Quadratic and Square Root Functions. Square Roots & Quadratics: What s the Connection?


 Sabina Morgan Strickland
 2 years ago
 Views:
Transcription
1 Activity: TEKS: Overview: Materials: Grouping: Time: Square Roots & Quadratics: What s the Connection? (2A.9) Quadratic and square root functions. The student formulates equations and inequalities based on square root functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to: (G) connect inverses of square root functions with quadratic functions. In this activity, students will use their graphing calculators to investigate the connections between square root functions and quadratic functions. Students should be able to write the equations of functions by using transformation of functions. Students should also be familiar with the graph of quadratic and square root functions. Square Roots & Quadratics: What s the Connection Handout 1 per student Transparencies of the activity Graphing calculators Map colors 2 or 3 students 1 class period Lesson: Procedures 1. Divide students into groups of 2 or 3 and distribute the activity worksheets, calculators, and map colors. 2. Have students complete the activity worksheets in their groups. Allow 20 to 30 minutes for students to work in their groups. Notes Each student should receive his or her own set of worksheets. Each student needs to choose two different map color pencils for the activity. Circulate among the groups as they work to ensure that students remain on task and to answer questions as they arise. You may need to go over how to find the DrawInv function on their calculators and give guidance on finding an appropriate window to view both the function and its inverse. Refer to the Calculator Notes for Teachers pages at the end of this lesson if you need help with the DrawInv function on the calculator. Square Roots & Quadratics: What s the Connection? Page 1
2 Procedures Notes Detailed notes are written for examining problem i. You may want to have groups compare and discuss the first graph and their results to see that they are on the right track, or you may just want to walk the entire class through the analysis of the first graph. Guide students to make their sketches with enough detail to be able to identify ordered pairs especially the x and y intercepts of both graphs. Many students will try to copy the graph without marking either axis s units or labeling any ordered pairs. They will need these details for their work. 3. Have the groups share their results, and hold a class discussion of the observations that they have made through this investigation. Be sure to carefully guide the discussions, especially the results from (4) and (5). Discuss how to restrict the domain of a quadratic function in order to have an inverse that is a function. This is a good opportunity to introduce the term onetoone function, and illustrate how, without a restriction on the domain, a quadratic function does not have an inverse that is a function. Emphasize that a square root function is only the inverse of a quadratic function if the domain is restricted appropriately (to one side of the vertex); likewise, a quadratic function is not the inverse of a square root function unless the domain is appropriately restricted. At the end of the activity, you can assist students in deducing a procedure on how you can find the equation of an inverse of a function (by switching the domain and range values of a function). Square Roots & Quadratics: What s the Connection? Page 2
3 Homework: Assign appropriate homework from the text, or provide some square root and quadratic functions and ask students to find their inverses. 1 Extensions: As an extension you can introduce the notation f ( x) You could also have them draw in the line y = x and explore the relationship between it and the graphs of a function and its inverse. Students could derive the geometric definition of inverse.. Resources: This activity was adapted from some investigations in Discovering Advanced Algebra, by Jerald Murdock, Ellen Kamischke, & Eric Kamischke, published by Key Curriculum Press. A good website for graph paper is Teachers may want to use a different template for the graph paper they use on this activity, and this is a good place to find other options. Square Roots & Quadratics: What s the Connection? Page 3
