How To Read The Periodic Table

Size: px
Start display at page:

Download "How To Read The Periodic Table"

Transcription

1 Key Concepts: Periodic Properties of the Elements 1. Understand and be able to predict and explain trends in effective nuclear charge, Z eff. 2. Understand and be able to predict and explain the periodic trends in: 2.1. atom size 2.2. ion size 2.3. ionization energy 2.4. electron affinity 2.5. Properties of elements: Metals, nonmetals, groups (descriptive chemistry) Periodic Table: first proposed in 1869 separately by Dmitri Mendeleev in Russia and Lothar Meyer in Germany. The Periodic Table proposed by Mendeleev and Meyer was arranged in order of increasing atomic weight. Some elements seemed out of order though. The modern period table is arranged by rows and columns in order of increasing ATOMIC NUMBER. The properties of the elements tend to repeat, are periodic, from row to row. Larson-Foothill College 1 Effective Nuclear Charge, Zeff The splitting of the principle energy level into the s, p, d, and f energy sublevels is best explained by using the concept of effective nuclear charge, Z eff. An electron in a higher energy level is screened from seeing 100% (all the protons) of the nuclear charge by the electrons in lower energy levels. We usually talk about the valence electrons and how they are screened from experiencing the complete nuclear charge. This screening depends on the sublevel (orbital type) occupied by the electron being screened. The Effective Nuclear Charge is the NET NUCLEAR charge an electron experiences when other electrons screen the nuclear charge. An analogy is looking at a lightbulb that is covered by a frosted-glass lamp shade. The lampshade screens our eyes from the full brightness of the lightbulb. Larson-Foothill College 2

2 Z eff - Effective Nuclear Charge Sodium valence electron Z eff at 100% screening: Z eff = = +1 Lower energy (inner) electrons shield higher energy (outer) electrons from seeing a full nuclear charge. This screening is not 100%. Z eff = Z - S where Z is the atomic number (number of protons) and S is the screening constant. S is a positive number with a value that is dependent on the energy subshell. Electrons in the same valence shell screen each other very little, but do have a slight screening effect. For valance electrons, the the core electrons provide most of the shielding. Screening electron density from the core electrons: 1s, 2s, and 2p Actual Na atom 3s valence electron screening by core electrons: Z eff = = Larson-Foothill College 3 Trends in Effective Nuclear Charge Equation 7.1: Zeff = Z - S Notice: The Zeff experienced by the innermost electrons, those in the 1s subshell (red circles), closely tracks the increase in nuclear charge, Z (black line). The Zeff experienced by the outermost valence electrons (blue squares) not only is significantly smaller than Z, it does not evolve linearly with increasing atomic number; it varies periodically. Graph showing the variations in effective nuclear charge for period 2 and period 3 elements. Slater s Rules: A Closer Look, page Electrons for which the principle quantum number n is larger than the value of n for the electron of interest contribute zero to the value of s. 2. Electrons with the same value of n as the electron of interest contribute 0.35 to the value of S. (Note: The electron does not screen itself.) 3. Electrons for which n is one less than n for the electron of interest contribute 0.85 to the value of S, while those with even smaller values of n contribute Larson-Foothill College 4

3 Other Details: Splitting of Subshell Energies with the Same n Value Remember that for many electron atoms, the energies of orbitals with the same n value increase in the order ns < np < nd < nf. This can be explained by the following: In general, for a given n value: s electrons penetrate closer to the nucleus than p p electrons penetrate closer to the nucleus than d d electrons penetrate closer to the nucleus than f Thus, for a given n value, the attraction between the the electron and the nucleus decreases in the order: ns > np > nd > nf The result is that the ns orbitals are lower in energy then the (n-1)d orbitals. This is why we fill the 4s before the 3d, 5s before 4d, etc. Graphs showing the 2s and 2p radial probability functions. Larson-Foothill College 5 Atomic Radius Trends (Outer Valence e ) Atomic radii decrease along a row. Why? Zeff increases as we add electrons to the same energy level. The increase in nuclear charge as we move across a row is not completely screened by the additional valence electrons so Zeff becomes larger for each valence electron. (Atomic radii of transition metals decrease only slightly across a period.) Atomic radii increase down a column. Why? As we move down a column n increases for the valence electrons, hence the orbital size also increases. Zeff also increases SLIGHTLY, but the valence electrons spend more time further from the nucleus in the larger orbitals, 2s compared to 1s, etc. Larson-Foothill College 6

