Ito Excursion Theory. Calum G. Turvey Cornell University

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Ito Excursion Theory Calum G. Turvey Cornell University

2 Problem Overview Times series and dynamics have been the mainstay of agricultural economic and agricultural finance for over 20 years. Much of the literature makes natural assumptions about dynamics and spends a great deal of time searching for unit roots without much further remark on what is implied by acceptance or rejections of a unit root. Rejection of a unit root simply means that variance of time series is not a function with time Not the same as the variance ratio property that the variance increases linearly in time for a Brownian motion

3 Quantitative Finance in Agriculture There is a need to better understand dynamics in agricultural economics Financial engineering and Ito s lemma is critical for modeling random variables over time From basic pricing of options to valuing farm programs (Turvey et al 2014) and the structure of markets (Assa 2015) Particularly useful for Monte Carl simulation But patterns in time series are also important to understand Mean regression or ergodic systems Persistent or long-memory systems Brownian vs Fractional Brownian motion.

4 Ito Excursion Theory we investigate how Itô s excursion theory can be usefully applied to economic time series data (Itô 2007) We relate excursion theory to geometric and fractional Brownian motion and the Hurst coefficient (also important for valuing and modeling exotic path dependant op[tions) We then calculate the Hurst coefficient for all stocks on the DOW 30, S&P 500 and Russell 2000, showing the distribution of Hurst measures and relating them statistically to excursions. Have also examined ag commodities provide a nice and intuitive link between Brownian motion and excursions, an application and consequence that we have not seen before

5 Ito Excursion Theory Itô s excursion theory is a probabilistic tool that can be applied to any continuous-time (near) Markov process with a recurrent state recurrent state -at some unknown and random point (time) in the future it will return to its original point (state). Excursion theory allows one to evaluate, measure, and quantify certain characteristic of the stochastic process and can be developed with great generality

6 A Simple Understanding of Excursion (Rogers 1989) game with a fair coin repeatedly tossed, with 1 assigned to a score each time the coin falls heads and -1 each time the coin falls tails. TT 0 = 0, TT 1 = 6, TT 2 = 10, TT 3 = 12, TT 4 = 18, TT 5 = 20 ξξ 1 = YY 0, YY 1, YY 2, YY 3, YY 4, YY 5, YY 6 ξξ 2 = YY 6, YY 7, YY 8, YY 9, YY 10 ξξ 3 = YY 10, YY 11, YY 12 ξξ 4 = {YY 12, YY 13, YY 14, YY 15, YY 16, YY 17, YY 18 } ξξ 5 = YY 18, YY 19, YY 20

7 Purpose of Ito Excursion Theory purpose of Itô s excursion theory is to describe the evolution of a (Markov) process in terms of its behavior between visits to a particular point m in the state space. E.g. probability distribution about the number of days that the security price returns to reference price. local time LL mm tt = ll is defined as the number of visits to point m up to time t. In the coin toss example, time is equal to 20 and LL 0 20 = 5 excluding the origin. Stopping Time: counts the number of excursions of type γ that occurs before the local time reaches l. It is a simple Poisson process

8 Simulated Random Walks Example Paths of Random Walk Canola Cash Price Cash Random 1 Random 2 Random Day

9 Binomial (Poisson) Distribution of first 10 Excursions in Simulated Random Walk (iter=30k)

10 Some Propositions about the Relationship between excursion theory and fractional Brownian motion A stationary autoregressive process AR(q>=1) may have multiple roots. If at least one root is a unit root it is a stationary process (extended proof from Assa and Turvey 2015 forthcoming) A time series with AR(q>1) is a (quasi) fractional Brownian motion with excursion patterns determined by nature of lags Most time series can be modeled using an autoregressive process with econometric (regression) techniques If Y ay ay ay ε q i= 1 t= 1 t 1+ 2 t q t q+ t a i = 1 at least one real root must be a unit root Then if q i= 1 a i 1 it has no unit root and the time series will converge to zero or infinite

11 The fractional Brownian motion dx αxdt xσ 2H = + dz dz =ε t H=0.5 : geometric Brownian motion H>0.5 : Persistence/long memory (Black noise) H<0.5 : Antipersistence/mean-reverting (Pink to White noise) H is the Hurst Coefficient (estimated from Variance ratio) [ ] = σ E xt ( ) xt ( ) ( t t) H Variance and Covariance [ ][ ] x { } = σ + E xt ( ) x(0) xt ( t) xt ( ) 0.5 ( t t) H t H t H 11

