll hold. Defne now (σ (n) ) (Q R n) N, such that P n (x ) = R n σ (n) ( j)x j.sncep 2 n (x ) = R n three nequaltes hold for all α 1,...,α N Q, and K. Conversely, suppose that the above crteron holds and that ɛ > 0. Pck a ratonal a K.Soletλ and R be gven as above. Then for every N and N, defney N z N t=1 [ Rn σ ( j)σ j (t) ɛ 3λ ] x t,the >ɛ>0and = R σ ( j)x j,and = [ R R ] t=1 σ ( j)σ j (t) x t n [x 1,...x R ], where the σ are gven dependng on N.Wehavethat α y N λ α x. (2.4) for all α Q, x y N ɛ (2.5) for all K,and α y N α z N c α x. (2.6) for all c (0, 1 4 ) Q. In partcular, for every, the sequences (y N ) N=,and(z N ) N= are contaned n a bounded set n a fnte-dmensonal space. So by a dagonal procedure, we may fnd some subsequence (N l ) so that y = lm y N l l and z = lm z N l l exsts for all. By consequence α y λ α x. (2.7)

3 Arab. J. Math. (2015) 4: for all α Q, x y ɛ (2.8) for all K,and α y α z c α x. (2.9) for all c (0, 4 1 ) Q. Now, snce the x are dense n X, there are unquely defned bounded lnear operators T K,ɛ : X [x 1,...,x R ] satsfyng T K,ɛ (x ) = y and then TK,ɛ 2 : X [x 1,...,x R ] satsfes TK,ɛ 2 (x ) = z such that T K,ɛ λ <λand x T K,ɛ (x ) ɛ for all K.LetK and ɛ 0. Then T K,ɛ (x ) x for all x (x ) strongly. Snce (x ) s a dense sequence n X and the operators T K,ɛ are unformly bounded, then T K,ɛ (x) x for all x X strongly. Also, lm sup T K,ɛ TK,ɛ 2 =c < 1 4. Therefore, by [3, Theorem(3.7)], X has the π λ+1 -property as c 0. Theorem 2.2 The set of all separable Banach spaces that have the π-property s a Borel subset of SE. Proof Let K, R, N vary over N and ɛ, λ vary over Q. Let also c (0, 1 4 ) Q, σ (Q R ) N,andα Q N. Then we consder the set E c,k,ɛ,λ,r,n,σ,α C( ) N such that: E c,k,ɛ,λ,r,n,σ,α ={(x n ) n=1 C( )N ; (2.1) (2.2) and (2.3) hold} Ths set s closed n C( ) N. Therefore, for λ R E λ = c ɛ K λ >λ R N σ (Q R ) N α Q N E c,k,ɛ,λ,r,n,σ,α s a Borel subset of C( ) N. Moreover, the set E = λ QE λ s also Borel. There s a Borel map d : SE C( ) N such that d(x) = X, by[8, Theorem (12.13)]. Moreover, the prevous Lemma mples that X has the π-property d(x) E. Therefore, {X SE; X has the π-property} s a Borel subset of SE. We wll now prove that ths result mples, wth some work, that n some natural classes the exstence of a fnte-dmensonal decomposton happens to be a Borel condton. We frst consder the class of reflexve spaces. The commutng bounded approxmaton property (CBAP) mples the bounded approxmaton property (BAP) by the defnton of the CBAP. By Grothendeck s theorem (see [9, Theorem 1.e.15]), the BAP and the metrc approxmaton property (MAP) are equvalent for reflexve Banach spaces. In addton, [3, Theorem 2.4] mples that for any reflexve Banach space the CBAP s equvalent to MAP. For the set R of all separable reflexve Banach spaces, Theorem (2.2), [5, Theorem2.2] and [2, Theorem 6.3] mply that there exsts a Borel subset B ={X SE; X has the MAP and the π-property} such that {X R; X has a FDD} =B R. We wll extend ths smple observaton to some classes of non-reflexve spaces. The followng result has been proved n [7]. The proof below follows the lnes of [6]. Proposton 2.3 Let X be a Banach space wth separable dual. If X has the MAP for all equvalent norms, then X has the MAP.

