Measurement. Volume It All Stacks Up. Activity:


 Brian Banks
 7 years ago
 Views:
Transcription
1 Measurement Activity: TEKS: Overview: Materials: Grouping: Time: Volume It All Stacks Up (7.9) Measurement. The student solves application problems involving estimation and measurement. The student is expected to: (B) connect models for volume of prisms (triangular and rectangular) and cylinders to formulas of prisms (triangular and rectangular) and cylinders; and (C) estimate measurements and solve application problems involving volume of prisms (rectangular and triangular) and cylinders. Students will develop a conceptual understanding of volume as iteration of cubic units occupying space. Students will discover the formulas for the volume of rectangular and triangular prisms and cylinders by estimating volumes using concrete objects. Students will solve estimation problems involving volume using concrete materials and formulas. Per Group 1inch grid paper (2 sheets) 1inch cubes 1centimeter grid paper (2 sheets) Linking 1centimeter cubes Rulers or tape measures with metric and customary units Stacks of small paper plates Sets of 30 cardstock circles (use die cuts) Stacks of square Postit notes, rectangular Postit, note cards playing cards or any other rectangular objects that are relatively flat and will form stacks Sets of triangles (use diecuts) or Tangrams Per Student Student recording sheet 34 students per group 50 minutes Lesson: 1. Open by posing the following situation to students: A company is trying to determine shipping costs for their product. The number of boxes that fit into each container will determine the shipping costs. The The 1inch cubes and 1 centimeter cubes will represent the boxes that are to be packaged, as stacks of the 2 dimensional nets. VolumeIt All Stacks Up Page 1
2 containers are different shapes, but all are the same height. Your job is to help them decide on shipping costs based on the size of each container. 2. Each student group will need 2 sheets of 1 inch and 1centimeter grid paper and 1inch and 1centimeter cubes. Groups will have objects to stack, enough to stack to about 3 inches tall. Objects should include rectangles, squares, circles and triangles on thick card stock. (See materials list.) Students will begin by tracing the area of one figure on both sheets of 1inch grid paper. Ask students to justify why area is 2 dimensional. Ask students to give examples of units used when measuring area. Students will estimate the area by finding the mean of the inner and outer area. Students are to record their estimates. Next students will start to stack the congruent shapes, to a height of the about 3inches to create the 3 dimensional shape. Ask students to explain the change in dimensions as they continue to stack the shapes? Ask students to explain how the change in the dimensions changes the units of measurement? The 2dimensional shape that students trace on the grid paper will later be clarified as one of the parallel bases of the prism or cylinder. The big idea is to get students to connect the prisms or cylinder volume to the volume formulas. Ask students questions about area and address misconceptions at this time. The big idea is to spiral the concept area as 2dimensional and provide examples of units. Revisiting area as 2dimensional will provide the connection to volume as 3dimensional, once the dimension of height is brought into the situation. The big idea here is that height adds a 3 rd dimension to be measured. Do not have students calculate the volume at this time. Have students give examples of units of measurement for volume. Students must justify why their responses. 3. Students will use the second sheet of 1inch grid paper for this second part of the Explain to students that they are going to estimate the volume in VolumeIt All Stacks Up Page 2
3 investigation. Using the other sheet of grid paper, students will stack the one inch cubes on top of the traced area to estimate the volume in cubic inches. Have students estimate the volume in cubic units before they begin stacking cubes. Have students predict if the estimate will be over or under the volume of the prism or cylinder that they built. They must justify their response. Students will begin stacking 1inch cubes by covering the area of the base that is traced on the gird paper. They will continue to stack cubes until they think they have the best estimate in cubic inches. Students must be able to justify why a cube is added or deleted to compensate or get a better cubic measurement. Students are to record the estimated volume on their recording sheet. 4. Now students will write their own volume formula to correspond with the prism or cylinder that they built. Use this formula to calculate the volume of their 3dimensional tower. Have students compare this volume to the estimated volume of the cubes cubic inches now that they have justified why volume is a 3 dimensional measurement. Explain the next procedure to students. Have them estimate the volume in cubic inches before they start to stack the cubes. The stacks of cubes may be irregular in shape if students decide that extra cubes are needed to compensate for empty spaces or students may remove cubes to adjust overages. The big idea here is that students create a volume formula that represents the repeated stacking of the areas, in other words that the volume is derived by multiplying the base times the height. Have students compare the two volumes and discuss why the volumes differ. 5. Have each group write the formula for their problem on the board. Ask the class to compare and contrast the formulas. How are the formulas alike? They should all include height as a Students will compare their estimated volume from the cubes to the calculated volume using the formula they derived. Different groups should have different formulas because the shape of the bases was different. Bases should include the area of circles, rectangles, squares, and triangles. All formulas should VolumeIt All Stacks Up Page 3
