Magnetic Dipoles. Recall that an electric dipole consists of two equal but opposite charges separated by some distance, such as in

Size: px
Start display at page:

Download "Magnetic Dipoles. Recall that an electric dipole consists of two equal but opposite charges separated by some distance, such as in"

Transcription

1 MAGNETISM History of Magnetism Bar Magnets Magnetic Dipoles Magnetic Fields Magnetic Forces on Moving Charges and Wires Electric Motors Current Loops and Electromagnets Solenoids Sources of Magnetism Spin & Orbital Dipole Moments Permanent Magnets Earth s Magnetic Field Magnetic Flux Induced Emf and Current Generators Crossed Fields

2 History of Magnetism The first known magnets were naturally occurring lodestones, a type of iron ore called magnetite (Fe 3 O 4 ). People of ancient Greece and China discovered that a lodestone would always align itself in a longitudinal direction if it was allowed to rotate freely. This property of lodestones allowed for the creation of compasses two thousand years ago, which was the first known use of the magnet. In 1263 Pierre de Maricourt mapped the magnetic field of a lodestone with a compass. He discovered that a magnet had two magnetic poles North and South poles. In the 1600's William Gilbert, physician of Queen Elizabeth I, concluded that Earth itself is a giant magnet. In 1820 the Danish physicist Hans Christian Ørsted discovered an electric current flowing through a wire can cause a compass needle to deflect, showing that magnetism and electricity were related.

3 History (cont.) In 1830 Michael Faraday (British) and Joseph Henry (American) independently discovered that a changing magnetic field produced a current in a coil of wire. Faraday, who was perhaps the greatest experimentalist of all time, came up with the idea of electric and magnetic fields. He also invented the dynamo (a generator), made major contributions to chemistry, and invented one of the first electric motors In the 19th century James Clerk Maxwell, a Scottish physicist and one of the great theoreticians of all times, mathematically unified the electric and magnetic forces. He also proposed that light was electromagnetic radiation. In the late 19 th century Pierre Curie discovered that magnets loose their magnetism above a certain temperature that later became known as the Curie point. In the 1900's scientists discover superconductivity. Superconductors are materials that have a zero resistance to a current flowing through them when they are a very low temperature. They also exclude magnetic field lines (the Meissner effect) which makes magnetic levitation possible.

4 Magnetic Dipoles Recall that an electric dipole consists of two equal but opposite charges separated by some distance, such as in _ a polar molecule. Every magnet is a magnetic dipole. A bar magnet is a simple example. Note how the E field due an electric dipole is just like the magnetic field (B field) of a bar magnet. Field lines emanate from the + or N pole and reenter the - or S pole. Although they look the same, they are different kinds of fields. E fields affect any charge in the vicinity, but a B field only affects moving charges. As with charges, opposite poles attract and like poles repel. - + Electric dipole and E field S N Magnetic dipole and B field

5 Magnetic Monopole Don t Exist We have studied electric fields to due isolated + or - charges, but as far as we know, magnetic monopole do not exist, meaning it is impossible to isolate a N or S pole. The bar magnet on the left is surrounded by iron filings, which orient themselves according to the magnetic field they are in. When we try to separate the two poles by breaking the magnet, we only succeed in producing two distinct dipoles (pic on right). Bar magnet demo

6 Magnetic Fields You have seen that electric fields and be uniform, nonuniform and symmetric, or nonuniform and asymmetric. The same is true for magnetic fields. (Later we ll see how to produce uniform magnetic fields with a current flowing through a coil called a solenoid.) Regardless of symmetry or complexity, the SI unit for any E field is the N/C, since by definition an electric field is force per unit charge. Because there are no magnetic monopoles, there is no analogous definition for B. However, regardless of symmetry or complexity, there is only one SI unit for a B field. It is called a tesla and its symbol is T. The coming slides will show how to write a tesla in terms of other SI units. The magnetic field vector is always tangent to the magnetic field. Unlike E fields, all magnetic field lines that come from the N pole must land on the S pole--no field lines go to or come from infinity.

7 Force Due to Magnetic Field The force exerted on a charged particle by a magnetic field is given by the vector cross product: F = force (vector) q = charge on the particle (scalar) v = velocity of the particle relative to field (vector) B = magnetic field (vector) F = q v B Recall that the magnitude of a cross is the product of the magnitudes of the vectors times the sine of the angle between them. So, the magnitude of the magnetic force is given by F = q v B sin where is angle between q v and B vectors.

