Math 526: Brownian Motion Notes


 Phyllis Dawson
 1 years ago
 Views:
Transcription
1 Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t ), (X t2 X t ),..., (X tn X tn ) are independent for any collection of times t t... t n. 3. The distribution of X t X s depends only on (t s). Property is called continuity of sample paths. Property 2 is called independent increments. Property 3 is called stationarity of increments. Here are some immediate conclusions and comments: Property 2 and 3 imply that (X t ) is timehomogeneous (one may shift the timeaxis) and spacehomogeneous (since distribution of increments does not depend on current X s ). Property 2 and 3 also imply that (X t ) is Markov, since the future increments are conditionally independent of the past given the present. Properties 2 and 3 are also satisfied by the Poisson process. process certainly does not have continuous sample paths. However the Poisson It is not at all clear that such a process (X t ) exists, since the requirement of continuous paths is very stringent. The underlying probability space here is Ω {continuous functions on [, )}. Brownian Motion has Gaussian Marginals. We have the following Theorem. If (X t ) is a Brownian motion, then there exist constants µ, σ 2 such that X t X s N ((t s)/µ, (t s)σ 2 ). Proof. Without loss of generality take s and pick some n Z and write X t X (X t/n X ) + (X 2t/n X t/n ) (X t X (n )t/n ). Each term on the right hand side is independent and identically distributed. Letting n, by the central limit theorem, the right hand side must converge to some normally distributed random variable (the continuity of (X t ) makes sure that one can apply the CLT, as the increments must become smaller and smaller as n increases).
2 We conclude that X t X N (a(t), b(t)) for some functions a, b. However, since X t+s X (X t X ) + (X t+s X t ) and the two are independent, we have that X t+s X N (a(t), b(t)) + N (a(s), b(s)) d N (a(t) + a(s), b(t) + b(s)). On the other hand, we directly have X t+s X N (a(t + s), b(t + s)). It follows that a(t + s) a(t) + a(s) and similarly for b. But this means that a, b are linear functions, i.e. a(t) µt, b(t) σ 2 t (clearly b must have positive slope), for some µ, σ 2. The parameter µ is called drift of the Brownian motion and σ is called the volatility. To summarize, if (X t ) is a BM then the marginal distribution is Wiener Process X t X N (µt, σ 2 t). The special case µ, σ 2, X is called the Wiener process. We write (W t ) in that case. Here are some computations for the Wiener process: E[W t ]. V ar(w t ) t. Cov(W s, W t ) E[W s W t ] E[W s ]E[W t ] E [W s (W s + W t W s )] E[Ws 2 ] + E[W s ]E[W t W s ] V ar(w s ) + s. s < t The last statement is written as Cov(W s, W t ) min(s, t). Here is another important computation: we find the conditional distribution of W s given W t z, s < t: P(W s dx W t z) P(W s dx, W t dz) P(W t dz) P(W s dx, (W t W s ) (dz x)) P(W t dz) Using the Gaussian density and independent increments: ( 2πs e dx) ( ) x2 /(2s) e (z x)2 /(2(t s)) dz 2π(t s) 2πt e z2 /(2t) dz ( exp ( x 2 /s + (z x) 2 /(t s) z 2 /t )) 2 exp( (x s t z)2 /(2s(t s)/t)). 2πs(t s)/t 2πs(t s)/t 2
3 The last line is the density of a Gaussian random variable and we conclude that ( s ) W s W t z N t z, s(t s)/t. This is quite intuitive: E[W s W t z] (s/t)z and V ar(w s W t z) (s/t) 2 (t s) 2. Constructing Brownian Motion. Here is the physicist s construction of BM. This idea was first advanced by Einstein in 96 in connection with molecular/atomic forces. Consider a particle of pollen suspended in liquid. The particle is rather large but light and is subject to being hit at random by the liquid molecules (which are small but very many). Let us focus on the movement of the particle along the x axis, and record its position at time t as Xt ɛ. Each time a particle is hit on the left, it moves to the right by a distance ɛ, and each time it is hit on the right, it moves left by an ɛ. Let L t, M t be the number of hits by time t on the left and right respectively. Then Xt