# Quadratic and Square Root Functions. Square Roots & Quadratics: What s the Connection?

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Activity: TEKS: Overview: Materials: Grouping: Time: Square Roots & Quadratics: What s the Connection? (2A.9) Quadratic and square root functions. The student formulates equations and inequalities based on square root functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. The student is expected to: (G) connect inverses of square root functions with quadratic functions. In this activity, students will use their graphing calculators to investigate the connections between square root functions and quadratic functions. Students should be able to write the equations of functions by using transformation of functions. Students should also be familiar with the graph of quadratic and square root functions. Square Roots & Quadratics: What s the Connection Handout -1 per student Transparencies of the activity Graphing calculators Map colors 2 or 3 students 1 class period Lesson: Procedures 1. Divide students into groups of 2 or 3 and distribute the activity worksheets, calculators, and map colors. 2. Have students complete the activity worksheets in their groups. Allow 20 to 30 minutes for students to work in their groups. Notes Each student should receive his or her own set of worksheets. Each student needs to choose two different map color pencils for the activity. Circulate among the groups as they work to ensure that students remain on task and to answer questions as they arise. You may need to go over how to find the DrawInv function on their calculators and give guidance on finding an appropriate window to view both the function and its inverse. Refer to the Calculator Notes for Teachers pages at the end of this lesson if you need help with the DrawInv function on the calculator. Square Roots & Quadratics: What s the Connection? Page 1

2 Procedures Notes Detailed notes are written for examining problem i. You may want to have groups compare and discuss the first graph and their results to see that they are on the right track, or you may just want to walk the entire class through the analysis of the first graph. Guide students to make their sketches with enough detail to be able to identify ordered pairs especially the x- and y- intercepts of both graphs. Many students will try to copy the graph without marking either axis s units or labeling any ordered pairs. They will need these details for their work. 3. Have the groups share their results, and hold a class discussion of the observations that they have made through this investigation. Be sure to carefully guide the discussions, especially the results from (4) and (5). Discuss how to restrict the domain of a quadratic function in order to have an inverse that is a function. This is a good opportunity to introduce the term one-to-one function, and illustrate how, without a restriction on the domain, a quadratic function does not have an inverse that is a function. Emphasize that a square root function is only the inverse of a quadratic function if the domain is restricted appropriately (to one side of the vertex); likewise, a quadratic function is not the inverse of a square root function unless the domain is appropriately restricted. At the end of the activity, you can assist students in deducing a procedure on how you can find the equation of an inverse of a function (by switching the domain and range values of a function). Square Roots & Quadratics: What s the Connection? Page 2

3 Homework: Assign appropriate homework from the text, or provide some square root and quadratic functions and ask students to find their inverses. 1 Extensions: As an extension you can introduce the notation f ( x) You could also have them draw in the line y = x and explore the relationship between it and the graphs of a function and its inverse. Students could derive the geometric definition of inverse.. Resources: This activity was adapted from some investigations in Discovering Advanced Algebra, by Jerald Murdock, Ellen Kamischke, & Eric Kamischke, published by Key Curriculum Press. A good website for graph paper is Teachers may want to use a different template for the graph paper they use on this activity, and this is a good place to find other options. Square Roots & Quadratics: What s the Connection? Page 3

4 Square Roots & Quadratics: What s the Connection? Several square root and quadratic functions are given below: i. f ( x) = ( x + 6) ii. f ( x) = 2 + x + 5 iii. f ( x) = 2 x f x =. 25x iv. ( ) 2 v. f ( x) = 6 + x 2 vi. f ( x) = ( x 2) For each of these functions, do the following: a. Graph y 1 = f(x) on your calculator; then use the DrawInv function (under the DRAW menu) to draw the inverse of f on your calculator. Sketch both of these graphs on the graph grids provided (see following page) using one color to sketch the function and another color for its inverse. Make sure you label at least three points on both graphs. b. Determine whether the inverse is or is not a function. (Remember that a function passes the vertical line test.) Find the domain of the inverse, and write the domain on the lines provided to the right of each grid. Find an equation or equations for the inverse graphed and write them on the lines to the right of the grid. Verify your response by graphing the function in y 1 and graphing your equation of the inverse in y 2 on your calculator. Square Roots & Quadratics: What s the Connection? Page 4

5 i. ii. iii iv Square Roots & Quadratics: What s the Connection? Page 5

6 v. vi. Square Roots & Quadratics: What s the Connection? Page 6

7 2. Study your sketches and equations. What observations can you make? 3. Find the coordinates of the x-intercepts of each function above; then find the y-intercepts of the inverse. What to you notice? 4. Pair the functions given in (i) (vi) then explain your rationale for pairing them in this way. 5. Are any of these functions inverses of each other? Justify your answer. Square Roots & Quadratics: What s the Connection? Page 7

8 Teacher Solutions: Square Roots & Quadratics: What s the Connection? Several square root and quadratic functions are given below: f x =. 25x i. ( ) ( + 6) 2 2 f x = x + 2 iv. ( ) ii. f ( x) = 2 + x + 5 v. f ( x) = 6 + x 2 iii f ( x) = 2 x vi. f ( x) = ( x 2) Blue graphs are functions. Red graphs are inverses. i. ii. Inverse is not a function Domain : x 2 Inverse y = 6± x 2 iii. iv. Inverse is a function Domain : x 0 Inverse : Inverse is not a function Domain : x 0 2 ( ) =.25 f x x y =± 2 x Square Roots & Quadratics: What s the Connection? Page 8

9 v. vi. Inverse is a function Domain : x 6 ( ) 2 f x = ( x+ 6) + 2 b. Determine whether the inverse is or is not a function. (Remember that a function passes the vertical line test.) Find the domain of the inverse, and write the domain on the lines provided on the right of each grid. Find an equation or equations for the inverse graphed and write them on the lines to the right of the grid. Verify your response by graphing the function in y 1 and graphing your equation of the inverse in y 2 on your calculator. When students write the equations for the inverse, if the inverse is a function students can use function notation to write its equation. If the inverse is not a function, then the equation needs to be written using y =. 2. Study your sketches and equations. What observations can you make? Answers will vary. They may notice that a parabola s inverse is not a function, unless you look at only a portion of its original graph. The inverse of a square root function is always a function and is only one half of a parabola. Students may also notice that the pattern in the coordinates of the inverse. Some of its points are related to the original function. In the original function a point has coordinates (x, y) and its inverse contains a point with coordinates (y, x) 3. Find the coordinates of the x-intercepts of each function above; then find the y- intercepts of the inverse. What to you notice? Answers will vary. Some possible answers. If the graph contains an x-intercept (a,0), then its inverse contains a y- intercept (0,a). If the original function does not have an x-intercept, its inverse does not have a y-intercept. Square Roots & Quadratics: What s the Connection? Page 9

10 4. Pair the functions given in (i) (vi) then explain your rationale for pairing them in this way. Answers may vary. i & v, ii & vi, and iii and iv. 5. Are any of these functions inverses of each other? Justify your answer. Answers may vary. If you look at the equations of the inverses for each square root function, they are half of a parabola function. If you look at the equations of the inverses for the parabolas, they are a pair of square root functions that each represents a different half of the original parabola graph. Square Roots & Quadratics: What s the Connection? Page 10

11 Calculator Notes to Get Started ( Problem i) Key strokes to draw the inverse. You have to input Y 1 first. The calculator just plots the points for the inverse of the function in Y 1. It does not find the equation of the inverse. Students can input equations in Y 2 that they think is the inverse to see if it matches the inverse drawn by the calculator. Students can change the way the calculator graphs their inverse function so that can compare their equation s graph with the drawing of the inverse. Square Roots & Quadratics: What s the Connection? Page 11

12 Students can see that this equation only matches half of the inverse. This inverse cannot be described by just one function. You may want to ask students what to try to find the equation for the bottom half of the function. Ask students why they think this happens. (From the drawing of the inverse of the original function students should have answered that it is not a function because it fails the vertical line test. This is the reason why the inverse cannot be expressed by a single function.) The inverse can be expressed as y = ± x 2 6. Before students graph the next function, students need to clear the drawing of the inverse that is currently on the screen by doing the following Square Roots & Quadratics: What s the Connection? Page 12

### Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under

Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under Activity and follow all steps for each problem exactly

### Pre-AP Algebra 2 Unit 3 Lesson 1 Quadratic Functions

Unit 3 Lesson 1 Quadratic Functions Objectives: The students will be able to Identify and sketch the quadratic parent function Identify characteristics including vertex, axis of symmetry, x-intercept,

### Pre-AP Algebra 2 Lesson 1-7 Graphing Absolute Value Functions

Lesson 1-7 Graphing Absolute Value Functions Name Objectives: In this activity, students will relate the piecewise function to the graph of the absolute value function and continue their development of

### Warm-Up A 1 4! 33 B! !1! A (x + 2) 2 = 8. B (x + 2) 2 =10. C (x + 4) 2 =10. D (x + 4) 2 = 22

Warm-Up CST/CAHSEE The graph of the equation y = x 2! 3x! is shown below. Review Which is one of the solutions to the equation 2x 2! x! = 0? - 0 A 1! 33 - B! 1 + 33 For what values of x is y = 0? A x =!1

### 2.5 Transformations of Functions

2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

### Basic Understandings. Recipes for Functions Guess My Rule!

Activity: TEKS: Recipes for Functions Guess My Rule! (a). (3) Function concepts. A function is a fundamental mathematical concept; it expresses a special kind of relationship between two quantities. Students

Name: Period: 10.1 Notes-Graphing Quadratics Section 1: Identifying the vertex (minimum/maximum), the axis of symmetry, and the roots (zeros): State the maximum or minimum point (vertex), the axis of symmetry,

### Key Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function)

Outcome R3 Quadratic Functions McGraw-Hill 3.1, 3.2 Key Terms: Quadratic function Parabola Vertex (of a parabola) Minimum value Maximum value Axis of symmetry Vertex form (of a quadratic function) Standard

### Graphing Quadratics Using the TI-83

Graphing Quadratics Using the TI-83 9 th Grade Algebra Paul Renzoni 12/01/02 I2T2 Project Table of Contents: Unit Objectives, NYS Standards, NCTM Standards 3 Resources 4 Materials and Equipment 5 Overview

### Pre-Calculus 20 Chapter 3 Notes

Section 3.1 Quadratic Functions in Vertex Form Pre-Calculus 20 Chapter 3 Notes Using a table of values, graph y = x 2 y x y=x 2-2 4-2 4 x Using a table of values, graph y = -1x 2 (or y = -x 2 ) y x y=-x

Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x

### TEKS 2A.7.A Quadratic and square root functions: connect between the y = ax 2 + bx + c and the y = a (x - h) 2 + k symbolic representations.

Objectives Define, identify, and graph quadratic functions. Identify and use maximums and minimums of quadratic functions to solve problems. Vocabulary axis of symmetry standard form minimum value maximum

### FUNCTIONS. Introduction to Functions. Overview of Objectives, students should be able to:

FUNCTIONS Introduction to Functions Overview of Objectives, students should be able to: 1. Find the domain and range of a relation 2. Determine whether a relation is a function 3. Evaluate a function 4.

### Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities

Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities Solving systems of equations with inequalities When solving systems of linear equations, we are looking for the ordered pair

28 2.5 Lining Up Quadratics A Solidify Understanding Task Graph each function and find the vertex, the y-intercept and the x-intercepts. Be sure to properly write the intercepts as points. 1. y = (x 1)(x

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### Polynomial and Rational Functions

Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

### f is a parabola whose vertex is the point (h,k). The parabola is symmetric with

Math 1014: Precalculus with Transcendentals Ch. 3: Polynomials and Rational Functions Sec. 3.1 Quadratic Functions I. Quadratic Functions A. Definition 1. A quadratic function is a function of the form

### McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).

1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find

Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### Activity 6. Inequalities, They Are Not Just Linear Anymore! Objectives. Introduction. Problem. Exploration

Objectives Graph quadratic inequalities Graph linear-quadratic and quadratic systems of inequalities Activity 6 Introduction What do satellite dishes, car headlights, and camera lenses have in common?

### Key Features of a Parabola by Patricia Kehoe

Key Features of a Parabola by Patricia Kehoe Activity overview The purpose of this activity is to identify ordered pairs from the graphs of parabolas rising from applications, and to interpret their meaning.

### Pre Calculus Math 40S: Explained!

www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

### Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

### Algebra I: Strand 1. Foundations of Functions; Topic 3. Changing Perimeter; Task 1.3.1

1 TASK 1.3.1: CHANGING PERIMETER TEACHER ACTIVITY Solutions On a sheet of grid paper create one set of axes. Label the axes for this situation perimeter vs. multiplier. Graph your prediction data for changing

### Objective 1: Identify the characteristics of a quadratic function from its graph

Section 8.2 Quadratic Functions and Their Graphs Definition Quadratic Function A quadratic function is a second-degree polynomial function of the form, where a, b, and c are real numbers and. Every quadratic

### Answer Key Building Polynomial Functions

Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,

### 3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models

3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.1-1 Polynomial Function A polynomial function of degree n, where n

### Section 3.2. Graphing linear equations

Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

### High School Mathematics Algebra

High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.

### Basic Understandings

Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

### Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

### Form of a linear function: Form of a quadratic function:

Algebra IIA Unit II: Quadratic Functions Foundational Material o Graphing and transforming linear functions o Solving linear equations and inequalities o Fit data using linear models Goal o Graph and transform

### Section 2.3. Learning Objectives. Graphing Quadratic Functions

Section 2.3 Quadratic Functions Learning Objectives Quadratic function, equations, and inequities Properties of quadratic function and their graphs Applications More general functions Graphing Quadratic

### Practice Problems. Lesson 5b - Solving Quadratic Equations

1. Use your graphing calculator to help you determine the number type of solutions to each of the quadratic equations below. a) Begin by putting the equations into stard form. b) Drawn an accurate sketch

### Section 8.4 - Composite and Inverse Functions

Math 127 - Section 8.4 - Page 1 Section 8.4 - Composite and Inverse Functions I. Composition of Functions A. If f and g are functions, then the composite function of f and g (written f g) is: (f g)( =

### Calculator Help Sheet

Calculator Help Sheet The variable x button is: To enter an equation press: To see the graph of the equation you entered press: To find the y-intercept press: To find the x-intercepts (zeros) press: To

### MATH 110 College Algebra Online Families of Functions Transformations

MATH 110 College Algebra Online Families of Functions Transformations Functions are important in mathematics. Being able to tell what family a function comes from, its domain and range and finding a function

### Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning

Concept: Quadratic Functions Name: You should have completed Equations Section 5 Part A: Problem Solving before beginning this handout. PART B: COMPUTER COMPONENT Instructions : Login to UMath X Hover

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### Pre-Calculus Math 12 First Assignment

Name: Pre-Calculus Math 12 First Assignment This assignment consists of two parts, a review of function notation and an introduction to translating graphs of functions. It is the first work for the Pre-Calculus

### For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

### Activity 6 Graphing Linear Equations

Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### Catapult Trajectories: Don t Let Parabolas Throw You

Catapult Trajectories: Don t Let Parabolas Throw You TEKS Aa (2) Symbolic reasoning plays a critical role in algebra; symbols provide powerful ways to represent mathematical situations and to express generalizations.

### Student Lesson: Absolute Value Functions

TEKS: a(5) Tools for algebraic thinking. Techniques for working with functions and equations are essential in understanding underlying relationships. Students use a variety of representations (concrete,

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

### Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.

Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote

### TImath.com Algebra 1. Graphing Quadratic Functions

Graphing Quadratic Functions ID: 9186 Time required 60 minutes Activity Overview In this activity, students will graph quadratic functions and study how the constants in the equations compare to the coordinates

### Chapter 1 Notes: Quadratic Functions

1 Chapter 1 Notes: Quadratic Functions (Textbook Lessons 1.1 1.2) Graphing Quadratic Function A function defined by an equation of the form, The graph is a U-shape called a. Standard Form Vertex Form axis

### CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS

CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS Specific Expectations Addressed in the Chapter Collect data that can be represented as a quadratic relation, from experiments using appropriate equipment and technology

### 4.4 Transforming Circles

Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different

### Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola?

Name Period Date: Topic: 9-3 Parabolas Essential Question: What is the relationship among the focus, directrix, and vertex of a parabola? Standard: G-GPE.2 Objective: Derive the equation of a parabola

### Algebra II Semester 1 Final Exam Study Guide

Regular Name Algebra II Semester 1 Final Exam Study Guide Algebra II Semester 1 Final Skills 1 Determine if a relation is a function 10 Identify Parent Function 2 Factor quadratic function to find zeros

### MINI LESSON. Lesson 5b Solving Quadratic Equations

MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Activity 2. Tracing Paper Inequalities. Objective. Introduction. Problem. Exploration

Objective Graph systems of linear inequalities in two variables in the Cartesian coordinate plane Activity 2 Introduction A set of two or more linear equations is called a system of equations. A set of

9.11 Quadratics - Graphs of Quadratics Objective: Graph quadratic equations using the vertex, x-intercepts, and y-intercept. Just as we drew pictures of the solutions for lines or linear equations, we

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide

### Graphing Piecewise Functions

Graphing Piecewise Functions Course: Algebra II, Advanced Functions and Modeling Materials: student computers with Geometer s Sketchpad, Smart Board, worksheets (p. -7 of this document), colored pencils

### Quadratic Functions. Teachers Teaching with Technology. Scotland T 3. Symmetry of Graphs. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Quadratic Functions Symmetry of Graphs Teachers Teaching with Technology (Scotland) QUADRATIC FUNCTION Aim To

### Homework Assignment and Teacher Comments 1 st 9-weeks There are 41 teaching days. Learning Target Goal Students will be able to

Algebra 2 Pacing Guide 2015-2016 Teacher Name Period This Curriculum Guide is a suggestion for you to use as a guide. Each class should progress at its own pace. (written June 2015) Stards Benchmarks 1

### 9.1 Solving Quadratic Equations by Finding Square Roots Objectives 1. Evaluate and approximate square roots.

9.1 Solving Quadratic Equations by Finding Square Roots 1. Evaluate and approximate square roots. 2. Solve a quadratic equation by finding square roots. Key Terms Square Root Radicand Perfect Squares Irrational

### Algebra II Semester Exam Review Sheet

Name: Class: Date: ID: A Algebra II Semester Exam Review Sheet 1. Translate the point (2, 3) left 2 units and up 3 units. Give the coordinates of the translated point. 2. Use a table to translate the graph

Teaching Quadratic Functions Contents Overview Lesson Plans Worksheets A1 to A12: Classroom activities and exercises S1 to S11: Homework worksheets Teaching Quadratic Functions: National Curriculum Content

### Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.

### Building Polynomial Functions

Building Polynomial Functions NAME 1. What is the equation of the linear function shown to the right? 2. How did you find it? 3. The slope y-intercept form of a linear function is y = mx + b. If you ve

Quadratic Transformations Learning Goals/Objectives: Students will explore and understand the effects of the parameters a, h, k on the quadratic function algebraically and graphically. Students will understand

### In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Course: Algebra 1 Unit #5: Quadratic Functions

Course: Algebra 1 Unit #5: Overarching Question: What patterns of change are modeled by quadratic functions as seen in real-world situations, and the tables, graphs, and function rules that represent these

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Lesson 17: Graphing the Logarithm Function

Lesson 17 Name Date Lesson 17: Graphing the Logarithm Function Exit Ticket Graph the function () = log () without using a calculator, and identify its key features. Lesson 17: Graphing the Logarithm Function

### Math 1050 Khan Academy Extra Credit Algebra Assignment

Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In

### MAT12X Intermediate Algebra

MAT1X Intermediate Algebra Workshop I Quadratic Functions LEARNING CENTER Overview Workshop I Quadratic Functions General Form Domain and Range Some of the effects of the leading coefficient a The vertex

### Algebra. Indiana Standards 1 ST 6 WEEKS

Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

### Algebra II B Quiz Make-up

Class: Date: Algebra II B Quiz 4.1-4.4 Make-up Graph each function. How is each graph a translation of f(x) = x 2? 1. y = x 2 4 a. c. b. f(x) translated down 4 unit(s) d. f(x) translated up 4 unit(s) f(x)

### 3.3. GRAPHS OF RATIONAL FUNCTIONS. Some of those sketching aids include: New sketching aids include:

3.3. GRAPHS OF RATIONAL FUNCTIONS In a previous lesson you learned to sketch graphs by understanding what controls their behavior. Some of those sketching aids include: y-intercept (if any) x-intercept(s)

### Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

### Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots. Using your examples above, answer the following:

Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots Name Period Objective 1: Understanding Square roots Defining a SQUARE ROOT: Square roots are like a division problem but both factors must

### Graphing calculators Transparencies (optional)

What if it is in pieces? Piecewise Functions and an Intuitive Idea of Continuity Teacher Version Lesson Objective: Length of Activity: Students will: Recognize piecewise functions and the notation used

### https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...

of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach Bell-Ringer Activity Students

### Algebra Course KUD. Green Highlight - Incorporate notation in class, with understanding that not tested on

Algebra Course KUD Yellow Highlight Need to address in Seminar Green Highlight - Incorporate notation in class, with understanding that not tested on Blue Highlight Be sure to teach in class Postive and

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,