8 Cross Product Review Let v 1 = x 1, y 1, z 1 and v 2 = x 2, y 2, z 2. By definition, the cross product of these vectors (pronounced v 1 cross v 2 ) is given by the following determinant. i j k v 1 v 2 = x 1 y 1 z 1 x 2 y 2 z 2 = (y 1 z 2 - y 2 z 1 ) i - (x 1 z 2 - x 2 z 1 ) j + (x 1 y 2 - x 2 y 1 ) k Note that the cross product of two vectors is a vector itself that is to each of the original vectors. i, j, and k are the unit vectors pointing, along the positive x, y, and z axes, respectively. (See the vector presentation for a review of determinants.)

9 Right Hand Rule Review A quick way to determine the direction of a cross product is to use the right hand rule. To find a b, place the knife edge of your right hand (pinky side) along a and curl your hand toward b, making a fist. Your thumb then points in the direction of a b. It can be proven that the magnitude of is given by: a b a b = a b sin where is the angle between a and b. a b a b

10 1 N = 1 C (m/ s) (T) Magnetic Field Units F = q v B sin From the formula for magnetic force we can find a relationship between the tesla and other SI units. The sine of an angle has no units, so 1 T = 1 N C (m / s) 1 N A m A magnetic field of one tesla is very powerful magnetic field. Sometimes it may be convenient to use the gauss, which is equal to 1/10,000 of a tesla. Earth s magnetic field, at the surface, varies but has the strength of about one gauss. =

11 Direction of Magnetic Field & Force Near the poles, where the field lines are close together, the field is very strong (so the field vector are drawn longer). Anywhere in the field the mag. field vector is always tangent to the mag. field line there. The + charge in the pic in moving into the page. Since q is +, the q v vector is also into the page. The - charge is moving to the right, so the q v vector is to the left. The mag. force vector is always to plane formed by the q v vector and the B vector. The force on the - charge is into the page. If a charge is motionless relative to the field, there is no magnetic force on it, but if either a magnet is moving or a charge is moving, there could a force on the charge. If a charge moves parallel to a magnetic field, there is no magnetic force on it, since sin 0 = 0. B F + B - v

12 Magnetic Field & Force Practice Find the direction of the magnetic force or velocity: 1. A + charge at P is moving out of the page. 2. A - charge at Q is moving out of the page. 3. A - charge at Q is moving to the right. 4. A + charge at Q is moving up. 5. A - charge at R is moving up and to the left. 6. A + charge at R is moving down and to the right. 7. A - charge at R feels a force into the page. 8. A + charge at P feels a force out of the page. 9. A - charge at Q feels an upward force. Q P R

13 Magnetic Force Sample Problem This magnet is similar to a parallel plate capacitor in that there is a strong uniform field between its poles with some fringing on the sides. Suppose the magnetic field strength inside is 0.07 T and a 4.3 mc charge is moving through the field at right angle to the field lines. How strong and which way is the magnetic force on the charge? Answer: S F = q v B F = q v B since sin 90 = m/s N N So, F = N directed out of the page.

14 Motion of a Charge in a Magnetic Field The s represent field lines pointing into the page. A positively charged particle of mass m and charge q is shot to the right with speed v. By the right hand rule the magnetic force on it is up. Since v is to B, F = F B = q v B. Because F is to v, it has no tangential component; it is entirely centripetal. Thus F causes a centripetal acceleration. As the particle turns so do v and F, and if B is uniform the particle moves in a circle. This is the basic idea behind a particle accelerator like Fermilab. Since F is a centripetal force, F = F C = m v 2 / R. Let s see how speed, mass, charge, field strength, and radius of curvature are related: R F B + q, m v F B = F C q v B = m v 2 / R m v R = q B

15 Continued Magnetic Force on a Current Carrying Wire A section of wire carrying current to the right is shown in a uniform magnetic field. We can imagine positive charges moving to right, each feeling a magnetic force out of the page. This will cause the wire to bow outwards. Shown on the right is the view as seen when looking at the N pole from above. The dots represent a uniform mag. field coming out of the page. The mag. force on the wire is proportional to the field strength, the current, and the length of the wire. S N I I B

16 Magnetic Force on a Wire (cont.) Current is the flow of positive charge. As a certain amount of charge, q, moves with speed v through a wire of length L, the force of this quantity of charge is: F = q v B Over the time period t required for the charge to traverse the length of the wire, we have: F = (q / t ) v t B Since q / t = I and v t = L, we can write: F = I L B I B where L is a vector of magnitude L pointing in the direction of I.