4 38 Arab. J. Math. (2015) 4:35 39 Proof Snce X s separable, there s an equvalent Fréchet dfferentable norm on X. If. X s a Fréchet dfferentable norm and x S X, there exsts a unque x S X such that x (x) = 1, and x s a strongly exposed pont of B X. Snce by assumpton X equpped wth ths norm has the MAP, there exsts an approxmatng sequence (T n ) wth T n 1, and then for all x X we have Tn (x ) w x.forallx X whch attans ts norm, we have Tn (x ) x X 0. Bshop Phelps theorem yelds that for all x X, Tn (x ) x X 0. Therefore, X has the MAP. The set SD of all Banach spaces wth separable dual spaces s coanalytc n SE and the Szlenk ndex Sz s a coanalytc rank on SD (see [1, Corollary (3.3) and Theorem (4.11)]). In partcular, the set S α ={X SE; Sz(X) α} s Borel n SE (see [8]). In ths Borel set, the followng holds. Theorem 2.4 The set of all separable Banach spaces n S α that have a shrnkng FDD s Borel n SE. Proof Indeed, by [4, Theorem 1], we have that S α ={Y SE; X S α wth Y X } s analytc. Snce the set {Y SE; Y has the BAP} s Borel by [5, Theorem 2.2], then G α ={Y SE; X S α wth Y X and Y has the BAP} s analytc. By [4, Proposton 7], we have that G α ={X S α ; Y G α, wth Y X } s analytc. Snce {(X, Z); Z X} s analytc n SE SE ([1, Theorem 2.3]) and {Z; Z fals the MAP} s Borel [5], the set {(X, Z); Z X, Z fals the MAP} s analytc, thus ts canoncal projecton {X SE; Z SE; Z X, Z fals the MAP} s analytc. Now, Proposton (2.3) mples that the set H α ={X S α ; X fals the AP} ={X S α ; Z wth Z X and Z fals the MAP} s analytc. Snce S α \ H α = G α and both G α and H α are analytc sets n SE, then both are Borel by the separaton theorem. Now, [2, Theorem 4.9] mples that G α ={X S α ; X has the shrnkng CBAP}. Thus, {X S α ; X has a shrnkng FDD} s Borel by Theorem (2.2)and[2, Theorem 6.3]. Questons: As seen before, a separable Banach space has CBAP f and only f t has an equvalent norm for whch t has MAP. It follows that the set {X SE; X has the CBAP} s analytc. It s not clear f t s Borel or not. Also, t s not known f there s a Borel subset B of SE, such that {X SD; X has the AP} =B SD. Ths would be an mprovement of Theorem (2.3). Fnally, what happens when we replace FDD by bass s not clear: for nstance, the set of all spaces n S α whch have a bass s clearly analytc. Is t Borel? Acknowledgments I would lke to thank my Ph.D. supervsor Glles Godefroy at Unversty of Pars VI for hs suggestons and encouragement, and the referee for a number of helpful suggestons for mprovement n the artcle. Open Access Ths artcle s dstrbuted under the terms of the Creatve Commons Attrbuton Lcense whch permts any use, dstrbuton, and reproducton n any medum, provded the orgnal author(s) and the source are credted.

5 Arab. J. Math. (2015) 4: References 1. Bossard, B.: A codng of separable Banach spaces, analytc and coanalytc famles of Banach spaces. Fund. Math. 172, (2002) 2. Casazza, P.G.: Approxmaton propertes. Handb. Geom. Banach Spaces 1, (2001) 3. Casazza, P.G.; Kalton, N.J.: Notes on approxmaton propertes n separable Banach spaces. Lect. Notes Lond. Math. Soc. 158, (1991) 4. Dodos, P.: Defnablty under dualty. Houst. J. Math. 36(3), (2010) 5. Ghawadrah, G.: The descrptve complexty of the famly of Banach spaces wth the bounded approxmaton property. Houst. J. Math. (to appear) (2014) 6. Godefroy, G.; Saphar, P.: Dualty n spaces of operators and smooth norms on Banach spaces. Ill. J. Math. 32(4), (1988) 7. Johnson, W.B.: A complementably unversal conjugate Banach space and ts relaton to the approxmaton problem Isr. J. Math. 13, (1972) 8. Kechrs, A.S.: Classcal Descrptve Set Theory. Sprnger, Berln (1995) 9. Lndenstrauss, J.; Tzafrr L.: Classcal Banach Spaces I. Sprnger, Berln (1977)

We are now ready to answer the question: What are the possible cardinalities for finite fields?