4 Square Roots & Quadratics: What s the Connection? Several square root and quadratic functions are given below: i. f ( x) = ( x + 6) ii. f ( x) = 2 + x + 5 iii. f ( x) = 2 x f x =. 25x iv. ( ) 2 v. f ( x) = 6 + x 2 vi. f ( x) = ( x 2) For each of these functions, do the following: a. Graph y 1 = f(x) on your calculator; then use the DrawInv function (under the DRAW menu) to draw the inverse of f on your calculator. Sketch both of these graphs on the graph grids provided (see following page) using one color to sketch the function and another color for its inverse. Make sure you label at least three points on both graphs. b. Determine whether the inverse is or is not a function. (Remember that a function passes the vertical line test.) Find the domain of the inverse, and write the domain on the lines provided to the right of each grid. Find an equation or equations for the inverse graphed and write them on the lines to the right of the grid. Verify your response by graphing the function in y 1 and graphing your equation of the inverse in y 2 on your calculator. Square Roots & Quadratics: What s the Connection? Page 4
5 i. ii. iii iv Square Roots & Quadratics: What s the Connection? Page 5
6 v. vi. Square Roots & Quadratics: What s the Connection? Page 6
7 2. Study your sketches and equations. What observations can you make? 3. Find the coordinates of the xintercepts of each function above; then find the yintercepts of the inverse. What to you notice? 4. Pair the functions given in (i) (vi) then explain your rationale for pairing them in this way. 5. Are any of these functions inverses of each other? Justify your answer. Square Roots & Quadratics: What s the Connection? Page 7
8 Teacher Solutions: Square Roots & Quadratics: What s the Connection? Several square root and quadratic functions are given below: f x =. 25x i. ( ) ( + 6) 2 2 f x = x + 2 iv. ( ) ii. f ( x) = 2 + x + 5 v. f ( x) = 6 + x 2 iii f ( x) = 2 x vi. f ( x) = ( x 2) Blue graphs are functions. Red graphs are inverses. i. ii. Inverse is not a function Domain : x 2 Inverse y = 6± x 2 iii. iv. Inverse is a function Domain : x 0 Inverse : Inverse is not a function Domain : x 0 2 ( ) =.25 f x x y =± 2 x Square Roots & Quadratics: What s the Connection? Page 8
9 v. vi. Inverse is a function Domain : x 6 ( ) 2 f x = ( x+ 6) + 2 b. Determine whether the inverse is or is not a function. (Remember that a function passes the vertical line test.) Find the domain of the inverse, and write the domain on the lines provided on the right of each grid. Find an equation or equations for the inverse graphed and write them on the lines to the right of the grid. Verify your response by graphing the function in y 1 and graphing your equation of the inverse in y 2 on your calculator. When students write the equations for the inverse, if the inverse is a function students can use function notation to write its equation. If the inverse is not a function, then the equation needs to be written using y =. 2. Study your sketches and equations. What observations can you make? Answers will vary. They may notice that a parabola s inverse is not a function, unless you look at only a portion of its original graph. The inverse of a square root function is always a function and is only one half of a parabola. Students may also notice that the pattern in the coordinates of the inverse. Some of its points are related to the original function. In the original function a point has coordinates (x, y) and its inverse contains a point with coordinates (y, x) 3. Find the coordinates of the xintercepts of each function above; then find the y intercepts of the inverse. What to you notice? Answers will vary. Some possible answers. If the graph contains an xintercept (a,0), then its inverse contains a y intercept (0,a). If the original function does not have an xintercept, its inverse does not have a yintercept. Square Roots & Quadratics: What s the Connection? Page 9
10 4. Pair the functions given in (i) (vi) then explain your rationale for pairing them in this way. Answers may vary. i & v, ii & vi, and iii and iv. 5. Are any of these functions inverses of each other? Justify your answer. Answers may vary. If you look at the equations of the inverses for each square root function, they are half of a parabola function. If you look at the equations of the inverses for the parabolas, they are a pair of square root functions that each represents a different half of the original parabola graph. Square Roots & Quadratics: What s the Connection? Page 10
11 Calculator Notes to Get Started ( Problem i) Key strokes to draw the inverse. You have to input Y 1 first. The calculator just plots the points for the inverse of the function in Y 1. It does not find the equation of the inverse. Students can input equations in Y 2 that they think is the inverse to see if it matches the inverse drawn by the calculator. Students can change the way the calculator graphs their inverse function so that can compare their equation s graph with the drawing of the inverse. Square Roots & Quadratics: What s the Connection? Page 11