ɛ ɛl t ɛm t (for simplicity we took X ). It is natural to assume that L t, M t are two independent stationary Markov processes with iid increments. That is, L t, M t are two Poisson processes with same intensity λ ɛ. We immediately get E[Xt ɛ ] and V ar(x ɛ t ) ɛ 2 E[(L t M t ) 2 ] ɛ 2 (2(λ ɛ t + (λ ɛ t) 2 ) 2E[L t M t ] 2ɛ 2 λ ɛ t. So far ɛ was a dummy parameter and of course we are planning on taking ɛ. To obtain an interesting (X t ) in the limit, we should make sure that the variance above converges to some nonzero finite limit. This would happen if we take λ ɛ C/(2ɛ 2 ). Thus, as the displacement of the pollen particle from each hit is diminished we naturally increase the frequency of hits (and the correct scaling is quadratic). To figure out what is the limiting (X t ) we compute the mgf (recall the mgf of P oisson(λ) is e λ(es ) ): E[e sxɛ t ] exp (λɛ t(e sɛ )) exp ( λ ɛ t(e sɛ ) ) Since by L Hopital rule we have e sɛ + e sɛ 2 lim ɛ ɛ 2 e tc/(2ɛ2 )(e sɛ +e sɛ 2). lim ɛ se sɛ se sɛ 2ɛ lim ɛ s 2 e sɛ + s 2 e sɛ 2 s 2 lim E[e sxɛ t ] e tcs 2 /2. ɛ The latter is the moment generating function of a N (, tc) random variable. Since for every ɛ >, (X ɛ t ) had stationary and independent increments (because L t, M t do), so does the 3
4 limiting (X t ). Moreover, since the displacement ɛ, (X t ) should be continuous. Putting it all together we conclude that (X t ) is a Brownian motion with zero drift and volatility C. If C then we get the Wiener process. The name Brownian motion comes from the botanist Robert Brown who first observed the irregular motion of pollen particles suspended in water in 828. As you can see it took 8 years until Einstein could provide a good mathematical model for these observations. Einstein s model was a crucial step in convincing physicists that molecules really exist and move around randomly when in liquid or gaseous form. Since then, this model has indicated to physicists that any random movement in physics should be based on Brownian motion, at least on the atomic/molecular level where external forces, such as gravity, are minimal. Remark: note that (X ɛ t ) above is a scaled simple birthanddeath process. Recognizing Brownian Motion. We first observe that if (X t ) is a Brownian motion with µ then (X t ) is a martingale with respect to itself. Indeed, let F t {X u : u t} be the history of X up to time t. Then for s > t E[X s F t ] E[(X s X t ) + X t F t ] E[X s X t ] + X t X t, since the expected value of any increment is zero. More generally, Y t X t µt is a martingale for any Brownian motion with drift µ. The above property has farreaching consequences. In fact, it turns out that the Wiener process is the canonical continuous martingale. This fact forms the basis for stochastic calculus and underlines the importance of understanding the behavior of BM. One basic application is the following Levy characterization of Wiener process: Theorem 2. Suppose that (Z t ) is a continuoustime stochastic process such that: The paths of Z are continuous. (Z t ) is a martingale with respect to its own history. V ar(z t Z s ) (t s) for any t > s >. Then (Z t Z ) is a Wiener process. As a corollary, if (Z t ) is a continuous process such that Z t µt is a martingale and V ar(z t ) σ 2 t then (Z t ) is a Brownian motion with drift µ and volatility σ. From Random Walk to Brownian Motion. Here is another construction of Brownian motion. Let (S δ t ) be a simple symmetric random walk that makes steps of size ±δ at times t /n, 2/n,.... We know that S( δ t) is a time and spacestationary discretetime martingale. In particular, E[S δ t ], and V ar(s δ t ) δ 2 nt. To pass to the limit δ we therefore select n /δ 2. As δ, we obtain a continuoustime, continuousspace stochastic process that has stationary and independent increments, 4