4 Atomic Radius - Predictions When two atoms bond covalently, the bonding atomic radius of the two atoms can be used to predict the covalent bond length (the distance between the two nuclei). Bonding atomic radii are shorter than nonbonding atomic radii due to the attractive forces that lead to the bond. Bonding Atomic Radii in Angstroms 1 Å = m Use the figure of bonding atomic radii to predict: 1. the largest diatomic covalent molecule bond distance. 2. if a N-S bond is longer or shorter than a P-O bond. Larson-Foothill College 7 Electron Configurations of Ions Main Group Elements: electrons are lost or gained so that the electron configuration of the ion matches that of the nearest Noble Gas. Metals lose electrons to become cations. Nonmetals gain electrons to become anions. We can use spdf notation to show this. 1. Al > Al e [Ne]3s 2 3p 1 > [Ne] + 3e (loses the 3s and 3p electrons) 2. Ca > Ca e [Ar]4s 2 > [Ar] + 2e (loses the 4s electrons) 3. O + 2e > O 2- [He]2s 2 2p 4 + 2e > [Ne] (gains two e to fill the 2p shell) In general, what type of orbitals are filled when nonmetals gain electrons? Transition metals (d-block) lose the (n+1)s electrons first! 1. Fe > Fe e [Ar]4s 2 3d 6 > [Ar]3d 6 + 2e (loses the 4s electrons) 2. Fe > Fe e [Ar]4s 2 3d 6 > [Ar]3d 5 + 3e (loses the 4s & a 3d electron) Write electron configurations for Li +, Zn 2+, Mn 4+, P 3, Sn 2+ and Sn 4+. Larson-Foothill College 8

5 Ions show a trend in ionic size as well. Ionic Size Trends Cations are smaller than the atoms they come from because they have lost outer electrons. Also, electron-electron repulsions are reduced. Anions are larger than the atoms they come from because of increased electron-electron repulsions. Also, Z eff decreases for added valence electrons. about 2x size about 1/2 size Larson-Foothill College 9 Period Trends - Comparison of Atomic and Ionic Radii (Units are angstroms: 1 Å = m) Grey: Neutral radius Pink: Cation radius Grey: Neutral radius Blue: Anion radius Larson-Foothill College 10

6 Isoelectronic Series - Same Valence Shell Electron Configuration Isoelectronic with [He] Isoelectronic with [Ne] Isoelectronic with [Ar] Isoelectronic with [Kr] Isoelectronic with [Xe] For isoelectronic series, what is the trend in size? Larson-Foothill College 11 Period Trends - Ionization Energy, IE Ionization Energy, IE, is the energy needed to remove an outer electron from an atom in the gas phase to make a positive ion. Each atom can have a series of ionizations to produce a multi-charged cation. For example consider the ionization of Mg(g): 1. First: Mg(g) > Mg + (g) + e IE 1 = +738 kj/mol 2. Second: Mg + (g) > Mg 2+ (g) + e IE 2 = kj/mol 3. Third: Mg 2+ (g) > Mg 3+ (g) + e IE 3 = kj/mol 1. Why the increase from IE 1 to IE 2? 2. Why the HUGE increase from IE 2 to IE 3? Larson-Foothill College 12

7 Periodic Trends - First Ionization Energy, IE 1 In general: first ionization energy increases across a row. Z eff increases across a row. As Z eff increases there is more attraction of the electrons to the nucleus thus more difficult to remove. In general first ionization energy decreases down a column. The outer electrons are in higher principle quantum shells and are further from the nucleus. Less attraction to the nucleus thus easier to remove. We see some exceptions however. For example, IE 1 of N is greater than IE 1 of O. Why? Half-filled p-sublevel for N is more stable than the partially filled p-sublevel for O. In N, we have no e - e repulsive pairing energy since all p-orbitals have only 1 e. In O we have a p-orbital with two electrons, the pairing energy in this p-orbital leads to a slightly less stable electron configuration and thus lower ionization energy. Larson-Foothill College 13 Periodic Trends - Electron Affinity, EA Electron affinity is the energy change when an electron is added to a neutral atom in the gas phase. For example: F(g) + e > F (g) Na(g) + e > Na (g) N(g) + e > N (g) EA = -328 kj/mol EA = -53 kj/mol EA > 0 kj/mol so N (g) is unstable All second electron affinities are positive. For example: O - (g) + e > O 2 (g) EA2 = +744 kj/mol Does this make sense? Larson-Foothill College 14