12 Students can see that this equation only matches half of the inverse. This inverse cannot be described by just one function. You may want to ask students what to try to find the equation for the bottom half of the function. Ask students why they think this happens. (From the drawing of the inverse of the original function students should have answered that it is not a function because it fails the vertical line test. This is the reason why the inverse cannot be expressed by a single function.) The inverse can be expressed as y = ± x 2 6. Before students graph the next function, students need to clear the drawing of the inverse that is currently on the screen by doing the following Square Roots & Quadratics: What s the Connection? Page 12
Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under
Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under Activity and follow all steps for each problem exactly
More informationPreAP Algebra 2 Unit 3 Lesson 1 Quadratic Functions
Unit 3 Lesson 1 Quadratic Functions Objectives: The students will be able to Identify and sketch the quadratic parent function Identify characteristics including vertex, axis of symmetry, xintercept,
More informationPreAP Algebra 2 Lesson 17 Graphing Absolute Value Functions
Lesson 17 Graphing Absolute Value Functions Name Objectives: In this activity, students will relate the piecewise function to the graph of the absolute value function and continue their development of
More informationWarmUp A 1 4! 33 B! !1! A (x + 2) 2 = 8. B (x + 2) 2 =10. C (x + 4) 2 =10. D (x + 4) 2 = 22
WarmUp CST/CAHSEE The graph of the equation y = x 2! 3x! is shown below. Review Which is one of the solutions to the equation 2x 2! x! = 0?  0 A 1! 33  B! 1 + 33 For what values of x is y = 0? A x =!1
More information2.5 Transformations of Functions
2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [
More informationBasic Understandings. Recipes for Functions Guess My Rule!
Activity: TEKS: Recipes for Functions Guess My Rule! (a). (3) Function concepts. A function is a fundamental mathematical concept; it expresses a special kind of relationship between two quantities. Students
More information10.1 NotesGraphing Quadratics
Name: Period: 10.1 NotesGraphing Quadratics Section 1: Identifying the vertex (minimum/maximum), the axis of symmetry, and the roots (zeros): State the maximum or minimum point (vertex), the axis of symmetry,
More informationKey Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function)
Outcome R3 Quadratic Functions McGrawHill 3.1, 3.2 Key Terms: Quadratic function Parabola Vertex (of a parabola) Minimum value Maximum value Axis of symmetry Vertex form (of a quadratic function) Standard
More informationGraphing Quadratics Using the TI83
Graphing Quadratics Using the TI83 9 th Grade Algebra Paul Renzoni 12/01/02 I2T2 Project Table of Contents: Unit Objectives, NYS Standards, NCTM Standards 3 Resources 4 Materials and Equipment 5 Overview
More informationPreCalculus 20 Chapter 3 Notes
Section 3.1 Quadratic Functions in Vertex Form PreCalculus 20 Chapter 3 Notes Using a table of values, graph y = x 2 y x y=x 22 42 4 x Using a table of values, graph y = 1x 2 (or y = x 2 ) y x y=x
More informationGraphing Quadratic Functions
Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x
More informationTEKS 2A.7.A Quadratic and square root functions: connect between the y = ax 2 + bx + c and the y = a (x  h) 2 + k symbolic representations.
Objectives Define, identify, and graph quadratic functions. Identify and use maximums and minimums of quadratic functions to solve problems. Vocabulary axis of symmetry standard form minimum value maximum
More informationFUNCTIONS. Introduction to Functions. Overview of Objectives, students should be able to:
FUNCTIONS Introduction to Functions Overview of Objectives, students should be able to: 1. Find the domain and range of a relation 2. Determine whether a relation is a function 3. Evaluate a function 4.
More informationSolving Systems of Equations with Absolute Value, Polynomials, and Inequalities
Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities Solving systems of equations with inequalities When solving systems of linear equations, we are looking for the ordered pair
More information2.5 Lining Up Quadratics A Solidify Understanding Task
28 2.5 Lining Up Quadratics A Solidify Understanding Task Graph each function and find the vertex, the yintercept and the xintercepts. Be sure to properly write the intercepts as points. 1. y = (x 1)(x
More informationPortable Assisted Study Sequence ALGEBRA IIA
SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More informationf is a parabola whose vertex is the point (h,k). The parabola is symmetric with
Math 1014: Precalculus with Transcendentals Ch. 3: Polynomials and Rational Functions Sec. 3.1 Quadratic Functions I. Quadratic Functions A. Definition 1. A quadratic function is a function of the form
More informationMcMurry University Pretest Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).