We are now ready to answer the question: What are the possible cardinalities for finite fields? Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

New bounds in Balog-Szemerédi-Gowers theorem

New bounds in Balog-Szemerédi-Gowers theorem New bounds n Balog-Szemeréd-Gowers theorem By Tomasz Schoen Abstract We prove, n partcular, that every fnte subset A of an abelan group wth the addtve energy κ A 3 contans a set A such that A κ A and A

More information

A Note on the Decomposition of a Random Sample Size

A Note on the Decomposition of a Random Sample Size A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton

More information

Math 131: Homework 4 Solutions

Math 131: Homework 4 Solutions Math 3: Homework 4 Solutons Greg Parker, Wyatt Mackey, Chrstan Carrck October 6, 05 Problem (Munkres 3.) Let {A n } be a sequence of connected subspaces of X such that A n \ A n+ 6= ; for all n. Then S

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

greatest common divisor

greatest common divisor 4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

On Lockett pairs and Lockett conjecture for π-soluble Fitting classes

On Lockett pairs and Lockett conjecture for π-soluble Fitting classes On Lockett pars and Lockett conjecture for π-soluble Fttng classes Lujn Zhu Department of Mathematcs, Yangzhou Unversty, Yangzhou 225002, P.R. Chna E-mal: ljzhu@yzu.edu.cn Nanyng Yang School of Mathematcs

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem. Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Embedding lattices in the Kleene degrees

Embedding lattices in the Kleene degrees F U N D A M E N T A MATHEMATICAE 62 (999) Embeddng lattces n the Kleene degrees by Hsato M u r a k (Nagoya) Abstract. Under ZFC+CH, we prove that some lattces whose cardnaltes do not exceed ℵ can be embedded

More information

REGULAR MULTILINEAR OPERATORS ON C(K) SPACES

REGULAR MULTILINEAR OPERATORS ON C(K) SPACES REGULAR MULTILINEAR OPERATORS ON C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. The purpose of ths paper s to characterze the class of regular contnuous multlnear operators on a product of

More information

PLANAR GRAPHS. Plane graph (or embedded graph) A graph that is drawn on the plane without edge crossing, is called a Plane graph

PLANAR GRAPHS. Plane graph (or embedded graph) A graph that is drawn on the plane without edge crossing, is called a Plane graph PLANAR GRAPHS Basc defntons Isomorphc graphs Two graphs G(V,E) and G2(V2,E2) are somorphc f there s a one-to-one correspondence F of ther vertces such that the followng holds: - u,v V, uv E, => F(u)F(v)

More information

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets . The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely

More information

INTERPRETING TRUE ARITHMETIC IN THE LOCAL STRUCTURE OF THE ENUMERATION DEGREES.

INTERPRETING TRUE ARITHMETIC IN THE LOCAL STRUCTURE OF THE ENUMERATION DEGREES. INTERPRETING TRUE ARITHMETIC IN THE LOCAL STRUCTURE OF THE ENUMERATION DEGREES. HRISTO GANCHEV AND MARIYA SOSKOVA 1. Introducton Degree theory studes mathematcal structures, whch arse from a formal noton

More information

Lossless Data Compression

Lossless Data Compression Lossless Data Compresson Lecture : Unquely Decodable and Instantaneous Codes Sam Rowes September 5, 005 Let s focus on the lossless data compresson problem for now, and not worry about nosy channel codng

More information

LECTURE 1: MOTIVATION

LECTURE 1: MOTIVATION LECTURE 1: MOTIVATION STEVEN SAM AND PETER TINGLEY 1. Towards quantum groups Let us begn by dscussng what quantum groups are, and why we mght want to study them. We wll start wth the related classcal objects.

