# Filling and Wrapping: Homework Examples from ACE

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Filling and Wrapping: Homework Examples from ACE Investigation 1: Building Smart Boxes: Rectangular Prisms, ACE #3 Investigation 2: Polygonal Prisms, ACE #12 Investigation 3: Area and Circumference of Circles, ACE #11, 22 Investigation 4: Cylinders, Cones, and Spheres, ACE #13, 28 Investigation 1: Building Smart Boxes: Rectangular Prisms ACE #3 Suppose you plan to make a box that will hold exactly 40 one-inch cubes. a. Give the dimensions of all the possible boxes you can make. b. Which of the boxes described in part (a) has the least surface area? Explain. For this problem, students can visualize a box and decide how many cubes are on the base layer, and how many layers high the box is. Since we are talking about whole unit cubes we must look for factors of 40; one factor is the base layer and the other factor is the height. That is: base layer x height = 40. Also, length x width = area of base layer. There may be more than one choice for length and width for a given base layer. For example, we know that 5 x 8 = 40, so the base layer could have 5 cubes and the height could be 8 inches. If the base layer has 5 inch cubes then the length must be 5 inches and the width must be 1 inch (or vice versa). Or, since we also know that 10 x 4 = 40, the base layer could be 10 inch cubes and the height could be 4 inches. If the base layer has 10 inch cubes then the length might be 10 inches and the width 1 inch, or the length might be 5 inches and the width 2 inches. We can organize the dimensions of all the possible boxes in a table (L is length, W is width, H is height, V is volume, and SA is surface area, which we can calculate using the dimensions). Base L W H V SA etc. If we examine this table we will see that some of the boxes created are identical. L = 1, W = 4, H = 10 will be exactly the same box as L = 1, W = 10 and H = 4. There are only 6 unique arrangements. b. The 2 x 4 x 5 box has the least surface area. We can tell this is true since we already calculated the surface areas of all the possible boxes. But it s also the box closest to a cube, which would have the smallest surface area.

2 Investigation 2: Polygonal Prisms ACE #12 For Problem 2.1, Sheryl made paper prisms that were all 8.5 inches high. She traced the polygon bases on 1-inch grid paper to give a picture like the one shown below. Estimate the volume of each prism. First, a note: We know that each of the bases must have the same perimeter, because they were all made by folding the same piece of paper, which was 11 inches long. But that doesn t mean their areas are the same. This refers back to an idea from Covering and Surrounding equal perimeters do not imply equal areas. For every prism, the formula is volume = base area x height. We know from the given information that the height is 8.5 inches for each of these prisms, which makes sense because the problem instructed student to use an 8.5 x 11 inch piece of paper for each prism. This problem asks for estimates of the volumes, which requires students to estimate the base areas using the grid. Students can use a variety of strategies to estimate the areas of the bases. Here, we explain possible volumes using formulas for area, though students do not need to use these calculations. The square has sides of or 2.75 inches. Therefore, the base area = = square inches, and volume = = cubic inches. Each side of the triangle is or about 3.67 inches long. The height appears to be about 3.2 inches (students need to estimate this value, because they don t yet know how to use the Pythagorean Theorem.) Therefore, the base area = ( ) () (3.2) 5.87 square inches and volume = 49.9 cubic inches. The pentagonal base is made of a 2 x 2 square and 3 triangles surrounding the square.

3 The areas of the triangles can be approximated using a method from Covering and Surrounding, estimating the height and/or the base of the triangle. The sum of the areas of these triangles (0.5)(3.5)(1.25) + (0.5)(2)(0.75) + (0.5)(2)(0.75) square inches. So the base area square units and volume cubic inches. You can visualize this hexagon as being made of 6 small equilateral triangles with side lengths of. (See Shapes and Designs for more explanation about this.) Again, students will have to approximate the height of each of these as about 1.6 units, which we can estimate because the whole hexagon is a little over three inches tall. So the area of each small triangle is (0.5)( )(1.6) 1.47 square units. Therefore, the total base area 6(1.47) = 8.8 square units and the volume (8.8)(8.5) = 74.8 cubic units approx. Note: As the same 11 inches (on a side of paper) is folded to make more and more sides of a polygon, the base area increases and, therefore, the volume increases.