1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find
More informationQuadratic Functions and Models
Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write
More informationExamples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
More informationExam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.
Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the
More informationLinear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (1,3), (3,3), (2,3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the xcomponent of a point in the form (x,y). Range refers to the set of possible values of the ycomponent of a point in
More informationActivity 6. Inequalities, They Are Not Just Linear Anymore! Objectives. Introduction. Problem. Exploration
Objectives Graph quadratic inequalities Graph linearquadratic and quadratic systems of inequalities Activity 6 Introduction What do satellite dishes, car headlights, and camera lenses have in common?
More informationKey Features of a Parabola by Patricia Kehoe
Key Features of a Parabola by Patricia Kehoe Activity overview The purpose of this activity is to identify ordered pairs from the graphs of parabolas rising from applications, and to interpret their meaning.
More informationPre Calculus Math 40S: Explained!
www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing
More informationUnit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
More informationAlgebra I: Strand 1. Foundations of Functions; Topic 3. Changing Perimeter; Task 1.3.1
1 TASK 1.3.1: CHANGING PERIMETER TEACHER ACTIVITY Solutions On a sheet of grid paper create one set of axes. Label the axes for this situation perimeter vs. multiplier. Graph your prediction data for changing
More informationObjective 1: Identify the characteristics of a quadratic function from its graph
Section 8.2 Quadratic Functions and Their Graphs Definition Quadratic Function A quadratic function is a seconddegree polynomial function of the form, where a, b, and c are real numbers and. Every quadratic
More informationAnswer Key Building Polynomial Functions
Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,
More information3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models
3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.11 Polynomial Function A polynomial function of degree n, where n
More informationSection 3.2. Graphing linear equations
Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:
More informationNorwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction
1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K7. Students must demonstrate
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationPrentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
More informationFINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
More informationHigh School Mathematics Algebra
High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.
More informationBasic Understandings
Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying
More informationEquations. #110 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #110 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
More informationForm of a linear function: Form of a quadratic function:
Algebra IIA Unit II: Quadratic Functions Foundational Material o Graphing and transforming linear functions o Solving linear equations and inequalities o Fit data using linear models Goal o Graph and transform
More informationSection 2.3. Learning Objectives. Graphing Quadratic Functions
Section 2.3 Quadratic Functions Learning Objectives Quadratic function, equations, and inequities Properties of quadratic function and their graphs Applications More general functions Graphing Quadratic
More informationPractice Problems. Lesson 5b  Solving Quadratic Equations
1. Use your graphing calculator to help you determine the number type of solutions to each of the quadratic equations below. a) Begin by putting the equations into stard form. b) Drawn an accurate sketch
More informationSection 8.4  Composite and Inverse Functions
Math 127  Section 8.4  Page 1 Section 8.4  Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =
More informationCalculator Help Sheet
Calculator Help Sheet The variable x button is: To enter an equation press: To see the graph of the equation you entered press: To find the yintercept press: To find the xintercepts (zeros) press: To
More informationMATH 110 College Algebra Online Families of Functions Transformations
MATH 110 College Algebra Online Families of Functions Transformations Functions are important in mathematics. Being able to tell what family a function comes from, its domain and range and finding a function
More informationUnit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:
Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning
More informationConcept: Quadratic Functions Name:
Concept: Quadratic Functions Name: You should have completed Equations Section 5 Part A: Problem Solving before beginning this handout. PART B: COMPUTER COMPONENT Instructions : Login to UMath X Hover
More informationThe xintercepts of the graph are the xvalues for the points where the graph intersects the xaxis. A parabola may have one, two, or no xintercepts.