More information

The eigenvalue derivatives of linear damped systems

The eigenvalue derivatives of linear damped systems Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by Yeong-Jeu Sun Department of Electrcal Engneerng I-Shou Unversty Kaohsung, Tawan 840, R.O.C e-mal: yjsun@su.edu.tw

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

2.4 Bivariate distributions

2.4 Bivariate distributions page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together

More information

Fisher Markets and Convex Programs

Fisher Markets and Convex Programs Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

1 Approximation Algorithms

1 Approximation Algorithms CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

Two Analytical Methods for Detection and Elimination of the Static Hazard in Combinational Logic Circuits

Two Analytical Methods for Detection and Elimination of the Static Hazard in Combinational Logic Circuits Crcuts and Systems,, 4, 466-47 Publshed Onlne November (http//wwwscrporg/journal/cs) http//ddoorg/46/cs476 Two Analytcal Methods for Detecton and Elmnaton of the Statc Hazard n Combnatonal Logc Crcuts

More information

The diameter of the isomorphism class of a Banach space

The diameter of the isomorphism class of a Banach space Annals of Mathematcs, 162 (2005), 423 437 The dameter of the somorphsm class of a Banach space By W. B. Johnson and E. Odell* Dedcated to the memory of V. I. Gurar Abstract We prove that f X s a separable

More information

Generalizing the degree sequence problem

Generalizing the degree sequence problem Mddlebury College March 2009 Arzona State Unversty Dscrete Mathematcs Semnar The degree sequence problem Problem: Gven an nteger sequence d = (d 1,...,d n ) determne f there exsts a graph G wth d as ts

More information

Research Article Some Existence Results for Impulsive Nonlinear Fractional Differential Equations with Closed Boundary Conditions

Research Article Some Existence Results for Impulsive Nonlinear Fractional Differential Equations with Closed Boundary Conditions Hndaw Publshng Corporaton Abstract and Appled Analyss Volume 2012, Artcle ID 387629, 15 pages do:10.1155/2012/387629 Research Artcle Some Exstence Results for Impulsve Nonlnear Fractonal Dfferental Equatons

More information

Online Learning from Experts: Minimax Regret

Online Learning from Experts: Minimax Regret E0 370 tatstcal Learnng Theory Lecture 2 Nov 24, 20) Onlne Learnng from Experts: Mn Regret Lecturer: hvan garwal crbe: Nkhl Vdhan Introducton In the last three lectures we have been dscussng the onlne

More information

Formula of Total Probability, Bayes Rule, and Applications

Formula of Total Probability, Bayes Rule, and Applications 1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.

More information

5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Simultaneous eigenstates: Consider two operators that commute:  η = a η (13.29) 5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let  satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB  η = a η (13.29) ˆB [  η ] = ˆB [a η ] = a

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

Seminar Differential forms and their use Differentiable manifolds

Seminar Differential forms and their use Differentiable manifolds Semnar Dfferental forms and ther use Dfferentable manfolds Sandra Schluttenhofer and Danlo Caff December 8, 04 Defntons and propertes Motvaton. In R 3 we defned a regular surface S as a subset S R 3 such

More information

Irreversibility for all bound entangled states

Irreversibility for all bound entangled states Irreversblty for all bound entangled states Barbara Synak-Radtke Insttute of Theoretcal Physcs and Astrophyscs Unversty of Gdańsk Cooperaton: D. Yang, M. Horodeck, R.Horodeck [PRL 95, 190501 (2005, quant/ph-

More information

Questions that we may have about the variables

Questions that we may have about the variables Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Nonbinary Quantum Error-Correcting Codes from Algebraic Curves

Nonbinary Quantum Error-Correcting Codes from Algebraic Curves Nonbnary Quantum Error-Correctng Codes from Algebrac Curves Jon-Lark Km and Judy Walker Department of Mathematcs Unversty of Nebraska-Lncoln, Lncoln, NE 68588-0130 USA e-mal: {jlkm, jwalker}@math.unl.edu

More information

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006 Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,

More information

A Probabilistic Theory of Coherence

A Probabilistic Theory of Coherence A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

Solutions to the exam in SF2862, June 2009

Solutions to the exam in SF2862, June 2009 Solutons to the exam n SF86, June 009 Exercse 1. Ths s a determnstc perodc-revew nventory model. Let n = the number of consdered wees,.e. n = 4 n ths exercse, and r = the demand at wee,.e. r 1 = r = r