5 continuouspaths and the martingale property. Moreover, V ar(st ) t, so (St ) must be the Wiener process. One can also pick other random walks to make the convergence faster. For example a good choice is to take the step distribution as X n +δ with prob. /6 with prob. 2/3 δ with prob. /6 and n 3/δ 2. The corresponding random walk S n X X n can go up, go down, or stay at the same level. It is often helpful to think of Brownian motion as the limit of symmetric random walks. As we will see, most of the general results about random walks (including recurrence, reflection principle, ballot theorem, ruin probabilities) carry over nicely to Brownian motion. Hitting Time Distribution. Let (W t ) be the Wiener process and T b (ω) min{t : W t (ω) b} be the first time (W t ) hits level b. We are interested in computing the distribution of T b. Since the behavior of the Wiener process is symmetric about the xaxis, we take b >. Define Ŵt W Tb +t W Tb to be the future of W after time T b. Note that T b is random, so it is not clear how Ŵ looks like. However, it is possible to verify all the conditions of Levy s Theorem and conclude that Ŵ is again a Wiener process. This is because (W t) is a strong Markov process, meaning that the Markov property of (W t ) continues to hold when applied at random (stopping!) times, such as T b. Thus, the future of (W t ) after T b is independent of its history up to T b. From this fact we obtain P(W t > b T b < t) P(Ŵt T b > ) /2, since P(Ŵs > ) /2 for any time s by symmetry. However, the LHS above can also be written as P(W t > b T b < t) P(W t > b, T b < t) P(T b < t) P(W t > b) P(T b < t), since the only way that W is above b at t is if the hitting time of b has already occurred. Comparing we conclude that P(T b < t) 2P(W t > b) 2 b/ t 2π e x2 /2 dx. An immediate corollary is that if we take t then the RHS goes to 2 2π e x2 /2 dx, which means that P(T b < ), irrespective of value of b. Therefore, the Wiener process hits any level b with probability. 5
6 Furthermore, differentiating the above with respect to t we find that the density of T b is given by: /(2t) P(T b dt) b e b2, b R. () 2πt 3 The latter belongs to the family of stable (or inverse Gamma) distributions (we say that T b has stable(/2)distribution). In fact, here is a curious connection: let Z N (, ) and Y b 2 /Z 2. Then T b Y. Indeed, Differentiating, P(Y t) P(b 2 /Z 2 t) P( Z b / t) 2P(Z b / t). P(Y dt) 2 b 2t 3/2 2π e (b/ t) 2 /2 which matches with (). Using () one also shows that E[T b ] + for any b. So the conclusion is: No matter how large b is, P(T b < ). No matter how small b is, E[T b ]. Maximum Process. Let M t max s t W s be the running maximum of Wiener process W. Then (M t ) is a nondecreasing process that goes to + since we know that (W t ) will eventually hit any positive level. Moreover, P(M t > x) P(T x < t) 2P(W t > x) P( t Z > x) based on properties of normal r.v. s. We conclude that the marginal distribution of M t is the same as that of an absolute value of a Gaussian random variable. In particular, E[M t ] 2t/π, V ar(m t ) ( 2/π)t. Note that while (M t ) is increasing, it does so in an imperceptible creep: for any fixed t, (M t ) is flat in the neighborhood of t with probability. If you draw a typical path of (M t ) on an interval of say [, ], the length of flat areas will add up to (even though M > M with probability ). For those of you who know some analysis, the set of points where (M t ) icnreases is a Cantor set of measure zero. By symmetry the minimum m t min s t W s has the same distribution as M t. Since both m t, M t + it must be that (W t ) recrosses zero an infinite number of times. Thus, the zero level (and by spacehomogeneity, any level) is recurrent for (W t ). The next computation shows that much more is true: 6