4 dimension of the cylinder or prism and the other variables represent the formulas for the area of the bases. How are the formulas different? The formulas for the bases are different, so the volume formulas or different because of the bases. Ask students to come up with a general formula to define volume for any prism or cylinder. 6. Ask students to describe a process for finding the area of the base of any prism if the volume is known. 7. Ask students to describe the process for finding the radius of a cylinder if the volume is known. V = Bh 2 V = πr h r include height. The general formula should be area of the base times the height of the cylinder or prism. V = Bh Grade 7 TEKS require students to compute the volume of rectangular prisms, including cubes, triangular prisms, and cylinders. Students should be able to demonstrate flexibility in solving problems that apply these formulas. Students should describe a process of unstacking the height of the prism, leaving the area of the base. Unstacking the height is repeated subtraction or division. Students should use division to unstack the height of the cylinder, leaving the area of the circular base A = πr 2. Students should describe the process of dividing the area by π to solve for radius squared. Check for students understanding of computing the square root to find the radius. If students are having difficulty with this concept, have students write the formula in words. Volume = pi radius radius height Volume pi( height = radius radius ) VolumeIt All Stacks Up Page 4
5 8. Pose the following problem to students: Suppose you are finding the volume of a triangular prism. The general formula is: V = Bh By substituting the area of the base B, with bh the formula for the area of a triangle A = 2 you get the following formula defining the volume of the triangular prism. bh V = h. Explain why the variable, h 2 could have two different values in the formula. Homework: Have students find three objects at home and calculate their volumes. Students can use grid paper to determine the area of the bases. From the general formula V = Bh have students write the extended formula for each object by substituting the formula for the area of the base. For example, a triangular prism: bh V = Bh rewrite as V = h 2 VolumeIt All Stacks Up Page 5
6 Volume It All Stacks Up Group Data Collection Sheet Grid Paper and Cubes Dimensions 3Dimensional Object Estimate with cubes Base (units) Height (units) Formula Volume (Units) Actual with Formulas from other Groups: Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Formula Similarities: Differences: General Formula for Volume of cylinders and prisms: VolumeIt All Stacks Up Page 6
Finding Volume of Rectangular Prisms
MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of threedimensional composite shapes.
More information1. Kyle stacks 30 sheets of paper as shown to the right. Each sheet weighs about 5 g. How can you find the weight of the whole stack?
Prisms and Cylinders Answer Key Vocabulary: cylinder, height (of a cylinder or prism), prism, volume Prior Knowledge Questions (Do these BEFORE using the Gizmo.) [Note: The purpose of these questions is
More informationVOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
More informationArea of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
More informationSURFACE AREA AND VOLUME
SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has
More informationVolume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.
Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game
More informationLateral and Surface Area of Right Prisms
CHAPTER A Lateral and Surface Area of Right Prisms c GOAL Calculate lateral area and surface area of right prisms. You will need a ruler a calculator Learn about the Math A prism is a polyhedron (solid
More informationArea of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in
More informationFilling and Wrapping: Homework Examples from ACE
Filling and Wrapping: Homework Examples from ACE Investigation 1: Building Smart Boxes: Rectangular Prisms, ACE #3 Investigation 2: Polygonal Prisms, ACE #12 Investigation 3: Area and Circumference of
More informationGAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book
GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18
More informationPerimeter, Area, and Volume
Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all
More informationArea of Parallelograms (pages 546 549)
A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular
More informationPerimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview
Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Summary of Lessons: This set of lessons was designed to develop conceptual understanding of the unique attributes
More informationGrade 5 Work Sta on Perimeter, Area, Volume
Grade 5 Work Sta on Perimeter, Area, Volume #ThankATeacher #TeacherDay #TeacherApprecia onweek 6. 12. Folder tab label: RC 3 TEKS 5(4)(H) Perimeter, Area, and Volume Cover: Reporting Category 3 Geometry
More informationArea of Circles. 2. Use a ruler to measure the diameter and the radius to the nearest half centimeter and record in the blanks above.