17 Electric Motor I I F } d I I B Current along with a magnetic field can produce torque. This is the basic idea behind an electric motor. Above is a wire loop (purple) carrying a current provided by some power source like a battery. The current loop is submerged in an external field. From F = I L B, the force vectors in black are perpendicular to their wire segments. The net force on the loop is zero, but the net torque about the center is nonzero. The forces on the left and right wires produce no torque since the moment arm is zero for each (they point right at the center). However, the force F on the top wire (in the background) has a moment arm d, so it produces a torque F d. The bottom wire (in the foreground) produces the same torque. These torques work together to rotate the loop, converting electrical energy into mechanical energy. Continued

18 Electric Motor (cont.) As the loop turns it eventually reaches a vertical position (the plane of the loop parallel to the field). This is when the moment arms of the forces on the top and bottom wires are the longest, so this is where the torque is at a max. 90 later the loop will be perpendicular to the field. Here all moment arms and all torques are zero. This is the equilibrium point. The angular momentum of the loop, however, will allow it to swing right through this position. Now is when the current must change direction, otherwise the torques will attempt to bring the loop back to the equilibrium. This would amount to simple harmonic motion of the loop, which is not particularly useful. If the current changes direction every time the loop reach equilibrium, the loop will spin around in the same direction indefinitely. Although a battery only pumps current in one direction, the change in direction of current can be accomplished with help of a commutator, as can be seen with these animations: Animation 1 Animation 2

19 Electromagnets: Straight Wire Permanent magnets aren t the only things that produce magnetic fields. Moving charges themselves produce magnetic fields. We just saw that a current carrying wire feels a force when inside an external magnetic field. It also produces its own magnetic field. A long straight wire produces circular field lines centered on the wire. To find the direction of the field, we use another right hand rule: point your thumb in the direction of the current; the way your fingers of your right hand wrap is the direction of the magnetic field. B diminishes with distance from the wire. The pics at the right show cross sections of a current carrying wire. I I out of page, B counterclockwise I into page, B clockwise B

20 Straight Wire Practice Draw some magnetic field lines (loops in this case) along the wire. I Using x s and dots to represent vectors out of and into the page, show the magnetic field for the same wire. Note B diminishes with distance from the wire. B out of page B into page I

21 Current Loops and Magnetic Fields The magnetic field inside a current loop tends to be strong; outside, it tends to be weak. Here s why: Using the right hand rule we see that each length of wire contributes to a B field into the page (all lengths reinforcing one another). Outside the loop, say at P, the field is weak since the left side of the wire produces a field out of the page, but the right side produces a field into the page. Explain why the field is weak above the top wire. The situation is the same with a circular loop. The effect is magnified with multiple turns of wire. Yet another right hand rule helps with current loops: Wrap your right hand in the direction of the loop and your thumb points in the direction of B inside. This is reminiscent of angular momentum for a spinning body. I I P weak field outside I strong field inside loop, directed into page I strong field into page I weak field

22 Current Loops and Bar Magnets Notice how similar the magnetic field of a current loop is to that of a simple bar magnet. Wrap your right hand along the loop in the direction of the current and your thumb points in the direction of the north pole of your electromagnet. Note also how the field lines are very close together inside the loop, just as they are when they thread through a bar magnet. I

23 Solenoids Solenoids are one of the most common electromagnets. Solenoids consist of a tightly wrapped coil of wire, sometimes around an iron core. The multiple loops and the iron magnify the effect of the single loop electromagnet. A solenoid behaves as just like a simple bar magnet but only when current is flowing. The greater the current and the more turns per unit length, the greater the field inside. An ideal solenoid has a perfectly uniform magnetic field inside and zero field outside.