More information

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1 (4.): ontours. Fnd an admssble parametrzaton. (a). the lne segment from z + to z 3. z(t) z (t) + t(z z ) z(t) + + t( 3 ( + )) z(t) + + t( 3 4); t (b). the crcle jz j 4 traversed once clockwse startng at

More information

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks Bulletn of Mathematcal Bology (21 DOI 1.17/s11538-1-9517-4 ORIGINAL ARTICLE Product-Form Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz

More information

CHAPTER 7 VECTOR BUNDLES

CHAPTER 7 VECTOR BUNDLES CHAPTER 7 VECTOR BUNDLES We next begn addressng the queston: how do we assemble the tangent spaces at varous ponts of a manfold nto a coherent whole? In order to gude the decson, consder the case of U

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1 Nov Sad J. Math. Vol. 36, No. 2, 2006, 0-09 IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS Modrag S. Petkovć 2, Dušan M. Mloševć 3 Abstract. A new theorem concerned

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

More information

FINITE HILBERT STABILITY OF (BI)CANONICAL CURVES

FINITE HILBERT STABILITY OF (BI)CANONICAL CURVES FINITE HILBERT STABILITY OF (BICANONICAL CURVES JAROD ALPER, MAKSYM FEDORCHUK, AND DAVID ISHII SMYTH* To Joe Harrs on hs sxteth brthday Abstract. We prove that a generc canoncally or bcanoncally embedded

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR E-mal: ghapor@umedumy Abstract Ths paper

More information

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer

More information

Duality for nonsmooth mathematical programming problems with equilibrium constraints

Duality for nonsmooth mathematical programming problems with equilibrium constraints uu et al. Journal of Inequaltes and Applcatons (2016) 2016:28 DOI 10.1186/s13660-016-0969-4 R E S E A R C H Open Access Dualty for nonsmooth mathematcal programmng problems wth equlbrum constrants Sy-Mng

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance Applcaton of Quas Monte Carlo methods and Global Senstvty Analyss n fnance Serge Kucherenko, Nlay Shah Imperal College London, UK skucherenko@mperalacuk Daro Czraky Barclays Captal DaroCzraky@barclayscaptalcom

More information

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2 EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

More information

Nonlinear data mapping by neural networks

Nonlinear data mapping by neural networks Nonlnear data mappng by neural networks R.P.W. Dun Delft Unversty of Technology, Netherlands Abstract A revew s gven of the use of neural networks for nonlnear mappng of hgh dmensonal data on lower dmensonal

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jean-perre.barrot@cnes.fr 1/Introducton The

More information

The Noether Theorems: from Noether to Ševera

The Noether Theorems: from Noether to Ševera 14th Internatonal Summer School n Global Analyss and Mathematcal Physcs Satellte Meetng of the XVI Internatonal Congress on Mathematcal Physcs *** Lectures of Yvette Kosmann-Schwarzbach Centre de Mathématques

More information

9.1 The Cumulative Sum Control Chart

9.1 The Cumulative Sum Control Chart Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

More information

Communication Networks II Contents

Communication Networks II Contents 8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

More information

On entropy for mixtures of discrete and continuous variables

On entropy for mixtures of discrete and continuous variables On entropy for mxtures of dscrete and contnuous varables Chandra Nar Balaj Prabhakar Devavrat Shah Abstract Let X be a dscrete random varable wth support S and f : S S be a bjecton. hen t s wellknown that

More information

Properties of American Derivative Securities

Properties of American Derivative Securities Capter 6 Propertes of Amercan Dervatve Securtes 6.1 Te propertes Defnton 6.1 An Amercan dervatve securty s a sequence of non-negatve random varables fg k g n k= suc tat eac G k s F k -measurable. Te owner

More information

Describing Communities. Species Diversity Concepts. Species Richness. Species Richness. Species-Area Curve. Species-Area Curve

Describing Communities. Species Diversity Concepts. Species Richness. Species Richness. Species-Area Curve. Species-Area Curve peces versty Concepts peces Rchness peces-area Curves versty Indces - mpson's Index - hannon-wener Index - rlloun Index peces Abundance Models escrbng Communtes There are two mportant descrptors of a communty:

More information

Global stability of Cohen-Grossberg neural network with both time-varying and continuous distributed delays