12 Estimated H, from simulation and from R/S calculation, with null Hypothesis Ho= 0.5 (GBM) Days/Contract (R/S) Alberta Barley price coffee price a,b,c cocoa price a,b,c a,b,c corn price a,b a a a,b Feeder Cattle price a a,b,c a,b,c Fluid Milk price Lean Hogs price a a,b,c a,b,c live cattle price a,b,c a,b,c a,b,c a,b,c a,b,c oats price a,b a,b a,b a,b,c orange juice price a,b,c a,b,c Pork Bellies price a a a,b,c a,b Rapeseed canola price a a a,b,c a,b Soybeans price a,b a,b a,b a,b a,b Sugar price a,b,c a,b,c a,b,c a,b,c wheat price a,b,c a,b,c a,b,c a,b,c a,b,c Winnipeg oats price a,b,c Winnipeg Wheat price a,b a a a a,b

13 The following graphs Illustrate by simulation how AR(q>1) processes of various lags generate non-unique quasi-fractional Brownian Motion Not how the excursion patterns for each process is unique Hurst Coefficients <0.5 reverse quickly with small excursions Hurst coefficients > 0.5 are persistence and with positive memory in the system show larger excursion patterns as H increases.

14 Geometric Brownian Motion, H=0.5, y = 1.0y t 1 + ε 14

15 Fractional Brownian Motion, H=0.4 y = 0.7 y + 0.2y + 0.1y + ε t 1 t 2 t 3 15

16 Fractional Brownian Motion, H=0.3, y = 0.4y + 0.2y + 0.4y + ε t 1 t 2 t 3 16

17 Fractional Brownian Motion, H=0.6, y = 1.4y 0.3y 0.1y + ε t 1 t 2 t 3 17

18 Fractional Brownian Motion, H=0.7, y = 1.5y 0.3y 0.2y + ε t 1 t 2 t 3 18

19 Time Path of Nonstationary Series,to Zero y = 1.0y 0.1y + ε t 1 t 2 19

20 Time Path of Nonstationary Series, to Infinite y = 1.0y + 0.1y + ε t 1 t 2 20

21 Dynamics of the excursion reference level. All simulations start at a base level of For all simulations, we computed the mean values and used these for the reference levels. The figure shows that the mean reference levels increase as H increases

22 Dynamics of the stopping natural time. The vertical axis measures the average time required for each process to complete 10 excursions across 30,000 replications. As expected the mean stopping natural time increases with Hurst. Mean Stopping Natural Time Stopping Natural Time H01 H02 H03 H04 H05 H06 H07 H08 H09 Hurst Exponent

23 Dynamics of the overall local time. The vertical axis measures the number of time the excursion crosses the reference point. As expected, the number of excursions in the simulated 2,150 step path is much higher for low Hurst than high Hurst. 250 Overall Local Time Mean Overall Local Time H01 H02 H03 H04 H05 H06 H07 H08 H09 Hurst Exponent

24 Relationship between Hurst exponent and mean excursion measure. Hurst exponent is measured on the vertical axis and excursion length is measured on the horizontal axis. The solid line is an exponential fit with R-squared of 0.78 showing that short excursion lengths are dominated by low Hurst, while high Hurst series are often associated with longer excursions 1 Corresponding Hurst Exponent with Highest Mean Count in Each Bin Hurst Exponent y = ln(x) R² = Bin (Excursion Length)

25 Further tests using stock market data.. Stock market gives many observations to test distributional assumptions Russel 2500, Standard and Poor, Dow Jones 2,023 time series with daily observations

26 Hurst coefficients and excursion measures for 2,023 stocks Local Time measures length of excursion Stopping time measures number of days for 10 excursions R2500 SPX DJIA Weighted Average Count 1, ,023 Hurst Coefficient Minimum Maximum Average Standard Deviations % > H > % > H > % > H > Overall Local Time Minimum Maximum Average Standard Deviations Stopping Natural Time (Days) Minimum Maximum 2,149 2,149 2,149 2, Average Standard Deviations

27 Frequency Distribution of Hurst Coefficients for DOW, S&P 500 and Russel Frequency DOW S&P Russel

28 Further Results For R2500, on average a 1% increase in Hurst value will decrease overall local time by %. For the SPX, this elasticity measure is % DJIA it is %. Hence, for a fixed sample size, the overall local time decreases as Hurst increases. We do not find strong a relationship for stopping time for the R2500 is and significant, which suggests that on average a 1% increase in Hurst will increase the stopping natural time by around 1%. We find very strong inverse relationship between stopping time and local time ( a tautology)