24 How Solenoids Work The cross section of a solenoid is shown. At point P inside the solenoid, the B field is a vector sum of the fields due to each section of wire. Note from the table that each section of wire produce a field vector with a component to the right, resulting in a strong field inside. In the ideal case the magnetic field would be uniform inside and zero outside. Wire Sections Direction of B 1-3 Up & Right 4 Right 5-8 Down & Right 9-11 Down & Right 12 Right Up & Right B = B P x x x x x x x x I out of the page I into the page

25 Solenoids and Bar Magnets A solenoid produces a magnetic field just like a simple bar magnet. Since it consists of many current loops, the resemblance to a bar magnet s field is much better than that of a single current loop.

26 Sources of Magnetism We have seen charges in motion (as in a current) produce magnetic fields. This is one source of magnetism. Another source is the electron itself. Electrons behave as if they were tiny magnets. Quantum mechanics is required to explain fully the magnetic properties of electrons, but it is helpful to relate these properties back to the motion of charges. Every electron in an atom behaves as a magnet in two ways, each having two magnetic dipole moments: Spin magnetic dipole moment - due to the rotation of an electron. Orbital magnetic dipole moment - due to the revolution of an electron about the nucleus. Note: Electrons are not actually little balls that rotate and revolve like planets, but imagining them this way is useful when explaining magnetism without quantum mechanics.

27 Spin Magnetic Dipole Moment Just as electrons have the intrinsic properties of mass and charge, they have an intrinsic property called spin. This means that electrons, by their very nature, possess these three attributes. You re already comfortable with the notions of charge and mass. To understand spin it will be helpful to think of an electron as a rotating sphere or planet. However, this is no more than a helpful visual tool. Imagine an electron as a soccer ball smeared with negative charge rotating about an axis. By the right hand rule, the angular momentum of the ball due to its rotation points down. But since its charge is negative, the spinning ball is like a little current loop flowing in the direction opposite its rotation, and the ball becomes an electromagnet with the N pole up. For an electron we would say its spin magnetic dipole moment vector, μ s, points up. Because of its spin, an electron is like a little bar magnet μ s I N S

28 Orbital Magnetic Dipole Moment Imagine now a planet that not only rotates but also revolves around its star. If the planet had a net charge, its rotation would give it a spin magnetic dipole moment, and its revolution would give it an orbital magnetic dipole moment. Charge in motion once again produces a magnetic field. Since an electron s charge is negative, its orbit is like a current loop in the opposite direction. By the right hand rule, the angular momentum vector in the pic below would point down and the orbital magnetic dipole moment, μ orb, points up. An orbiting electron behaves like a tiny electromagnet with its N pole in the direction of μ orb. Remember, though, that in reality electrons are not like little planets. In quantum mechanics, instead of circular orbits we speak of electrons behaving like waves and we can only talk of their positions in terms of probabilities. μ orb N - I S

29 Materials and Magnetism Each electron in an atom has two magnetic dipole moments associated with it, one for spin, and one for orbit. Each is a vector. These two dipole moments combine vectorially for each electron. The resultant vectors from each electron then combine for the whole atom, often canceling each other out. For most materials the net dipole moment for each atom is about zero. For some materials each atom has a nonzero dipole moment, but because the atoms have all different orientations, the material as a whole remains nonmagnetic. Ferromagnetic materials, like iron, are comprised of atoms that each have net dipole moment. Furthermore, all the atoms have the same alignment, at least within very tiny regions called domains. The domains can have different orientations, though, leaving the iron nonmagnetic except when placed in an external field. Permanent magnets are produced when the domains in a ferromagnetic material are aligned.

30 Each atom in a ferromagnetic material like iron is like a little magnet, and these magnets are all aligned in tiny regions called domains. At high temps these domains can align in the presence of an external field (like Earth s) leaving a permanent magnet. This happens at the Mid-Atlantic Ridge beneath the Atlantic Ocean. Permanent Magnets Lets melt the iron, and bring in a magnetic field. Now, when we let the solid cool down, and take away the external magnetic field, we have formed a permanent magnet in the same direction as external field. Temp Melting point Domains Bar Magnet

31 Earth s Magnetic Field N M 11.5 N G μ orb Earth s field looks similar to what we d expect if there were a giant bar magnet imbedded inside it, but the dipole axis of this magnet is offset from the axis of rotation by Also, the south pole of this magnet is near the geographic north pole, N G. A compass points in the direction of the magnetic north pole, N M, around which the field lines reenter Earth s surface. (Magnetic north is actually the south pole of Earth s magnetic dipole.) N M, which is currently located in Greenland, drifts about over the centuries. About every million years Earth s field reverses entirely, as we know from the orientations of magnetic fields near the Mid-Atlantic Ridge. The field is likely due to the motion of charged particles in the fluid outer core, and it protects us from an otherwise deadly solar wind.