4 Investigation 3: Area and Circumference of Circles ACE #11 A pizzeria sells three different sizes of pizza. The small size has a radius of 4 inches, the medium size has a radius of 5 inches, and the large size has a radius of 6 inches. a. Copy and complete the table below. Explain how you found the areas of the pizzas. b. Jamar claims the area of a pizza is about 0.75 x (diameter) 2. Is he correct? Explain. a. Using the formula for area of a circle area = 3.14r 2 (here, is approximated to be 3.14) and the formula for circumference of a circle circumference = d, we get the following values: Pizza Size Diameter (in.) Radius (in.) Circumference (in.) Area (in. 2 ) Small (8) = (4 2 ) = Medium (10) = (5 2 ) = 78.5 Large (12) = (6 2 ) = b. Jamar s estimate is close, but will be a slight underestimate, since is a little more than 3. But = = ( )2 = 0.75d2. Students don t need to offer this sort of algebraic reasoning. It is okay to check a few cases to see if the numbers turn out the same or close.

5 Investigation 3: Area and Circumference of Circles ACE #22 A rectangular lawn has a perimeter of 36 meters and a circular exercise run has a circumference of 36 meters. Which shape will give Rico s dog more area to run? Explain. This question refers back to the idea in earlier investigations that two shapes with the same perimeter do not necessarily have the same area. Students discovered that when you compare rectangles, the more square a rectangle is (basically, the closer the ratio of sides is to 1:1) the more area it can enclose for a given perimeter. So in this case the best rectangle they can make is a 9 meter x 9 meter square. The perimeter of the square is = 36 meters, and the area is 9 2 = 81 square meters. Now we have to do some reasoning with the formula for the circumference of a circle: C = d. So 36 = d, and the diameter is 11.5 meters. The radius is about (11.5) = 5.75 meters. Now that we know the radius, we can figure the area of the circle: area = (5.75) square meters. Therefore, a circle with a circumference of 36 meters covers more area than a square with perimeter 36 meters!

6 Investigation 4: Cylinders, Cones, and Spheres ACE #13 The track and field club is planning a frozen yogurt sale to raise money. They need to buy containers to hold the yogurt. The two options are the cup and cone shown below. The two containers have the same cost. The club plans to charge \$1.25 for a serving of yogurt. Which container should the club buy? Explain. Students have a formula for the volume of a cone; they found that a cone was the volume of a cylinder with the same base and height. The volume of the cylinder is: V = base area x height = (3 2 ) x cubic centimeters. So, the volume of the cone is. = cubic centimeters. The volume of the cylindrical cup is (2.5 2 )(4.5) = cubic centimeters. So, the cone is the better buy from the customers point of view you get more yogurt for the same \$1.25. But, from the club s point of view, the cup holds less, so it will generate more profit customers pay the same but get less yogurt. The club should choose the cylindrical cup.

8

### Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in

Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in

### In Problems #1 - #4, find the surface area and volume of each prism.

Geometry Unit Seven: Surface Area & Volume, Practice In Problems #1 - #4, find the surface area and volume of each prism. 1. CUBE. RECTANGULAR PRISM 9 cm 5 mm 11 mm mm 9 cm 9 cm. TRIANGULAR PRISM 4. TRIANGULAR

### Inv 1 5. Draw 2 different shapes, each with an area of 15 square units and perimeter of 16 units.

Covering and Surrounding: Homework Examples from ACE Investigation 1: Questions 5, 8, 21 Investigation 2: Questions 6, 7, 11, 27 Investigation 3: Questions 6, 8, 11 Investigation 5: Questions 15, 26 ACE

### 3D Geometry: Chapter Questions

3D Geometry: Chapter Questions 1. What are the similarities and differences between prisms and pyramids? 2. How are polyhedrons named? 3. How do you find the cross-section of 3-Dimensional figures? 4.

### Right Prisms Let s find the surface area of the right prism given in Figure 44.1. Figure 44.1

44 Surface Area The surface area of a space figure is the total area of all the faces of the figure. In this section, we discuss the surface areas of some of the space figures introduced in Section 41.