Chapter 101 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax
More informationPreCalculus Math 12 First Assignment
Name: PreCalculus Math 12 First Assignment This assignment consists of two parts, a review of function notation and an introduction to translating graphs of functions. It is the first work for the PreCalculus
More informationFor each learner you will need: miniwhiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.
Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate xintercepts with finding values of x such that f (x)
More informationActivity 6 Graphing Linear Equations
Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be
More informationCHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS
CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided
More informationCatapult Trajectories: Don t Let Parabolas Throw You
Catapult Trajectories: Don t Let Parabolas Throw You TEKS Aa (2) Symbolic reasoning plays a critical role in algebra; symbols provide powerful ways to represent mathematical situations and to express generalizations.
More informationStudent Lesson: Absolute Value Functions
TEKS: a(5) Tools for algebraic thinking. Techniques for working with functions and equations are essential in understanding underlying relationships. Students use a variety of representations (concrete,
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationSimplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 249x + 6 x  6 A) 1, x 6 B) 8x  1, x 6 x 
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationTImath.com Algebra 1. Graphing Quadratic Functions
Graphing Quadratic Functions ID: 9186 Time required 60 minutes Activity Overview In this activity, students will graph quadratic functions and study how the constants in the equations compare to the coordinates
More informationChapter 1 Notes: Quadratic Functions
1 Chapter 1 Notes: Quadratic Functions (Textbook Lessons 1.1 1.2) Graphing Quadratic Function A function defined by an equation of the form, The graph is a Ushape called a. Standard Form Vertex Form axis
More informationCHAPTER 3: GRAPHS OF QUADRATIC RELATIONS
CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS Specific Expectations Addressed in the Chapter Collect data that can be represented as a quadratic relation, from experiments using appropriate equipment and technology
More information4.4 Transforming Circles
Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different
More informationEssential Question: What is the relationship among the focus, directrix, and vertex of a parabola?
Name Period Date: Topic: 93 Parabolas Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola? Standard: GGPE.2 Objective: Derive the equation of a parabola
More informationAlgebra II Semester 1 Final Exam Study Guide
Regular Name Algebra II Semester 1 Final Exam Study Guide Algebra II Semester 1 Final Skills 1 Determine if a relation is a function 10 Identify Parent Function 2 Factor quadratic function to find zeros
More informationMINI LESSON. Lesson 5b Solving Quadratic Equations
MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationActivity 2. Tracing Paper Inequalities. Objective. Introduction. Problem. Exploration
Objective Graph systems of linear inequalities in two variables in the Cartesian coordinate plane Activity 2 Introduction A set of two or more linear equations is called a system of equations. A set of
More informationQuadratics  Graphs of Quadratics
9.11 Quadratics  Graphs of Quadratics Objective: Graph quadratic equations using the vertex, xintercepts, and yintercept. Just as we drew pictures of the solutions for lines or linear equations, we
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More informationQUADRATIC EQUATIONS AND FUNCTIONS
Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide
More informationGraphing Piecewise Functions
Graphing Piecewise Functions Course: Algebra II, Advanced Functions and Modeling Materials: student computers with Geometer s Sketchpad, Smart Board, worksheets (p. 7 of this document), colored pencils
More informationQuadratic Functions. Teachers Teaching with Technology. Scotland T 3. Symmetry of Graphs. Teachers Teaching with Technology (Scotland)
Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Quadratic Functions Symmetry of Graphs Teachers Teaching with Technology (Scotland) QUADRATIC FUNCTION Aim To
More informationHomework Assignment and Teacher Comments 1 st 9weeks There are 41 teaching days. Learning Target Goal Students will be able to
Algebra 2 Pacing Guide 20152016 Teacher Name Period This Curriculum Guide is a suggestion for you to use as a guide. Each class should progress at its own pace. (written June 2015) Stards Benchmarks 1
More information9.1 Solving Quadratic Equations by Finding Square Roots Objectives 1. Evaluate and approximate square roots.