8 Periodic Trends - Electron Affinity, EA The trends are not as regular as for ionization energies. Larson-Foothill College 15 Increase Summary of Atomic Trends Increase Z eff The individual atomic properties of atoms can be related to the observed macroscopic behavior of the elements. The trends we observe across the periodic table help explain chemical behavior: Nonmetals have high electron affinities and tend to form (-) ions. Metals tend to have low ionization energies and form (+) ions. Compounds formed by a metal and a nonmetal tend to be ionic substances. Compounds formed by two nonmetals tend to be molecular substances. Larson-Foothill College 16

9 Metals Properties 1. Low ionization energies - oxidized easily 2. Metallic bonding in elemental form Chemistry 1. Metals and nonmetals react to form ionic compounds (salts): Metals + nonmetals > salts 2 Fe(s) + 3 Cl2(g) > 2 FeCl3(s) 2. Metal Oxides are basic since they contain a basic oxide ion: Soluble Metal oxide + water > metal hydroxide Na2O(s) + H2O(l) > 2 NaOH(aq) The oxide ion is basic in water: O 2- (aq) + H2O(l) > 2 OH (aq) 3. Metal oxides react with acids: Metal oxide + acid > salt + water Al2O3(s) + 6 HNO3(aq) > 2 Al(NO3)3(aq) + 3 H2O(l) Larson-Foothill College 17 Nonmetals Properties 1. Vary greatly in appearance 2. High electron affinities - tend to be reduced 3. Compounds of nonmetals are typically molecular substances (covalent bonding) Chemistry 1. Nonmetal Oxides are acidic in solution: Nonmetal oxide + water > acid CO2(g) + H2O(l) > H2CO3(aq) 2. Nonmetal oxides react with bases: Nonmetal oxide + base > salt + water SO3(g) + 2 NaOH(aq) > Na2SO4(aq) + H2O(l) Larson-Foothill College 18

10 Questions: Trends in Properties of the Elements Compare B, Al, and C Which has the largest atomic radii? Which has the highest electron affinity? Rank them in order of INCREASING first ionization energy. Which has the most metallic Character? Which experiences the greatest effective nuclear charge, a 2p electron in F, a 2p electron in Ne, or a 2p electron in Na +? Text Question 7.36 Consider S, Cl and K and their most common ions. (a) List the atoms in order of increasing size. (b) List the ions in order of increasing size. (c) Explain any differences in the orders of the atomic and ionic sizes. Larson-Foothill College 19 Problems From Text 7.55 Consider the first ionization energy of neon and the electron affinity of fluorine. (a) Write equations, including electron configurations, for each process. (b) These two quantities will have opposite signs. Which will be positive and which will be negative? (c) Would you expect the magnitudes of these two quantities to be the same. If not, which one would you expect to be larger and why? 7.53 While the electron affinity of bromine is a negative quantity, it is positive for Kr. Use the electron configurations of the two elements to account for this observation. Larson-Foothill College 20

11 Problems From Text 7.95 (a) Use orbital diagrams to illustrate what happens when an oxygen atom gains two electrons. (b) Why does O 3 not exist in nature? Larson-Foothill College 21 Problems From Text Predict whether each of the following oxides is ionic or molecular: CO2 BaO SO3 Fe2O3 Li2O H 2 O 7.67 Write balanced chemical equations for the following reactions: (a) barium oxide with water (b) iron(iii) oxide with perchloric acid (c) sulfur trioxide gas with water (d) carbon dioxide gas with aqueous sodium hydroxide. Larson-Foothill College 22