### Geometry Notes VOLUME AND SURFACE AREA

Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate

### Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

### Area is a measure of how much space is occupied by a figure. 1cm 1cm

Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number

### SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

### Name: Date: Geometry Solid Geometry. Name: Teacher: Pd:

Name: Date: Geometry 2012-2013 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 1-7 HW: Pgs: 8-10 DAY 2: SWBAT: Calculate the Volume of

### Prisms and Cylinders 3.1. In Investigation 2, you found the volume of rectangular prisms by filling. Filling Fancy Boxes

! s and Cylinders In Investigation 2, you found the volume of rectangular prisms by filling the prism with cubes. The number of cubes in the bottom layer is the same as the area of the rectangular base

### Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:

Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of

### B = 1 14 12 = 84 in2. Since h = 20 in then the total volume is. V = 84 20 = 1680 in 3

45 Volume Surface area measures the area of the two-dimensional boundary of a threedimensional figure; it is the area of the outside surface of a solid. Volume, on the other hand, is a measure of the space

### Pizza! Pizza! Assessment

Pizza! Pizza! Assessment 1. A local pizza restaurant sends pizzas to the high school twelve to a carton. If the pizzas are one inch thick, what is the volume of the cylindrical shipping carton for the

### 5.2. Nets and Solids LESSON. Vocabulary. Explore. Materials

LESSON 5.2 Nets and Solids A net is a flat figure that can be folded to form a closed, three- dimensional object. This type of object is called a geometric solid. Inv 1 Use a Net 229 Inv 2 Use Nets to

### Junior Math Circles March 10, D Geometry II

1 University of Waterloo Faculty of Mathematics Junior Math Circles March 10, 2010 3D Geometry II Centre for Education in Mathematics and Computing Opening Problem Three tennis ball are packed in a cylinder.

### Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

### Integrated Algebra: Geometry

Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

### Name: Date: Geometry Honors Solid Geometry. Name: Teacher: Pd:

Name: Date: Geometry Honors 2013-2014 Solid Geometry Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the Volume of Prisms and Cylinders Pgs: 1-6 HW: Pgs: 7-10 DAY 2: SWBAT: Calculate the Volume

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.

### Geometry Chapter 12. Volume. Surface Area. Similar shapes ratio area & volume

Geometry Chapter 12 Volume Surface Area Similar shapes ratio area & volume Date Due Section Topics Assignment Written Exercises 12.1 Prisms Altitude Lateral Faces/Edges Right vs. Oblique Cylinders 12.3

### GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book

GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18

### Precision and Measurement

NAME DATE PERIOD Precision and Measurement The precision or exactness of a measurement depends on the unit of measure. The precision unit is the smallest unit on a measuring tool. Significant digits include

### Solids. Objective A: Volume of a Solids

Solids Math00 Objective A: Volume of a Solids Geometric solids are figures in space. Five common geometric solids are the rectangular solid, the sphere, the cylinder, the cone and the pyramid. A rectangular

### Covering and Surrounding: Homework Examples from ACE

Covering and Surrounding: Homework Examples from ACE Investigation 1: Extending and Building on Area and Perimeter, ACE #4, #6, #17 Investigation 2: Measuring Triangles, ACE #4, #9, #12 Investigation 3:

### Perfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through

Perfume Packaging Gina would like to package her newest fragrance, Persuasive, in an eyecatching yet cost-efficient box. The Persuasive perfume bottle is in the shape of a regular hexagonal prism 10 centimeters

### Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.

Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional

### Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

### Perimeter, Area, and Volume

Perimeter is a measurement of length. It is the distance around something. We use perimeter when building a fence around a yard or any place that needs to be enclosed. In that case, we would measure the

### Height. Right Prism. Dates, assignments, and quizzes subject to change without advance notice.

Name: Period GL UNIT 11: SOLIDS I can define, identify and illustrate the following terms: Face Isometric View Net Edge Polyhedron Volume Vertex Cylinder Hemisphere Cone Cross section Height Pyramid Prism

### Section 2.4: Applications and Writing Functions

CHAPTER 2 Polynomial and Rational Functions Section 2.4: Applications and Writing Functions Setting up Functions to Solve Applied Problems Maximum or Minimum Value of a Quadratic Function Setting up Functions

### Pre-Test. Name Date. 1. A circle is shown. Identify each of the following in the figure. a. the center of the circle. b. a diameter of the circle

Pre-Test Name Date 1. A circle is shown. Q P S R Identify each of the following in the figure. a. the center of the circle b. a diameter of the circle c. three radii of the circle 2. A circle with radius

### PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY

PIZZA! PIZZA! TEACHER S GUIDE and ANSWER KEY The Student Handout is page 11. Give this page to students as a separate sheet. Area of Circles and Squares Circumference and Perimeters Volume of Cylinders

### 10-4 Surface Area of Prisms and Cylinders

: Finding Lateral Areas and Surface Areas of Prisms 2. Find the lateral area and surface area of the right rectangular prism. : Finding Lateral Areas and Surface Areas of Right Cylinders 3. Find the lateral

### 10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres. 10.4 Day 1 Warm-up

10.4 Surface Area of Prisms, Cylinders, Pyramids, Cones, and Spheres 10.4 Day 1 Warm-up 1. Which identifies the figure? A rectangular pyramid B rectangular prism C cube D square pyramid 3. A polyhedron

### Area, Perimeter, Volume and Pythagorean Theorem Assessment

Area, Perimeter, Volume and Pythagorean Theorem Assessment Name: 1. Find the perimeter of a right triangle with legs measuring 10 inches and 24 inches a. 34 inches b. 60 inches c. 120 inches d. 240 inches

### Calculating the surface area of a three-dimensional object is similar to finding the area of a two dimensional object.

Calculating the surface area of a three-dimensional object is similar to finding the area of a two dimensional object. Surface area is the sum of areas of all the faces or sides of a three-dimensional

### MAT104: Fundamentals of Mathematics II Summary of Section 14-5: Volume, Temperature, and Dimensional Analysis with Area & Volume.

MAT104: Fundamentals of Mathematics II Summary of Section 14-5: Volume, Temperature, and Dimensional Analysis with Area & Volume For prisms, pyramids, cylinders, and cones: Volume is the area of one base

### Lesson 17 ~ Volume of Prisms

Lesson 17 ~ Volume of Prisms 1. An octagonal swimming pool has a base area of 42 square meters. The pool is 3 feet deep. Find the volume of the pool. 2. A fish aquarium is a rectangular prism. It is 18

### 2nd Semester Geometry Final Exam Review

Class: Date: 2nd Semester Geometry Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of an amusement park created a circular

### Surface Area Quick Review: CH 5

I hope you had an exceptional Christmas Break.. Now it's time to learn some more math!! :) Surface Area Quick Review: CH 5 Find the surface area of each of these shapes: 8 cm 12 cm 4cm 11 cm 7 cm Find

### Name Date Period. 3D Geometry Project

Name 3D Geometry Project Part I: Exploring Three-Dimensional Shapes In the first part of this WebQuest, you will be exploring what three-dimensional (3D) objects are, how to classify them, and several

### Practice: Space Figures and Cross Sections Geometry 11-1

Practice: Space Figures and Cross Sections Geometry 11-1 Name: Date: Period: Polyhedron * 3D figure whose surfaces are * each polygon is a. * an is a segment where two faces intersect. * a is a point where

### Area & Volume. 1. Surface Area to Volume Ratio

1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.

### LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

### 12-4 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h

Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h The volume is 108 cm 3. The volume V of a prism is V = Bh, where B is the area of a base and h the

### Measurement. Volume It All Stacks Up. Activity:

Measurement Activity: TEKS: Overview: Materials: Grouping: Time: Volume It All Stacks Up (7.9) Measurement. The student solves application problems involving estimation and measurement. The student is

### Finding Volume of Rectangular Prisms

MA.FL.7.G.2.1 Justify and apply formulas for surface area and volume of pyramids, prisms, cylinders, and cones. MA.7.G.2.2 Use formulas to find surface areas and volume of three-dimensional composite shapes.

### FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby

### 17.2 Surface Area of Prisms and Cylinders

Name Class Date 17. Surface Area of Prisms and Cylinders Essential Question: How can you find the surface area of a prism or cylinder? Explore G.11.C Apply the formulas for the total and lateral surface

### Name: School Team: X = 5 X = 25 X = 40 X = 0.09 X = 15

7th/8th grade Math Meet Name: School Team: Event : Problem Solving (no calculators) Part : Computation ( pts. each) ) / + /x + /0 = X = 5 ) 0% of 5 = x % of X = 5 ) 00 - x = ()()(4) + 6 X = 40 4) 0.6 x

### 12-4 Volumes of Prisms and Cylinders. Find the volume of each prism.

Find the volume of each prism. 3. the oblique rectangular prism shown at the right 1. The volume V of a prism is V = Bh, where B is the area of a base and h is the height of the prism. If two solids have

### SOLID SHAPES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

Mathematics Revision Guides Solid Shapes Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier SOLID SHAPES Version: 2.1 Date: 10-11-2015 Mathematics Revision Guides Solid

### Area of Parallelograms (pages 546 549)

A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

### CONNECT: Volume, Surface Area

CONNECT: Volume, Surface Area 2. SURFACE AREAS OF SOLIDS If you need to know more about plane shapes, areas, perimeters, solids or volumes of solids, please refer to CONNECT: Areas, Perimeters 1. AREAS

### Covering & Surrounding Notes Problem 1.1

Problem 1.1 Definitions: Area - the measure of the amount of surface enclosed by the sides of a figure. Perimeter - the measure of the distance around a figure. Bumper-cars is one of the most popular rides

### Formulas for Area Area of Trapezoid

Area of Triangle Formulas for Area Area of Trapezoid Area of Parallelograms Use the formula sheet and what you know about area to solve the following problems. Find the area. 5 feet 6 feet 4 feet 8.5 feet

Think About This Situation A popular game held at fairs or parties is the jelly bean guessing contest. Someone fills a jar or other large transparent container with a known quantity of jelly beans and

### Name: Date: Period: PIZZA! PIZZA! Area of Circles and Squares Circumference and Perimeters Volume of Cylinders and Rectangular Prisms Comparing Cost

Name: Date: Period: PIZZA! PIZZA! Area of Circles and Squares Circumference and Perimeters Volume of Cylinders and Rectangular Prisms Comparing Cost Lesson One Day One: Area and Cost A. Area of Pizza Triplets

### Looking for Pythagoras: Homework Examples from ACE

Looking for Pythagoras: Homework Examples from ACE Investigation 1: Coordinate Grids, ACE #20, #37 Investigation 2: Squaring Off, ACE #16, #44, #65 Investigation 3: The Pythagorean Theorem, ACE #2, #9,

### , where B is the area of the base and h is the height of the pyramid. The base

Find the volume of each pyramid. The volume of a pyramid is, where B is the area of the base and h is the height of the pyramid. The base of this pyramid is a right triangle with legs of 9 inches and 5

### Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference

1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various

### 12-8 Congruent and Similar Solids

Determine whether each pair of solids is similar, congruent, or neither. If the solids are similar, state the scale factor. Ratio of radii: Ratio of heights: The ratios of the corresponding measures are

### Fundamentals of Geometry

10A Page 1 10 A Fundamentals of Geometry 1. The perimeter of an object in a plane is the length of its boundary. A circle s perimeter is called its circumference. 2. The area of an object is the amount

### 3Surface Area, Volume, and Capacity

124 Chapter 3Surface Area, Volume, and Capacity How much water do you think this water tank can hold? What would you need to know to calculate the exact amount? 3.1 Surface Area of Prisms REVIEW: WORKING

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### LESSON SUMMARY. Measuring Shapes

LESSON SUMMARY CXC CSEC MATHEMATICS UNIT SIX: Measurement Lesson 11 Measuring Shapes Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volume 1 (Some helpful exercises and page numbers are given

### 12-2 Surface Areas of Prisms and Cylinders. 1. Find the lateral area of the prism. SOLUTION: ANSWER: in 2

1. Find the lateral area of the prism. 3. The base of the prism is a right triangle with the legs 8 ft and 6 ft long. Use the Pythagorean Theorem to find the length of the hypotenuse of the base. 112.5

### 2. Complete the table to identify the effect tripling the radius of a cylinder s base has on its volume. Cylinder Height (cm) h

Name: Period: Date: K. Williams ID: A 8th Grade Chapter 14 TEST REVIEW 1. Determine the volume of the cylinder. Use 3.14 for. 2. Complete the table to identify the effect tripling the radius of a cylinder

### WEIGHTS AND MEASURES

WEIGHTS AND MEASURES Tables of Weights and Measures; and other information that may be helpful to the Assessor/Appraiser. Metric Measure Millimeter = 0.001 meter Centimeter = 0.01 meter Decimeter = 0.1

### (a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

### Geo - CH9 Practice Test

Geo - H9 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the area of the parallelogram. a. 35 in 2 c. 21 in 2 b. 14 in 2 d. 28 in 2 2.

### 1. The volume of the object below is 186 cm 3. Calculate the Length of x. (a) 3.1 cm (b) 2.5 cm (c) 1.75 cm (d) 1.25 cm

Volume and Surface Area On the provincial exam students will need to use the formulas for volume and surface area of geometric solids to solve problems. These problems will not simply ask, Find the volume

### 12 Surface Area and Volume

12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

### The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- Area = 1 2 D x d CIRCLE.

Revision - Areas Chapter 8 Volumes The formulae for calculating the areas of quadrilaterals, circles and triangles should already be known :- SQUARE RECTANGE RHOMBUS KITE B dd d D D Area = 2 Area = x B

### Areas of Rectangles and Parallelograms

CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson you will Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover

### The Area is the width times the height: Area = w h

Geometry Handout Rectangle and Square Area of a Rectangle and Square (square has all sides equal) The Area is the width times the height: Area = w h Example: A rectangle is 6 m wide and 3 m high; what

### Topic 9: Surface Area

Topic 9: Surface Area for use after Covering and Surrounding (Investigation 5) Jillian is wrapping a box of model cars for her brother s birthday. Jillian needs to measure the box to see if she has enough

### The GED math test gives you a page of math formulas that

Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

### YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

DETAILED SOLUTIONS AND CONCEPTS - SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

### CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

### 1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?

Student Name: Teacher: Date: District: Description: Miami-Dade County Public Schools Geometry Topic 7: 3-Dimensional Shapes 1. A plane passes through the apex (top point) of a cone and then through its

### 12-8 Congruent and Similar Solids

Determine whether each pair of solids is similar, congruent, or neither. If the solids are similar, state the scale factor. 3. Two similar cylinders have radii of 15 inches and 6 inches. What is the ratio

### Question Bank. 1. Could each of the nets below be folded along the lines to form a box? If yes, explain how. If no, explain why not. a. b. c. d.

Question Bank 1. Could each of the nets below be folded along the lines to form a box? If yes, explain how. If no, explain why not. a. b. c. d. 2. a. Ian said the two triangular prisms below could be placed

### Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

### Perimeter. 14ft. 5ft. 11ft.

Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine

### TERRA Environmental Research Institute

TERR Environmental Research Institute MTHEMTIS FT PRTIE STRN 2 Measurement Perimeter and rea ircumference and rea of ircles Surface rea Volume Time, Weight/Mass, apacity, and Temperature SUNSHINE STTE

### MM 6-1 MM What is the largest number you can make using 8, 4, 6 and 2? (8,642) 1. Divide 810 by 9. (90) 2. What is ?

MM 6-1 1. What is the largest number you can make using 8, 4, 6 and 2? (8,642) 2. What is 500 20? (480) 3. 6,000 2,000 400 = (3,600). 4. Start with 6 and follow me; add 7, add 2, add 4, add 3. (22) 5.

### Working in 2 & 3 dimensions Revision Guide

Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### MATH 113 Section 10.3: Surface Area and Volume

MATH 113 Section 10.3: Surface Area and Volume Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2007 Outline 1 Surface Area 2 Volume 3 Conclusion Measuring Three Dimensional Shapes In the last

### Grade 7/8 Math Circles Winter D Geometry

1 University of Waterloo Faculty of Mathematics Grade 7/8 Math Circles Winter 2013 3D Geometry Introductory Problem Mary s mom bought a box of 60 cookies for Mary to bring to school. Mary decides to bring

### Grade 7/8 Math Circles Winter D Geometry

1 University of Waterloo Faculty of Mathematics Grade 7/8 Math Circles Winter 2013 3D Geometry Introductory Problem Mary s mom bought a box of 60 cookies for Mary to bring to school. Mary decides to bring

### Unit 1 Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Convert 8 yd. to inches. a. 24 in. b. 288 in. c. 44 in. d. 96 in. 2. Convert 114 in. to yards,

### MATH STUDENT BOOK. 7th Grade Unit 9

MATH STUDENT BOOK 7th Grade Unit 9 Unit 9 Measurement and Area Math 709 Measurement and Area Introduction 3 1. Perimeter 5 Perimeter 5 Circumference 11 Composite Figures 16 Self Test 1: Perimeter 24 2.

### Geometry Vocabulary Booklet

Geometry Vocabulary Booklet Geometry Vocabulary Word Everyday Expression Example Acute An angle less than 90 degrees. Adjacent Lying next to each other. Array Numbers, letter or shapes arranged in a rectangular

### Geometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam.

Geometry Review Here are some formulas and concepts that you will need to review before working on the practice eam. Triangles o Perimeter or the distance around the triangle is found by adding all of