Global stability of Cohen-Grossberg neural network with both time-varying and continuous distributed delays Global stablty of Cohen-Grossberg neural network wth both tme-varyng and contnuous dstrbuted delays José J. Olvera Departamento de Matemátca e Aplcações and CMAT, Escola de Cêncas, Unversdade do Mnho,

More information

Math 31 Lesson Plan. Day 27: Fundamental Theorem of Finite Abelian Groups. Elizabeth Gillaspy. November 11, 2011

Math 31 Lesson Plan. Day 27: Fundamental Theorem of Finite Abelian Groups. Elizabeth Gillaspy. November 11, 2011 Math 31 Lesson Plan Day 27: Fundamental Theorem of Fnte Abelan Groups Elzabeth Gllaspy November 11, 2011 Supples needed: Colored chal Quzzes Homewor 4 envelopes: evals, HW, presentaton rubrcs, * probs

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

COLLOQUIUM MATHEMATICUM

COLLOQUIUM MATHEMATICUM COLLOQUIUM MATHEMATICUM VOL. 74 997 NO. TRANSFERENCE THEORY ON HARDY AND SOBOLEV SPACES BY MARIA J. CARRO AND JAVIER SORIA (BARCELONA) We show that the transference method of Cofman and Wess can be extended

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME

A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME NEIL J. CALKIN DEPARTMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, SC 29634-1907 AND JOHN G. STEVENS AND DIANA M. THOMAS

More information

CS 2750 Machine Learning. Lecture 17a. Clustering. CS 2750 Machine Learning. Clustering

CS 2750 Machine Learning. Lecture 17a. Clustering. CS 2750 Machine Learning. Clustering Lecture 7a Clusterng Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Clusterng Groups together smlar nstances n the data sample Basc clusterng problem: dstrbute data nto k dfferent groups such that

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computatonal and Appled Mathematcs 37 (03) 6 35 Contents lsts avalable at ScVerse ScenceDrect Journal of Computatonal and Appled Mathematcs journal homepage: wwwelsevercom/locate/cam The nverse

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

FRAMES FOR BANACH SPACES. Peter G. Casazza, Deguang Han and David R. Larson. 1. Introduction and background results

FRAMES FOR BANACH SPACES. Peter G. Casazza, Deguang Han and David R. Larson. 1. Introduction and background results FRAMES FOR BANACH SPACES Peter G. Casazza, Deguang Han and Davd R. Larson Abstract. We use several fundamental results whch characterze frames for a Hlbert space to gve natural generalzatons of Hlbert

More information

Lecture 18: Clustering & classification

Lecture 18: Clustering & classification O CPS260/BGT204. Algorthms n Computatonal Bology October 30, 2003 Lecturer: Pana K. Agarwal Lecture 8: Clusterng & classfcaton Scrbe: Daun Hou Open Problem In HomeWor 2, problem 5 has an open problem whch

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

Probablty of an Acute Trangle n the Two-dmensonal Spaces of Constant Curvature Abstract The nterest n the statstcal theory of shape has arsen snce Ken

Probablty of an Acute Trangle n the Two-dmensonal Spaces of Constant Curvature Abstract The nterest n the statstcal theory of shape has arsen snce Ken Probablty of an Acute Trangle n the Two-dmensonal Spaces of Constant Curvature Afflated Hgh School of SCNU, Canton, Chna Student: Lv Zyuan, Guo Yuyu Advsor: We Jzhu - 54 - Probablty of an Acute Trangle

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

On fourth order simultaneously zero-finding method for multiple roots of complex polynomial equations 1

On fourth order simultaneously zero-finding method for multiple roots of complex polynomial equations 1 General Mathematcs Vol. 6, No. 3 (2008), 9 3 On fourth order smultaneously zero-fndng method for multple roots of complex polynomal euatons Nazr Ahmad Mr and Khald Ayub Abstract In ths paper, we present

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Multivariate EWMA Control Chart

Multivariate EWMA Control Chart Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

arxiv:1106.0878v3 [math.pr] 3 Apr 2013

arxiv:1106.0878v3 [math.pr] 3 Apr 2013 General approxmaton method for the dstrbuton of Markov processes condtoned not to be klled Dens Vllemonas Aprl 4, 213 arxv:116.878v3 [math.pr] 3 Apr 213 Abstract We consder a strong Markov process wth

More information