7 Probability of a Zero. We are interested in computing the probability that the Wiener process W hits zero on the time interval [s, t]. Observe that if W s a, then the probability that W hits zero on [s, t] is just t s a P(T a < (t s)) /(2y) 2πy 3 e a2 dy. However, W s N (, s), so putting it together (ie conditioning on W s ) we have: P(T a < (t s)) e a2 /(2s) da 2πs t s t s 2 π t s t s a /(2y) 2πy 3 e a2 dy e a2 /(2s) da 2πs ( ) a e a2 /(2y) a 2 /(2s) da dy 2πs /2 y 3/2 ( ) a e a2 (y+s)/(2sy) da dy πs /2 y 3/2 sy πs /2 y 3/2 s + y dy s t s dy π (s + y) y (t s)/s dx by substitution y sx 2 + x 2 2 π arctan( (t s)/s) 2 π arccos s t. Corollary: if s then probability of a zero on [, t] is 2 arccos for any t. Therefore, π W returns to zero immediately after t. After some thinking and using the strong Markov property of W, it follows that W has infinitely many zeros on any interval [, t]. This is quite counterintuitive given that E[T ɛ ] + even for very small ɛ. Thus W really oscillates wildly around zero. This is one indication that W is nowhere differentiable: it oscillates around every point and the scale of oscillations over time interval of length h is on the order of O( W h), which means that lim t+h W t h cannot exist. h Time of Last Zero. Let L t be the time of last zero of W before time t. Let D t be the time of first zero of W after time t. We observe that {L t < s} {D s > t} {W has no zeros on [s, t]}. From the last section, we therefore find that meaning that the density of L t is: P(L t < s) 2 π arccos s t 2 π arcsin s t, P(L t ds) π s(t s), s t. 7
8 These facts are known as the Arcsine Law and show that the last zero of W is likely to be either close to zero or to t. Here is another derivation of the same result using the GaussianGamma connection. Note that conditional on W t a, the distribution of D t is D t t + T a t + a2 γ where γ Gamma(/2, /2). Therefore, P(D t (t + u)) P(D t t u W t a)f Wt (a) da P(a 2 /γ u)f Wt (a) da P(Wt 2 /γ u) P(tγ /γ u) ( ) tγ P u, γ where γ Gamma(/2, /2) is another Gamma rv, independent of γ (since T a is indep of W ). So distribution of D t t is same as tγ γ ie distribution of D t is equal to that of t( + γ /γ ) t/ γ γ +γ. The latter expression β γ γ +γ is known to have a Beta(/2, /2) distribution with density f β (u), u. So P(D t < (t + u)) P(t/β < π u( u) (t + u)) P(β > t/(t + u)). However, as mentioned before, s/t P(L t < s) P(D s > s + (t s)) P(β < s/t) π u( u) du 2 s π arcsin t, using the substitution x u. In particular note that the distribution of L is Beta(/2, /2). Planar BM Let (W, W 2 ) be two independent Wiener processes, and take X t X + Wt, Y t Y + Wt 2. Then viewing (X t, Y t ) as the (x, y)coordinates of a moving particle, we obtain what is called a planar Brownian motion, starting at the initial location (X, Y ). Here is one curious computation: Suppose (X, Y ) (, b) so the particle starts somewhere on the positive yaxis. Let T be the first time that Y t the particle hits the xaxis. We are interested in the distribution of X T. Recall that from the remark after (), T b 2 /Z 2. It follows that X T T Z where (Z, Z) are two independent standard normal random variables. In other words, X T b Z Z which we recall has a Cauchy distribution, namely P(X T dx) b (b 2 + x 2 )π. Like the onedimensional case, twodimensional Brownian motion is recurrent and will hit every point in the plane with probability. 8
ONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK
ONEDIMENSIONAL RANDOM WALKS 1. SIMPLE RANDOM WALK Definition 1. A random walk on the integers with step distribution F and initial state x is a sequence S n of random variables whose increments are independent,
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationHow to Gamble If You Must
How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games
More informationErgodicity and Energy Distributions for Some Boundary Driven Integrable Hamiltonian Chains
Ergodicity and Energy Distributions for Some Boundary Driven Integrable Hamiltonian Chains Peter Balint 1, Kevin K. Lin 2, and LaiSang Young 3 Abstract. We consider systems of moving particles in 1dimensional
More informationProbability: Theory and Examples. Rick Durrett. Edition 4.1, April 21, 2013
i Probability: Theory and Examples Rick Durrett Edition 4.1, April 21, 213 Typos corrected, three new sections in Chapter 8. Copyright 213, All rights reserved. 4th edition published by Cambridge University
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version 2/8/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationPoisson processes (and mixture distributions)
Poisson processes (and mixture distributions) James W. Daniel Austin Actuarial Seminars www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction in whole or in part without
More information4.1 Learning algorithms for neural networks
4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch Pitts units and perceptrons, but the question of how to
More informationLevel sets and extrema of random processes and fields. JeanMarc Azaïs Mario Wschebor
Level sets and extrema of random processes and fields. JeanMarc Azaïs Mario Wschebor Université de Toulouse UPS CNRS : Institut de Mathématiques Laboratoire de Statistiques et Probabilités 118 Route de
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More informationLecture notes on the Stefan problem
Lecture notes on the Stefan problem Daniele Andreucci Dipartimento di Metodi e Modelli Matematici Università di Roma La Sapienza via Antonio Scarpa 16 161 Roma, Italy andreucci@dmmm.uniroma1.it Introduction
More informationMarkov Chains and Mixing Times. David A. Levin Yuval Peres Elizabeth L. Wilmer
Markov Chains and Mixing Times David A. Levin Yuval Peres Elizabeth L. Wilmer University of Oregon Email address: dlevin@uoregon.edu URL: http://www.uoregon.edu/~dlevin Microsoft Research, University
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationWhich Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios Riaz Ahmad Course Director for CQF, 7city, London Paul Wilmott Wilmott Associates, London Abstract:
More information4.1 Modelling with Differential Equations
Chapter 4 Differential Equations The rate equations with which we began our study of calculus are called differential equations when we identify the rates of change that appear within them as derivatives
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationSpatial Point Processes and their Applications
Spatial Point Processes and their Applications Adrian Baddeley School of Mathematics & Statistics, University of Western Australia Nedlands WA 6009, Australia email: adrian@maths.uwa.edu.au A spatial
More informationIntroduction to Queueing Theory and Stochastic Teletraffic Models
Introduction to Queueing Theory and Stochastic Teletraffic Models Moshe Zukerman EE Department, City University of Hong Kong Copyright M. Zukerman c 2000 2015 Preface The aim of this textbook is to provide
More informationTOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms
More informationSearching in a Small World
THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Searching in a Small World Oskar Sandberg Division of Mathematical Statistics Department of Mathematical Sciences Chalmers University of Technology and
More informationSupport Vector Machines
CS229 Lecture notes Andrew Ng Part V Support Vector Machines This set of notes presents the Support Vector Machine (SVM) learning algorithm. SVMs are among the best (and many believe are indeed the best)
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationFixed Point Theorems in Topology and Geometry
Fixed Point Theorems in Topology and Geometry A Senior Thesis Submitted to the Department of Mathematics In Partial Fulfillment of the Requirements for the Departmental Honors Baccalaureate By Morgan Schreffler
More informationUnderstanding the FiniteDifference TimeDomain Method. John B. Schneider
Understanding the FiniteDifference TimeDomain Method John B. Schneider June, 015 ii Contents 1 Numeric Artifacts 7 1.1 Introduction...................................... 7 1. Finite Precision....................................
More informationIntroduction to Differential Calculus. Christopher Thomas
Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review
More informationA SIMPLE OPTION FORMULA FOR GENERAL JUMPDIFFUSION AND OTHER EXPONENTIAL LÉVY PROCESSES
A SIMPLE OPTION FORMULA FOR GENERAL JUMPDIFFUSION AND OTHER EXPONENTIAL LÉVY PROCESSES ALAN L. LEWIS Envision Financial Systems and OptionCity.net August, 00 Revised: September, 00 Abstract Option values
More information