29 Conclusions and Discussion From an agricultural finance and risk management point of view advancing concepts in quantitative finance is important Understanding dynamics to understand price movements Modeling underlying processes Ito s lemma Recognizing that AR(q>1) models are quasi fractional is important in interpreting commodity pricing model. Part and parcel to this is drilling down to basic underlying structure Excursions Local time and stopping time Randomness is about things that are random and long excursions occur with lower frequency

30 Conclusions and Discussion Traders, insurers, farmers, researchers seem surprised when markets make a long term departure Long positive excursions are natural occurrences in a random walk More likely in persistent series (H> 0.5) Less likely in mean reverting processes (H<0.5) These things are natural and their occurrence says nothing about inefficient markets. A bubble is an excursion; it is special because it is rare, but the existence of a bubble says nothing about market efficiency. Bubbles are natural, periodic, excursions that are fully captured in a Brownian motion

PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard

Analysis of Financial Time Series with EViews

Analysis of Financial Time Series with EViews Enrico Foscolo Contents 1 Asset Returns 2 1.1 Empirical Properties of Returns................. 2 2 Heteroskedasticity and Autocorrelation 4 2.1 Testing for

Financial Market Efficiency and Its Implications

Financial Market Efficiency: The Efficient Market Hypothesis (EMH) Financial Market Efficiency and Its Implications Financial markets are efficient if current asset prices fully reflect all currently available

MARKETS, INFORMATION AND THEIR FRACTAL ANALYSIS. Mária Bohdalová and Michal Greguš Comenius University, Faculty of Management Slovak republic

MARKETS, INFORMATION AND THEIR FRACTAL ANALYSIS Mária Bohdalová and Michal Greguš Comenius University, Faculty of Management Slovak republic Abstract: We will summarize the impact of the conflict between

Testing against a Change from Short to Long Memory

Testing against a Change from Short to Long Memory Uwe Hassler and Jan Scheithauer Goethe-University Frankfurt This version: January 2, 2008 Abstract This paper studies some well-known tests for the null

LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS

LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS Robert S. Pindyck Massachusetts Institute of Technology Cambridge, MA 02142 Robert Pindyck (MIT) LECTURES ON REAL OPTIONS PART II August, 2008 1 / 50

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

Testing against a Change from Short to Long Memory

Testing against a Change from Short to Long Memory Uwe Hassler and Jan Scheithauer Goethe-University Frankfurt This version: December 9, 2007 Abstract This paper studies some well-known tests for the null

Probability Calculator

Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-Normal Distribution

Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-ormal Distribution October 4, 200 Limiting Distribution of the Scaled Random Walk Recall that we defined a scaled simple random walk last

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

Simple approximations for option pricing under mean reversion and stochastic volatility

Simple approximations for option pricing under mean reversion and stochastic volatility Christian M. Hafner Econometric Institute Report EI 2003 20 April 2003 Abstract This paper provides simple approximations

Pricing Corn Calendar Spread Options by Juheon Seok and B. Wade Brorsen Suggested citation format: Seok, J., and B. W. Brorsen. 215. Pricing Corn Calendar Spread Options. Proceedings of the NCCC-134 Conference

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

Binomial lattice model for stock prices

Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

The Power of the KPSS Test for Cointegration when Residuals are Fractionally Integrated

The Power of the KPSS Test for Cointegration when Residuals are Fractionally Integrated Philipp Sibbertsen 1 Walter Krämer 2 Diskussionspapier 318 ISNN 0949-9962 Abstract: We show that the power of the

Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic

Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

Stochastic Modelling and Forecasting

Stochastic Modelling and Forecasting Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH RSE/NNSFC Workshop on Management Science and Engineering and Public Policy

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

An Introduction to Time Series Regression

An Introduction to Time Series Regression Henry Thompson Auburn University An economic model suggests examining the effect of exogenous x t on endogenous y t with an exogenous control variable z t. In

Appendix 1: Time series analysis of peak-rate years and synchrony testing.