12 Problems From Text (Time permitting) (a) Write the electron configuration for Li, and estimate the effective nuclear charge experienced by the valence electron. (b) The energy of an electron in a one-electron atom or ion equals where Z is the nuclear charge and n is the principal quantum number of the electron. Estimate the first ionization energy of Li. (c) Compare the result of your calculation with the value reported in Table 7.4, and explain the difference. (d) What value of the effective nuclear charge gives the proper value for the ionization energy? Does this agree with your explanation in (c)? Larson-Foothill College 23 Problems From Text (Time permitting) Consider the gas-phase transfer of an electron from a sodium atom to a chlorine atom: (a) Write this reaction as the sum of two reactions, one that relates to an ionization energy and one that relates to an electron affinity. (b) Use the result from part (a), data in this chapter, and Hess s law to calculate the enthalpy of the above reaction. Is the reaction exothermic or endothermic? (c) The reaction between sodium metal and chlorine gas is highly exothermic and produces NaCl(s), whose structure was discussed in Section 2.6. Comment on this observation relative to the calculated enthalpy for the aforementioned gas-phase reaction. Larson-Foothill College 24

13 Alkali Metals Very reactive because of low ionization energy. Easily oxidized. Very good reducing agents. Found only as compounds in nature. Low melting points and densities when pure. All will form metal hydrides: 2 Na(s) + H 2 (g) > 2 NaH(s) All will react with water to form hydroxides and H 2 : 2 Na(s) + 2 H 2 O(l) > 2 NaOH(aq) + H 2 (g) Reactivity increases down the column, why? (a) The reaction of lithium is evidenced by the bubbling of escaping hydrogen gas. (b) The reaction of sodium is more rapid and is so exothermic that the hydrogen gas produced burns in air. (c) Potassium reacts almost explosively. Larson-Foothill College 25 Alkaline Earth Metals Harder and more dense than alkali metals. Not as reactive. Generally don t form metal hydrides. All form stable oxides, their most common form in nature. Only Ca, Sr and Ba react with water at room temperature to form hydroxides: Ca(s) + 2 H 2 O(l) > Ca(OH) 2 (aq) + H 2 (g) Reactivity again increases down the column. Why? Calcium metal reacts with water to form hydrogen gas and aqueous calcium hydroxide, Ca(OH)2(aq). The colors of firework displays originate from the characteristic emissions of elements, including the alkaline earths. Strontium oxide, SrO(s) Larson-Foothill College 26

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY 8.1 Elements are listed in the periodic table in an ordered, systematic way that correlates with a periodicity of their chemical and physical properties.

More information

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a. Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a

More information

Chapter 3, Elements, Atoms, Ions, and the Periodic Table

Chapter 3, Elements, Atoms, Ions, and the Periodic Table 1. Which two scientists in 1869 arranged the elements in order of increasing atomic masses to form a precursor of the modern periodic table of elements? Ans. Mendeleev and Meyer 2. Who stated that the

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

More information

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

TRENDS IN THE PERIODIC TABLE

TRENDS IN THE PERIODIC TABLE Noble gases Period alogens Alkaline earth metals Alkali metals TRENDS IN TE PERIDI TABLE Usual charge +1 + +3-3 - -1 Number of Valence e - s 1 3 4 5 6 7 Electron dot diagram X X X X X X X X X 8 Group 1

More information

CHAPTER 8 THE PERIODIC TABLE

CHAPTER 8 THE PERIODIC TABLE CHAPTER 8 THE PERIODIC TABLE 8.1 Mendeleev s periodic table was a great improvement over previous efforts for two reasons. First, it grouped the elements together more accurately, according to their properties.

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11 Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

Exam 2 Chemistry 65 Summer 2015. Score:

Exam 2 Chemistry 65 Summer 2015. Score: Name: Exam 2 Chemistry 65 Summer 2015 Score: Instructions: Clearly circle the one best answer 1. Valence electrons are electrons located A) in the outermost energy level of an atom. B) in the nucleus of

More information

Look at a periodic table to answer the following questions:

Look at a periodic table to answer the following questions: Look at a periodic table to answer the following questions: 1. What is the name of group 1? 2. What is the name of group 2? 3. What is the name of group 17? 4. What is the name of group 18? 5. What is

More information

Periodic Trends for Electronegativity... 1. Periodic Trends for Ionization Energy... 3. Periodic Trends for Electron Affinity... 5

Periodic Trends for Electronegativity... 1. Periodic Trends for Ionization Energy... 3. Periodic Trends for Electron Affinity... 5 Periodic Trends Periodic trends are certain patterns that describe specific aspects of the elements in the periodic table, such as size and properties with electrons. The main periodic trends include:

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

CHAPTER 8 PERIODIC RELATIONSHIPS AMONG THE ELEMENTS

CHAPTER 8 PERIODIC RELATIONSHIPS AMONG THE ELEMENTS CHAPTER 8 PERIODIC RELATIONSHIPS AMONG THE ELEMENTS Problem Categories Conceptual: 8.55, 8.56, 8.69, 8.89, 8.90, 8.101, 8.109, 8.112, 8.117, 8.121, 8.122, 8.127, 8.128, 8.129, 8.133, 8.138. Descriptive:

More information

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution Oxides; acidic, basic, amphoteric Classification of oxides - oxide

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

Lewis Dot Structures of Atoms and Ions

Lewis Dot Structures of Atoms and Ions Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table 5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Atomic Structure. Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells

Atomic Structure. Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells Atomic Structure called nucleons Name Mass Charge Location Protons 1 +1 Nucleus Neutrons 1 0 Nucleus Electrons 1/1837-1 Orbit nucleus in outer shells The number of protons equals the atomic number This

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

CHAPTER REVIEW. 3. What category do most of the elements of the periodic table fall under?

CHAPTER REVIEW. 3. What category do most of the elements of the periodic table fall under? CHAPTER REVIEW EVIEW ANSWERS 1. alkaline-earth metals 2. halogens 3. metals. electron affinity 5. actinides 6. answers should involve the transmutation of one element to another by a change in the number

More information

Chapter 2 Atoms, Molecules, and Ions

Chapter 2 Atoms, Molecules, and Ions Chapter 2 Atoms, Molecules, and Ions 1. Methane and ethane are both made up of carbon and hydrogen. In methane, there are 12.0 g of carbon for every 4.00 g of hydrogen, a ration of 3:1 by mass. In ethane,

More information

GROUP II ELEMENTS. Beryllium to Barium

GROUP II ELEMENTS. Beryllium to Barium 1 GROUP II ELEMENTS Beryllium to Barium Introduction Elements in Group I (alkali metals) and Group II (alkaline earths) are known as s-block elements because their valence (bonding) electrons are in s

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number

Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number Name: ate: 1. In the modern, the elements are arranged in order of increasing. atomic number. mass number. oxidation number. valence number 5. s the elements in Group I are considered in order of increasing

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.

Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period. hem 150 Answer Key roblem et 2 1. omplete the following phrases: Ionization energy _decreases from the top to the bottom in a group. Electron affinity increases from the left to the right within a period.

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Unit 3: Quantum Theory, Periodicity and Chemical Bonding Selected Honour Chemistry Assignment Answers pg. 9 Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 7: The Electronic Structure of Atoms (pg. 240 to 241) 48. The shape of an s-orbital is

More information

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES PRACTICE EXAMPLES 1A 1B A B A Atomic size decreases from left to right across a period, and from bottom to top in a family. We expect the smallest

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

Sample Exercise 2.1 Illustrating the Size of an Atom

Sample Exercise 2.1 Illustrating the Size of an Atom Sample Exercise 2.1 Illustrating the Size of an Atom The diameter of a US penny is 19 mm. The diameter of a silver atom, by comparison, is only 2.88 Å. How many silver atoms could be arranged side by side

More information

PROTONS AND ELECTRONS

PROTONS AND ELECTRONS reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of

More information

KEY. Honors Chemistry Assignment Sheet- Unit 3

KEY. Honors Chemistry Assignment Sheet- Unit 3 KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

Topic 8 Acids and bases 6 hours

Topic 8 Acids and bases 6 hours Topic 8 Acids and bases 6 hours Hydronium ion (H3O + ) = more stable form of hydrogen ion (H + ) H + + H2O H3O + 8.1 Theories of acids and bases 2 hours 1. Arrhenius H-X / M-OH ACID a substance that dissociates

More information

Chapter 4 Chemical Reactions

Chapter 4 Chemical Reactions Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

Be (g) Be + (g) + e - O (g) O + (g) + e -

Be (g) Be + (g) + e - O (g) O + (g) + e - 2.13 Ionisation Energies Definition :First ionisation energy The first ionisation energy is the energy required when one mole of gaseous atoms forms one mole of gaseous ions with a single positive charge

More information

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

More information

Periodic Table Trends in Element Properties Ron Robertson

Periodic Table Trends in Element Properties Ron Robertson Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together

More information

Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

More information

Section 11.3 Atomic Orbitals Objectives

Section 11.3 Atomic Orbitals Objectives Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location

More information

Elements, Atoms & Ions

Elements, Atoms & Ions Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

More information