9.1 Solving Quadratic Equations by Finding Square Roots 1. Evaluate and approximate square roots. 2. Solve a quadratic equation by finding square roots. Key Terms Square Root Radicand Perfect Squares Irrational
More informationAlgebra II Semester Exam Review Sheet
Name: Class: Date: ID: A Algebra II Semester Exam Review Sheet 1. Translate the point (2, 3) left 2 units and up 3 units. Give the coordinates of the translated point. 2. Use a table to translate the graph
More informationTeaching Quadratic Functions
Teaching Quadratic Functions Contents Overview Lesson Plans Worksheets A1 to A12: Classroom activities and exercises S1 to S11: Homework worksheets Teaching Quadratic Functions: National Curriculum Content
More informationLines, Lines, Lines!!! SlopeIntercept Form ~ Lesson Plan
Lines, Lines, Lines!!! SlopeIntercept Form ~ Lesson Plan I. Topic: SlopeIntercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.
More informationBuilding Polynomial Functions
Building Polynomial Functions NAME 1. What is the equation of the linear function shown to the right? 2. How did you find it? 3. The slope yintercept form of a linear function is y = mx + b. If you ve
More informationQuadratic Transformations
Quadratic Transformations Learning Goals/Objectives: Students will explore and understand the effects of the parameters a, h, k on the quadratic function algebraically and graphically. Students will understand
More informationIn this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).
CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,
More informationWhat does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra  Linear Equations & Inequalities T37/H37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
More informationCourse: Algebra 1 Unit #5: Quadratic Functions
Course: Algebra 1 Unit #5: Overarching Question: What patterns of change are modeled by quadratic functions as seen in realworld situations, and the tables, graphs, and function rules that represent these
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More informationLesson 17: Graphing the Logarithm Function
Lesson 17 Name Date Lesson 17: Graphing the Logarithm Function Exit Ticket Graph the function () = log () without using a calculator, and identify its key features. Lesson 17: Graphing the Logarithm Function
More informationMath 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
More informationMAT12X Intermediate Algebra
MAT1X Intermediate Algebra Workshop I Quadratic Functions LEARNING CENTER Overview Workshop I Quadratic Functions General Form Domain and Range Some of the effects of the leading coefficient a The vertex
More informationAlgebra. Indiana Standards 1 ST 6 WEEKS
Chapter 1 Lessons Indiana Standards  11 Variables and Expressions  12 Order of Operations and Evaluating Expressions  13 Real Numbers and the Number Line  14 Properties of Real Numbers  15 Adding
More informationAlgebra II B Quiz Makeup
Class: Date: Algebra II B Quiz 4.14.4 Makeup Graph each function. How is each graph a translation of f(x) = x 2? 1. y = x 2 4 a. c. b. f(x) translated down 4 unit(s) d. f(x) translated up 4 unit(s) f(x)
More information3.3. GRAPHS OF RATIONAL FUNCTIONS. Some of those sketching aids include: New sketching aids include:
3.3. GRAPHS OF RATIONAL FUNCTIONS In a previous lesson you learned to sketch graphs by understanding what controls their behavior. Some of those sketching aids include: yintercept (if any) xintercept(s)
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationIntegration Unit 5 Quadratic Toolbox 1: Working with Square Roots. Using your examples above, answer the following:
Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots Name Period Objective 1: Understanding Square roots Defining a SQUARE ROOT: Square roots are like a division problem but both factors must
More informationGraphing calculators Transparencies (optional)
What if it is in pieces? Piecewise Functions and an Intuitive Idea of Continuity Teacher Version Lesson Objective: Length of Activity: Students will: Recognize piecewise functions and the notation used
More informationhttps://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...
of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach BellRinger Activity Students
More informationAlgebra Course KUD. Green Highlight  Incorporate notation in class, with understanding that not tested on
Algebra Course KUD Yellow Highlight Need to address in Seminar Green Highlight  Incorporate notation in class, with understanding that not tested on Blue Highlight Be sure to teach in class Postive and
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationwith "a", "b" and "c" representing real numbers, and "a" is not equal to zero.
3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,
More informationLesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1
Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve
More informationAdvanced Algebra 2. I. Equations and Inequalities
Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers
More information