Appendix 1: Time series analysis of peak-rate years and synchrony testing. Overview The raw data are accessible at Figshare ( Time series of global resources, DOI 10.6084/m9.figshare.929619), sources are

Non-Stationary Time Series andunitroottests

Econometrics 2 Fall 2005 Non-Stationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:

Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Mathematical Methods Glossary Unit 1 Functions and graphs Asymptote A line is an asymptote to a curve if the distance between the line and the curve approaches zero

A Sarsa based Autonomous Stock Trading Agent

A Sarsa based Autonomous Stock Trading Agent Achal Augustine The University of Texas at Austin Department of Computer Science Austin, TX 78712 USA achal@cs.utexas.edu Abstract This paper describes an autonomous

Chapter 2 Mean Reversion in Commodity Prices

Chapter 2 Mean Reversion in Commodity Prices 2.1 Sources of Mean Reversion In this chapter, we discuss the sources, empirical evidence and implications of mean reversion in asset prices. As for the sources

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

Effects of index-fund investing on commodity futures prices

1/33 Effects of index-fund investing on commodity futures prices James Hamilton 1 Jing Cynthia Wu 2 1 University of California, San Diego 2 University of Chicago, Booth School of Business 2/33 Commodity

Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68)

Working Papers No. 2/2012 (68) Piotr Arendarski Łukasz Postek Cointegration Based Trading Strategy For Soft Commodities Market Warsaw 2012 Cointegration Based Trading Strategy For Soft Commodities Market

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

Monte Carlo Simulation of Stochastic Processes

Monte Carlo Simulation of Stochastic Processes Last update: January 10th, 2004. In this section are presented the steps to perform the simulation of the main stochastic processes used in real options applications,

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

Chapter 9: Univariate Time Series Analysis

Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

Options 1 OPTIONS. Introduction

Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models

1 Geometric Brownian motion

Copyright c 006 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM

LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

KCBOT: The Kansas City Board of Trade was formally chartered in 1876 and trades hard red winter

Section I Introduction to Futures and Options Markets Learning objectives To know major agricultural futures exchanges To see the types of commodities traded To understand common characteristics of futures

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Describe

Sales forecasting # 2

Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univ-rennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting

Market Risk: FROM VALUE AT RISK TO STRESS TESTING. Agenda. Agenda (Cont.) Traditional Measures of Market Risk

Market Risk: FROM VALUE AT RISK TO STRESS TESTING Agenda The Notional Amount Approach Price Sensitivity Measure for Derivatives Weakness of the Greek Measure Define Value at Risk 1 Day to VaR to 10 Day

P (A) = lim P (A) = N(A)/N,

1.1 Probability, Relative Frequency and Classical Definition. Probability is the study of random or non-deterministic experiments. Suppose an experiment can be repeated any number of times, so that we

Handbook in. Monte Carlo Simulation. Applications in Financial Engineering, Risk Management, and Economics

Handbook in Monte Carlo Simulation Applications in Financial Engineering, Risk Management, and Economics PAOLO BRANDIMARTE Department of Mathematical Sciences Politecnico di Torino Torino, Italy WlLEY

Algorithmic Trading Session 6 Trade Signal Generation IV Momentum Strategies. Oliver Steinki, CFA, FRM

Algorithmic Trading Session 6 Trade Signal Generation IV Momentum Strategies Oliver Steinki, CFA, FRM Outline Introduction What is Momentum? Tests to Discover Momentum Interday Momentum Strategies Intraday

Financial Modeling. An introduction to financial modelling and financial options. Conall O Sullivan

Financial Modeling An introduction to financial modelling and financial options Conall O Sullivan Banking and Finance UCD Smurfit School of Business 31 May / UCD Maths Summer School Outline Introduction

Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,

The Black-Scholes Model

The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

Time series Forecasting using Holt-Winters Exponential Smoothing

Time series Forecasting using Holt-Winters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract

Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

Numerical Methods for Option Pricing

Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

The Long-Term Properties of Commodity Futures

The Long-Term Properties of Commodity Futures Gary Gorton, School of Management, Yale University K. Geert Rouwenhorst, School of Management, Yale University Size OTC Commodities Derivatives Markets Outstanding

Monte Carlo Methods in Finance

Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

Time Series Analysis

Time Series Analysis Autoregressive, MA and ARMA processes Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 212 Alonso and García-Martos

The Binomial Tree and Lognormality

The Binomial Tree and Lognormality The Binomial Tree and Lognormality The usefulness of the binomial pricing model hinges on the binomial tree providing a reasonable representation of the stock price distribution

AHAMADA IBRAHIM GREQAM, université de la méditerranée and CERESUR, université de La Réunion. Abstract

A complementary test for the KPSS test with an application to the US Dollar/Euro exchange rate AHAMADA IBRAHIM GREQAM, université de la méditerranée and CERESUR, université de La Réunion Abstract his paper

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

ADVANCED FORECASTING MODELS USING SAS SOFTWARE

ADVANCED FORECASTING MODELS USING SAS SOFTWARE Girish Kumar Jha IARI, Pusa, New Delhi 110 012 gjha_eco@iari.res.in 1. Transfer Function Model Univariate ARIMA models are useful for analysis and forecasting