Name: Area of Circles Label: Length: Label: Length: A Part 1 1. Label the diameter and radius of Circle A. 2. Use a ruler to measure the diameter and the radius to the nearest half centimeter and recd
More informationLesson 11: Volume with Fractional Edge Lengths and Unit Cubes
Lesson : Volume with Fractional Edge Lengths and Unit Cubes Student Outcomes Students extend their understanding of the volume of a right rectangular prism with integer side lengths to right rectangular
More informationGeometry Notes VOLUME AND SURFACE AREA
Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate
More informationCBA Volume: Student Sheet 1
CBA Volume: Student Sheet 1 For each problem, decide which cube building has more room inside, or if they have the same amount of room. Then find two ways to use cubes to check your answers, one way that
More informationPerimeter is the length of the boundary of a two dimensional figure.
Section 2.2: Perimeter and Area Perimeter is the length of the boundary of a two dimensional figure. The perimeter of a circle is called the circumference. The perimeter of any two dimensional figure whose
More informationPizza! Pizza! Assessment
Pizza! Pizza! Assessment 1. A local pizza restaurant sends pizzas to the high school twelve to a carton. If the pizzas are one inch thick, what is the volume of the cylindrical shipping carton for the
More informationArea & Volume. 1. Surface Area to Volume Ratio
1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.
More informationPlatonic Solids. Some solids have curved surfaces or a mix of curved and flat surfaces (so they aren't polyhedra). Examples:
Solid Geometry Solid Geometry is the geometry of threedimensional space, the kind of space we live in. Three Dimensions It is called threedimensional or 3D because there are three dimensions: width,
More informationMATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 4 AREAS AND VOLUMES This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
More informationACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.
8. Volumes of Cones How can you find the volume of a cone? You already know how the volume of a pyramid relates to the volume of a prism. In this activity, you will discover how the volume of a cone relates
More informationB = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3
45 Volume Surface area measures the area of the twodimensional boundary of a threedimensional figure; it is the area of the outside surface of a solid. Volume, on the other hand, is a measure of the space
More informationTask: Representing the National Debt 7 th grade
Tennessee Department of Education Task: Representing the National Debt 7 th grade Rachel s economics class has been studying the national debt. The day her class discussed it, the national debt was $16,743,576,637,802.93.
More informationSection 7.2 Area. The Area of Rectangles and Triangles
Section 7. Area The Area of Rectangles and Triangles We encounter two dimensional objects all the time. We see objects that take on the shapes similar to squares, rectangle, trapezoids, triangles, and
More informationCylinder Volume Lesson Plan
Cylinder Volume Lesson Plan Concept/principle to be demonstrated: This lesson will demonstrate the relationship between the diameter of a circle and its circumference, and impact on area. The simplest
More informationSurface Area Quick Review: CH 5
I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find
More informationSession 8 Volume. cone cross section cylinder net prism sphere
Key Terms in This Session Previously Introduced volume Session 8 Volume New in This Session cone cross section cylinder net prism sphere Introduction Volume is literally the amount of space filled. But
More informationThink About This Situation
Think About This Situation A popular game held at fairs or parties is the jelly bean guessing contest. Someone fills a jar or other large transparent container with a known quantity of jelly beans and
More informationGeometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
More informationArea of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:
Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of
More informationVolume of Pyramids and Cones
Volume of Pyramids and Cones Objective To provide experiences with investigating the relationships between the volumes of geometric solids. www.everydaymathonline.com epresentations etoolkit Algorithms
More informationDemystifying Surface Area and Volume
Demystifying Surface and Volume CYLINDER 1. Use the net of the cylinder provided. Measure in centimeters and record the radius of the circle, and the length and width of the rectangle. radius = length
More informationStudent Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)
Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.
More informationWhat You ll Learn. Why It s Important
These students are setting up a tent. How do the students know how to set up the tent? How is the shape of the tent created? How could students find the amount of material needed to make the tent? Why
More informationArea is a measure of how much space is occupied by a figure. 1cm 1cm
Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number
More informationGeometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
More informationOverview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
More informationMENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
More informationSolids. Objective A: Volume of a Solids
Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular
More informationThe teacher gives the student a ruler, shows her the shape below and asks the student to calculate the shape s area.
Complex area Georgia is able to calculate the area of a complex shape by mentally separating the shape into familiar shapes. She is able to use her knowledge of the formula for the area of a rectangle
More informationSandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.
Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More informationPIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY
PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY The Student Handout is page 11. Give this page to students as a separate sheet. Area of Circles and Squares Circumference and Perimeters Volume of Cylinders
More information1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?
Student Name: Teacher: Date: District: Description: MiamiDade County Public Schools Geometry Topic 7: 3Dimensional Shapes 1. A plane passes through the apex (top point) of a cone and then through its
More information2. Complete the table to identify the effect tripling the radius of a cylinder s base has on its volume. Cylinder Height (cm) h
Name: Period: Date: K. Williams ID: A 8th Grade Chapter 14 TEST REVIEW 1. Determine the volume of the cylinder. Use 3.14 for. 2. Complete the table to identify the effect tripling the radius of a cylinder
More informationEMAT 6450  Mathematics in Context
Melissa Wilson EMAT 6450  Mathematics in Context Course/Unit: Accelerated Coordinate Algebra/Analytic Geometry A for Unit 9, Circles and Volume (This unit corresponds to Unit 3 in Analytic Geometry. The
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More informationSURFACE AREAS AND VOLUMES
CHAPTER 1 SURFACE AREAS AND VOLUMES (A) Main Concepts and Results Cuboid whose length l, breadth b and height h (a) Volume of cuboid lbh (b) Total surface area of cuboid 2 ( lb + bh + hl ) (c) Lateral
More informationShow that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
More informationTeacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 91.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
More informationBasic Math for the Small Public Water Systems Operator
Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the
More informationCalculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
More informationHigh School. High School. Page 1 Columbus Public Schools 8/11/04. Grids and Graphics
Page Columbus Public Schools 8//04 Table of Contents 0 by 0 Grids p. 3 20 by 20 Grids p. 4 Algebra Tiles Template p. 5 Bingo Card p. 6 Blank Geoboards p. 7 Blank Circle Graph p. 8 Blank Number Lines p.
More informationCHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
More informationFirst published in 2013 by the University of Utah in association with the Utah State Office of Education.
First published in 201 by the University of Utah in association with the Utah State Office of Education. Copyright 201, Utah State Office of Education. Some rights reserved. This work is published under
More informationGrade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
More informationMeasurement Length, Area and Volume
Length, Area and Volume Data from international studies consistently indicate that students are weaker in the area of measurement than any other topic in the mathematics curriculum Thompson & Preston,
More informationTab 9: Volume and Capacity Table of Contents
Tab 9: Volume and Capacity Table of Contents Master Materials List 9iii Foundations for Capacity and Volume 91 Handout 1Grade Level Expectations for Development of Attributes of Capacity and Volume
More informationGeometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
More informationSTATE GOAL 7: Estimate, make and use measurements of objects, quantities and relationships and determine acceptable
C 1 Measurement H OW MUCH SPACE DO YOU N EED? STATE GOAL 7: Estimate, make and use measurements of objects, quantities and relationships and determine acceptable levels of accuracy Statement of Purpose:
More informationTEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM
7 th Grade Math TAKSSTAARSTAARM Comparison Spacing has been deleted and graphics minimized to fit table. (1) Number, operation, and quantitative reasoning. The student represents and uses numbers in
More informationScale Factors and Volume. Discovering the effect on the volume of a prism when its dimensions are multiplied by a scale factor
Scale Factors and Discovering the effect on the volume of a prism when its dimensions are multiplied by a scale factor Find the volume of each prism 1. 2. 15cm 14m 11m 24m 38cm 9cm V = 1,848m 3 V = 5,130cm
More information2nd Semester Geometry Final Exam Review
Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular
More informationCalculating the Surface Area of a Cylinder
Calculating the Measurement Calculating The Surface Area of a Cylinder PRESENTED BY CANADA GOOSE Mathematics, Grade 8 Introduction Welcome to today s topic Parts of Presentation, questions, Q&A Housekeeping
More informationGeometry Unit 6 Areas and Perimeters
Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose
More informationDeveloping Conceptual Understanding of Number. Set J: Perimeter and Area
Developing Conceptual Understanding of Number Set J: Perimeter and Area Carole Bilyk cbilyk@gov.mb.ca Wayne Watt wwatt@mts.net Perimeter and Area Vocabulary perimeter area centimetres right angle Notes
More informationMATH STUDENT BOOK. 6th Grade Unit 8
MATH STUDENT BOOK 6th Grade Unit 8 Unit 8 Geometry and Measurement MATH 608 Geometry and Measurement INTRODUCTION 3 1. PLANE FIGURES 5 PERIMETER 5 AREA OF PARALLELOGRAMS 11 AREA OF TRIANGLES 17 AREA OF
More informationCharacteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
More information12 Surface Area and Volume
12 Surface Area and Volume 12.1 ThreeDimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More informationFCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication
FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby
More informationGeorgia Department of Education Georgia Standards of Excellence Framework GSE Grade 6 Mathematics Unit 5
**Volume and Cubes Back to Task Table In this problembased task, students will examine the mathematical relationship between the volume of a rectangular prism in cubic units and the number of unit cubes
More informationGAP CLOSING. 2D Measurement. Intermediate / Senior Student Book
GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas
More information9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2D Shapes The following table gives the names of some 2D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
More informationCCSSM Critical Areas: Kindergarten
CCSSM Critical Areas: Kindergarten Critical Area 1: Represent and compare whole numbers Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such
More informationGRADE 10 MATH: A DAY AT THE BEACH
GRADE 0 MATH: A DAY AT THE BEACH UNIT OVERVIEW This packet contains a curriculumembedded CCLS aligned task and instructional supports. The final task assesses student mastery of the geometry standards
More informationGAP CLOSING. 2D Measurement GAP CLOSING. Intermeditate / Senior Facilitator s Guide. 2D Measurement
GAP CLOSING 2D Measurement GAP CLOSING 2D Measurement Intermeditate / Senior Facilitator s Guide 2D Measurement Diagnostic...4 Administer the diagnostic...4 Using diagnostic results to personalize interventions...4
More informationHow does one make and support a reasonable conclusion regarding a problem? How does what I measure influence how I measure?
Middletown Public Schools Mathematics Unit Planning Organizer Subject Mathematics Grade/Course Grade 7 Unit 3 Two and Three Dimensional Geometry Duration 23 instructional days (+4 days reteaching/enrichment)
More informationMD526 Stacking Blocks Pages 115 116
MD526 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.
More information43 Perimeter and Area
43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study
More informationMath. So we would say that the volume of this cube is: cubic units.
Math Volume and Surface Area Two numbers that are useful when we are dealing with 3 dimensional objects are the amount that the object can hold and the amount of material it would take to cover it. For
More informationLesson 13: The Formulas for Volume
Student Outcomes Students develop, understand, and apply formulas for finding the volume of right rectangular prisms and cubes. Lesson Notes This lesson is a continuation of Lessons 11, 12, and Module
More information16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
More informationChapter 4: Area, Perimeter, and Volume. Geometry Assessments
Chapter 4: Area, Perimeter, and Volume Geometry Assessments Area, Perimeter, and Volume Introduction The performance tasks in this chapter focus on applying the properties of triangles and polygons to
More informationPART 3 MODULE 8 PROBLEMS INVOLVING AREA
PART 3 MODULE 8 PROBLEMS INVOLVING AREA We will be examining a variety of realworld problems that can be solved by referring to familiar facts from elementary geometry. These problems will usually require
More informationWarning! Construction Zone: Building Solids from Nets
Brief Overview: Warning! Construction Zone: Building Solids from Nets In this unit the students will be examining and defining attributes of solids and their nets. The students will be expected to have
More informationThe small increase in x is. and the corresponding increase in y is. Therefore
Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More informationMathematics Scope and Sequence, K8
Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count
More informationDear Grade 4 Families,
Dear Grade 4 Families, During the next few weeks, our class will be exploring geometry. Through daily activities, we will explore the relationship between flat, twodimensional figures and solid, threedimensional
More informationWORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
More informationCHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.
TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has
More informationFactor Polynomials Completely
9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
More informationISAT Mathematics Performance Definitions Grade 4
ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourthgrade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers
More information6.4 Factoring Polynomials
Name Class Date 6.4 Factoring Polynomials Essential Question: What are some ways to factor a polynomial, and how is factoring useful? Resource Locker Explore Analyzing a Visual Model for Polynomial Factorization
More informationArea, Perimeter, Volume and Pythagorean Theorem Assessment
Area, Perimeter, Volume and Pythagorean Theorem Assessment Name: 1. Find the perimeter of a right triangle with legs measuring 10 inches and 24 inches a. 34 inches b. 60 inches c. 120 inches d. 240 inches
More information