32 Magnetic Fields: Overview Although the magnetic properties of electrons must ultimately be explained with quantum mechanics, we can think of magnetism arising whenever we have charge in motion. This motion can be that of an electron (either spinning or orbiting) or it can be in the form of a current. Remember: moving charges produce magnetic fields, and external magnetic fields exert a magnetic force on moving charges (at least if the charge has a component of its velocity perpendicular to the field).

33 Magnetic Flux Magnetic flux, informally speaking, is a measure of the amount of magnetic field lines going through an area. If the field is uniform, flux is given by: Ф B = B A = B A cos The area vector in the dot product is a vector that points perpendicular to the surface and has a magnitude equal to the area of the surface. Imagine you re trying to orient a window so as to allow the maximum amount of light to pass through it. To do this you would, of course, align A with the light rays. With = 0, cos = 1, and the number of light rays passing through the window (the flux) is a max. Note: with the window oriented parallel to the rays, = 90 and Ф B = 0 (no light enters the window). The SI unit for magnetic flux is the tesla-square meter: T m 2. This is also know as a weber (Wb). A

34 Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux. These facts were discovered by Michael Faraday and represent a key connection between electricity and magnetism. One simple example of this is a magnet moving in and out of a wire loop. As a bar magnet approaches a wire loop along a line perpendicular to the loop, more and more field lines poke through the loop and the flux increases. To oppose this change in flux a current is induced in the direction shown. Note that the induced current produces its own magnetic field pointing to the right. Also note that there is no battery in the loop! This current N S will only exist when the flux inside the loop changes. When the magnet is withdrawn the flux v decreases and current is induced in the other direction. There is no Java script current when the magnet is still. I

35 Induced emf s and Currents The current induced in a loop come not from a battery but from a changing magnetic flux. We can think of the loop containing an imaginary battery that gets turned on whenever flux in the loop changes. The strength of this battery is called the emf (electromotive force); it s symbol is a script E:, and it s measured in volts. The induced current is given by: I = / R where R is the internal resistance in the loop. itself depends on the rate at which the flux inside the loop is changing. If the flux is changing at a constant rate, = - Ф B / t This Faraday s law. The negative sign here indicates the emf opposes the change in flux. The greater the change in flux the greater, the greater the induced emf, and greater the induced current.

36 Electromagnetic Induction: Practice For each scenario determine the direction of the induced emf and current. wire loop B increasing B decreasing B very large but constant B increasing B decreasing B increasing

37 Induction: Nonuniform, Static Fields y x B is static (constant in time). It is uniform in space in the y and z directions but not in the x direction. B decreases as x increases. As the rectangular loop is moved in the following directions, determine the direction of the induced emf and current as well as the direction of the net force on the loop by the field. Loop motion: 1. Left 2. Right 3. Up 4. Down 5. In 6. Out B is uniform here but only in the region shown. Beyond this region B is approximately zero. As the loop is pulled out of the field determine the direction of the induced emf and current as well as the direction of the net force on the loop. Do the same as the loop is pushed into the field.

38 Electric Generators In a motor we have seen that a current loop in an external magnetic field produces a torque on the loop. In a generator we ll see that a torque on a current loop inside a magnetic field produces a current. In summary: Motor: Current + Magnetic field Torque Generator: Torque + Magnetic field Current Turbines in a power plant are usually rotated either by a waterfall or by steam created heat produced from nuclear power or the burning of coal. As the turbines rotate, current loops turn through a magnetic field to generate electricity. This process converts mechanical energy into electrical energy. The simplest form of an electric generator is called an alternating current (AC) generator. The current produced by an AC generator switches directions every time the wire inside of it is rotated through a half turn. In the United States, generator generally have a frequency of 60 Hz, which means the current switches direction 120 times every second! A graph of the current output from an AC generator produces a sinusoidal curve due to the periodic nature of the generator s rotation. Continued

39 Electric Generator (cont.) Animation I induced B As a turbine turns (due to some power source like coal) a current loop (purple) is rotated inside a magnetic field. The field is static but as the loop turns as the number of field lines poking through it changes. Thus we have a changing flux and a corresponding induced emf and current. The pic shows a loop just after it was horizontal (perpendicular to the field). The flux is decreasing since the loop is becoming more vertical. Since fewer field lines are entering the loop, the induced current is in a direction to produce more field lines downward. Just prior to this, as the loop was approaching horizontal, the number of field lines inside it was increasing, so the current was in the other direction to oppose this change. The current changes direction twice with each turn--whenever the loop is horizontal. The result here is AC, but (direct current) DC motors exist as well in which current only flows in one direction.

40 Electric & Magnetic Fields Picture tubes in standard televisions are basically cathode ray tubes (CRT s). In a CRT electrons are shot from a hot filament into a region of crossed fields in which a magnetic field is perpendicular to an electric field. On the other side of the crossed fields is a fluorescent screen (not shown) where electrons produce spots of light when they make contact with it. J. J. Thompson used a CRT to discover the electron in When the charge enters the fields, F E is up and F B is down. By adjusting B and measuring the deflection of the electrons, Thompson determined that they were negatively charged and calculated their mass to charge ratio. Let s find a relationship between q, B, and E if there is no deflection at all: F net = 0 F B = F E q v B = q E v = - q, m v E B B E

41 How speakers work Bestiary of magnetic minerals History of magnets Magnetite Slide show Best ever site for pictures, simple explanations, etc. Another good site for how magnets work Equations and such See also: Credits How a metal detector works How a compass is oriented magnetically How Faraday did his current experiment How a hard drive works How magnet lines is working How two magnets repel and attract Nuclear spin up/down Pulsed magnets

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

More information

Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.

Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other. Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Magnetic Field of a Circular Coil Lab 12

Magnetic Field of a Circular Coil Lab 12 HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero! Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

More information

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Magnetic fields of charged particles in motion

Magnetic fields of charged particles in motion C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE

More information

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0 1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 30 - Magnetic Fields and Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

More information

Magnetostatics (Free Space With Currents & Conductors)

Magnetostatics (Free Space With Currents & Conductors) Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary

More information

Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

More information

physics 112N magnetic fields and forces

physics 112N magnetic fields and forces physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

More information

Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

More information

Direction of Induced Current

Direction of Induced Current Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

More information

The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor. Physics 1051 Laboratory #5 The DC Motor The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Inductance. Motors. Generators

Inductance. Motors. Generators Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

More information

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Quiz: Work and Energy

Quiz: Work and Energy Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with

More information

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Physics 2B. Lecture 29B

Physics 2B. Lecture 29B Physics 2B Lecture 29B "There is a magnet in your heart that will attract true friends. That magnet is unselfishness, thinking of others first. When you learn to live for others, they will live for you."

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles. Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south

More information

Electromagnetic Induction: Faraday's Law

Electromagnetic Induction: Faraday's Law 1 Electromagnetic Induction: Faraday's Law OBJECTIVE: To understand how changing magnetic fields can produce electric currents. To examine Lenz's Law and the derivative form of Faraday's Law. EQUIPMENT:

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

CHAPTER 5: MAGNETIC PROPERTIES

CHAPTER 5: MAGNETIC PROPERTIES CHAPTER 5: MAGNETIC PROPERTIES and Magnetic Materials ISSUES TO ADDRESS... Why do we study magnetic properties? What is magnetism? How do we measure magnetic properties? What are the atomic reasons for

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Aircraft Electrical System

Aircraft Electrical System Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

More information

FORCE ON A CURRENT IN A MAGNETIC FIELD

FORCE ON A CURRENT IN A MAGNETIC FIELD 7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

More information

Mapping the Magnetic Field

Mapping the Magnetic Field I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Chapter 29: Magnetic Fields

Chapter 29: Magnetic Fields Chapter 29: Magnetic Fields Magnetism has been known as early as 800C when people realized that certain stones could be used to attract bits of iron. Experiments using magnets hae shown the following:

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples

Magnetic Circuits. Outline. Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples Magnetic Circuits Outline Ampere s Law Revisited Review of Last Time: Magnetic Materials Magnetic Circuits Examples 1 Electric Fields Magnetic Fields S ɛ o E da = ρdv B V = Q enclosed S da =0 GAUSS GAUSS

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information