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example

Overview: Past, Present and Future

Overview: Past, Present and Future Founded in 1957, the Reuters CRB Index has a long history as the most widely followed Index of commodities futures. Since 1961, there have been 9 previous revisions to

Chapter 6. Econometrics. 6.1 Introduction. 6.2 Univariate techniques Transforming data

Chapter 6 Econometrics 6.1 Introduction We re going to use a few tools to characterize the time series properties of macro variables. Today, we will take a relatively atheoretical approach to this task,

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

4. Joint Distributions

Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose

The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

AN ACCESSIBLE TREATMENT OF MONTE CARLO METHODS, TECHNIQUES, AND APPLICATIONS IN THE FIELD OF FINANCE AND ECONOMICS

Brochure More information from http://www.researchandmarkets.com/reports/2638617/ Handbook in Monte Carlo Simulation. Applications in Financial Engineering, Risk Management, and Economics. Wiley Handbooks

2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is

Betting on Volatility: A Delta Hedging Approach. Liang Zhong

Betting on Volatility: A Delta Hedging Approach Liang Zhong Department of Mathematics, KTH, Stockholm, Sweden April, 211 Abstract In the financial market, investors prefer to estimate the stock price

Trading activity as driven Poisson process: comparison with empirical data

Trading activity as driven Poisson process: comparison with empirical data V. Gontis, B. Kaulakys, J. Ruseckas Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 2, LT-008

1 Short Introduction to Time Series

ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

Definition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ 2, where µ R, and σ > 0, if its density is f(x) = 1. 2σ 2.

Chapter 6 Brownian Motion 6. Normal Distribution Definition 6... A r.v. X has a normal distribution with mean µ and variance σ, where µ R, and σ > 0, if its density is fx = πσ e x µ σ. The previous definition

6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

Nonlinear Regression Functions. SW Ch 8 1/54/

Nonlinear Regression Functions SW Ch 8 1/54/ The TestScore STR relation looks linear (maybe) SW Ch 8 2/54/ But the TestScore Income relation looks nonlinear... SW Ch 8 3/54/ Nonlinear Regression General

Online Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre Collin-Dufresne and Vyacheslav Fos

Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre Collin-Dufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility

The Black-Scholes Formula

ECO-30004 OPTIONS AND FUTURES SPRING 2008 The Black-Scholes Formula The Black-Scholes Formula We next examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

Monte Carlo Methods and Models in Finance and Insurance

Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES Monte Carlo Methods and Models in Finance and Insurance Ralf Korn Elke Korn Gerald Kroisandt f r oc) CRC Press \ V^ J Taylor & Francis Croup ^^"^ Boca Raton

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing

An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing Kyle Chauvin August 21, 2006 This work is the product of a summer research project at the University of Kansas, conducted

OPTIONS, FUTURES, & OTHER DERIVATI

Fifth Edition OPTIONS, FUTURES, & OTHER DERIVATI John C. Hull Maple Financial Group Professor of Derivatives and Risk Manage, Director, Bonham Center for Finance Joseph L. Rotinan School of Management

Is the trailing-stop strategy always good for stock trading?

Is the trailing-stop strategy always good or stock trading? Zhe George Zhang, Yu Benjamin Fu December 27, 2011 Abstract This paper characterizes the trailing-stop strategy or stock trading and provides

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider

Monte Carlo Simulation

1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

Correlation vs. Trends: A Common Misinterpretation

EDHEC-Risk Institute 393-400 promenade des Anglais 06202 Nice Cedex 3 Tel.: +33 (0)4 93 18 32 53 E-mail: research@edhec-risk.com Web: www.edhec-risk.com Correlation vs. Trends: A Common Misinterpretation

European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

INTEREST RATES AND FX MODELS

INTEREST RATES AND FX MODELS 8. Portfolio greeks Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York March 27, 2013 2 Interest Rates & FX Models Contents 1 Introduction

Time Series Analysis

Time Series Analysis Time series and stochastic processes Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos

Statistical pitfalls in Solvency II Value-at-Risk models

Statistical pitfalls in Solvency II Value-at-Risk models Miriam Loois, MSc. Supervisor: Prof. Dr. Roger Laeven Student number: 6182402 Amsterdam Executive Master-programme in Actuarial Science Faculty

3. Monte Carlo Simulations. Math6911 S08, HM Zhu

3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.6-17.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo: