Mathematics and Statistics: Apply probability methods in solving problems (91267)
|
|
|
- Rodger McLaughlin
- 9 years ago
- Views:
Transcription
1 NCEA Level 2 Mathematics (91267) 2013 page 1 of 5 Assessment Schedule 2013 Mathematics and Statistics: Apply probability methods in solving problems (91267) Evidence Statement with Merit Apply probability methods in solving problems must involve using a range of appropriate methods, demonstrating knowledge of probability concepts and terms, and communicating using appropriate representations. Apply probability methods, using relational thinking, in solving problems must involve one or more of: selecting and carrying out a logical sequence of steps connecting different concepts or representations demonstrating understanding of concepts and relating findings to a context or communicating thinking using appropriate statements. Apply probability methods, using extended abstract thinking, in solving problems must involve one or more of: devising a strategy to investigate or solve a problem identifying relevant concepts in context developing a chain of logical reasoning and where appropriate, using contextual knowledge to reflect on the answer.
2 NCEA Level 2 Mathematics (91267) 2013 page 2 of 5 Evidence Statement ONE Expected Coverage with Merit with Excellence E8 = 2 of t. (a) (i) P(AA wins after 2 rounds) = ½ ½ =1/4 (a) (ii) P(3 games) = P(ABA wins or ABB or BAA or BAB) =½ ½ ½ + ½ ½ ½ + ½ ½ ½ + ½ ½ ½ = ½ Correct answer with working shown. (b) (i) P(AA wins or ABA or BAA) = ¾ ¼ + ¾ ¾ ¾ + ¼ ¼ ¾ = 42 = 21 (= ) 32 Gets a partial answer, with at least one of the branches involving 3 games correct. Correct or equivalent answer with working shown. (b) (ii) 30 = (= ) Finds 30/. Correct or consistent answer. (b) (iii) Probability (team A wins) is 42/, and P(team B wins ) = 22/ So relative risk of team A winning compared to team B winning is 42 = As this is almost 2 it is true that team A is almost twice as likely to win the series as team B. Consistent answer using both probabilities. Answer to question with full explanation. (c) P(A wins in 3 games) = P(ABA or BAA) = p 3 + p(1 p) 2 P( B wins in 3 games) = P(BAB or ABB) = (1 p) 3 + (1 p)p 2 So relative risk = p( p 2 + (1 p) 2 ) (1 p)( p 2 + (1 p) 2 ) = p 1 p p ie Team A is times more 1 p likely to win than Team B. Finds probability of A or B winning correctly in 3 games.
3 NCEA Level 2 Mathematics (91267) 2013 page 3 of 5 TWO Expected Coverage E8 = 2 of t. with Merit (a)(i) P(113 < X < 120) = / GC 0 < Z < (ii) P(X < 115) = So expected number = Expected number of students in school is 414 or 415. (iii) P(X > 110) = Probability both students BP over 110 = = Probability calculated correctly, Probability BP over 110 correctly calculated. Finds expected number of students correctly. Accept, 414 or 415 (iv) P(X > 126.2) = 0.10 Inverse Normal GC. So minimum blood pressure is mm Hg. Finds Z correctly Finds X =126.2 Correct written interpretation Or P(Z > ) = 0.10 (X 113) / 10.3 = X = = (b)(i) 26 / 40 = 13 / 20 (= 0.65) (ii) (All the values except for one are over 113 mm Hg, which is the original mean. The whole distribution seems to have shifted to the right and) the mean blood pressure is therefore higher. It now looks skewed to the right, or ignoring these two high values approximately normal with a higher mean. However it is a small class size compared to all the students in a New Zealand school. Mentions one valid point in context Discusses shift in values and higher mean in context. Or comment that originally approx. 42.3% lay between 110 and 122 and now it is 26 / 40, which is 65%. (c) P(X > 124 ) = Z = (124 µ) / 9.8 = µ = µ = So new mean is mm Hg (1dp) Finds Z correctly but makes mistakes and then consistently worked out. Must show the value of Z. Correct answer and interpretation in context using correct terms
4 NCEA Level 2 Mathematics (91267) 2013 page 4 of 5 THREE Expected Coverage E8 = 2 of t with Merit (a)(i) 8825 / = (353 / 412) (ii) 1675 / = 0.16 (67 / 412) Correct proportion or decimal. Correct answer or equivalent. (iii) 1139 / 1339 = or 85% Correct decimal or fraction. Percentage. (iv) 1139 / 1475 = or 77% Correct numerator. (b) P(test positive) = have disease and test positive or don t have disease and test positive = = P(have disease) = P(have disease and test positive) / = / = Calculates one part, numerator or denominator correctly. Finds probability by dividing into two parts on bottom but makes one error. See tree diagram or 2-way table below OR using a table Test positive Test negative Total Did not have disease Have disease Total Probability (test positive) = 1085/10000 Probability (person with positive test had disease) = 95 / 1085 =
5 NCEA Level 2 Mathematics (91267) 2013 page 5 of 5 (c) The systolic BP is more spread out from 85 to 245 mm Hg. The highest value/mode appears to be around 130 mm Hg and the distribution is skewed to the right with more higher values. The mean is therefore higher than 130 mm Hg. A large percentage of the values are between 115and 165 mm Hg. The range is 160 mm Hg. The diastolic BP follows an approximate normal distribution. It has a mean / median around 85 mm Hg and is almost symmetrical. The values are from 50 to 130 mm Hg. So the range is 80 mm Hg and the standard deviation about 14 mm Hg. General statements about the graphs. Statement giving some values and comparisons between both distributions on 2 / 3 of centre, shape and spread. Detailed statement with values giving comparisons with all 3 of centre, shape and spread, using the correct terms. Either range or standard deviation accepted. Systolic blood pressures are seen to be higher than diastolic blood pressures. Judgement Statement Not Achieved with Merit Score range
Assessment Schedule 2013
NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence
Mathematical goals. Starting points. Materials required. Time needed
Level N of challenge: B N Mathematical goals Starting points Materials required Time needed Ordering fractions and decimals To help learners to: interpret decimals and fractions using scales and areas;
Mathematics 2540 Paper 5540H/3H
Edexcel GCSE Mathematics 540 Paper 5540H/3H November 008 Mark Scheme 1 (a) 3bc 1 B1 for 3bc (accept 3cb or bc3 or cb3 or 3 b c oe, but 7bc 4bc gets no marks) (b) x + 5y B for x+5y (accept x+y5 or x + 5
Statistics 2014 Scoring Guidelines
AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home
AP Statistics Solutions to Packet 2
AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that
Chapter 7 - Practice Problems 1
Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
Lesson 20. Probability and Cumulative Distribution Functions
Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic
0.75 75% ! 3 40% 0.65 65% Percent Cards. This problem gives you the chance to: relate fractions, decimals and percents
Percent Cards This problem gives you the chance to: relate fractions, decimals and percents Mrs. Lopez makes sets of cards for her math class. All the cards in a set have the same value. Set A 3 4 0.75
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
Calculation Policy Fractions
Calculation Policy Fractions This policy is to be used in conjunction with the calculation policy to enable children to become fluent in fractions and ready to calculate them by Year 5. It has been devised
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
abc GCE 2005 Mark Scheme January Series Mathematics MPC1
GCE 005 January Series abc Mark Scheme Mathematics MPC1 Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark
The Normal Distribution
Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution
Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman
Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman hundredths tenths ones tens Decimal Art An Introduction to Decimals Directions: Part 1: Coloring Have children
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.18 Attitudes toward drinking and behavior studies. Some of the methods in this section are approximations
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
AP STATISTICS 2010 SCORING GUIDELINES
2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability
Mathematics. What to expect Resources Study Strategies Helpful Preparation Tips Problem Solving Strategies and Hints Test taking strategies
Mathematics Before reading this section, make sure you have read the appropriate description of the mathematics section test (computerized or paper) to understand what is expected of you in the mathematics
Revision Notes Adult Numeracy Level 2
Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands
EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!
STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.
Algebra 1: Basic Skills Packet Page 1 Name: Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14
Algebra 1: Basic Skills Packet Page 1 Name: Number Sense: Add, Subtract, Multiply or Divide without a Calculator Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14 Decimals 7. 43.21
Probability Distributions
Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.
Week 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
CORE Assessment Module Module Overview
CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems
Teaching Pre-Algebra in PowerPoint
Key Vocabulary: Numerator, Denominator, Ratio Title Key Skills: Convert Fractions to Decimals Long Division Convert Decimals to Percents Rounding Percents Slide #1: Start the lesson in Presentation Mode
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
Primary Curriculum 2014
Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,
Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
Key Concept. Density Curve
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
Variables. Exploratory Data Analysis
Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is
STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013
STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013 The quiz covers Chapters 4, 5 and 6. 1. (8 points) If the IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. (a) (3 pts)
Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
Descriptive Statistics
Descriptive Statistics Suppose following data have been collected (heights of 99 five-year-old boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9
Numeracy and mathematics Experiences and outcomes
Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
Normal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
Mark Scheme (Results) January 2014. Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H
Mark Scheme (Results) January 014 Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H Pearson Edexcel Certificate Mathematics A (KMA0/3H) Edexcel and BTEC Qualifications Edexcel and BTEC
Math 202-0 Quizzes Winter 2009
Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile
Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
MATHEMATICAL LITERACY LESSON PLANS
MATHEMATICAL LITERACY LESSON PLANS GRADE 11. LESSON PLAN 1. Lesson Plan: Personal finance Number f Activities : 3 Duration : +/- 13H30 Week : 1-3 Date: Context : Personal finance management, Business context.
Prentice Hall Mathematics: Course 1 2008 Correlated to: Arizona Academic Standards for Mathematics (Grades 6)
PO 1. Express fractions as ratios, comparing two whole numbers (e.g., ¾ is equivalent to 3:4 and 3 to 4). Strand 1: Number Sense and Operations Every student should understand and use all concepts and
Annotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum.
Work sample portfolio summary WORK SAMPLE PORTFOLIO Annotated work sample portfolios are provided to support implementation of the Foundation Year 10 Australian Curriculum. Each portfolio is an example
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.
Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15
Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123
Maths Assessment Year 4: Fractions
Name: Maths Assessment Year : Fractions 1. Recognise and show, using diagrams, families of common equivalent fractions. 2. Count up and down in hundredths. 3. Solve problems involving increasingly harder
10 20 30 40 50 60 Mark. Use this information and the cumulative frequency graph to draw a box plot showing information about the students marks.
GCSE Exam Questions on Frequency (Grade B) 1. 200 students took a test. The cumulative graph gives information about their marks. 200 160 120 80 0 10 20 30 50 60 Mark The lowest mark scored in the test
Multiplying Fractions
. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
Version : 1.0 0609. klm. General Certificate of Education. Mathematics 6360. MPC1 Pure Core 1. Mark Scheme. 2009 examination - June series
Version :.0 0609 klm General Certificate of Education Mathematics 660 MPC Pure Core Mark Scheme 009 examination - June series Mark schemes are prepared by the Principal Examiner and considered, together
MEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
5 th Grade Common Core State Standards. Flip Book
5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at
Mathematical goals. Starting points. Materials required. Time needed
Level S6 of challenge: B/C S6 Interpreting frequency graphs, cumulative cumulative frequency frequency graphs, graphs, box and box whisker and plots whisker plots Mathematical goals Starting points Materials
Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.
Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction
CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous
Five daily lessons. Page 23. Page 25. Page 29. Pages 31
Unit 4 Fractions and decimals Five daily lessons Year 5 Spring term Unit Objectives Year 5 Order a set of fractions, such as 2, 2¾, 1¾, 1½, and position them on a number line. Relate fractions to division
Measures of Central Tendency and Variability: Summarizing your Data for Others
Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :
Mark Scheme (Results) November 2013. Pearson Edexcel GCSE in Mathematics Linear (1MA0) Higher (Non-Calculator) Paper 1H
Mark Scheme (Results) November 2013 Pearson Edexcel GCSE in Mathematics Linear (1MA0) Higher (Non-Calculator) Paper 1H Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson,
Training Manual. Pre-Employment Math. Version 1.1
Training Manual Pre-Employment Math Version 1.1 Created April 2012 1 Table of Contents Item # Training Topic Page # 1. Operations with Whole Numbers... 3 2. Operations with Decimal Numbers... 4 3. Operations
Performance Assessment Task Baseball Players Grade 6. Common Core State Standards Math - Content Standards
Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures
THE BINOMIAL DISTRIBUTION & PROBABILITY
REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution
Lesson 4 Measures of Central Tendency
Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central
Mark Scheme (Results) Summer 2014. Pearson Edexcel GCSE In Mathematics A (1MA0) Higher (Calculator) Paper 2H
Mark Scheme (Results) Summer 2014 Pearson Edexcel GCSE In Mathematics A (1MA0) Higher (Calculator) Paper 2H Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK
Example 1. so the Binomial Distrubtion can be considered normal
Chapter 6 8B: Examples of Using a Normal Distribution to Approximate a Binomial Probability Distribution Example 1 The probability of having a boy in any single birth is 50%. Use a normal distribution
Numeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
Mark Scheme 4767 June 2005 GENERAL INSTRUCTIONS Marks in the mark scheme are explicitly designated as M, A, B, E or G. M marks ("method") are for an attempt to use a correct method (not merely for stating
The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)
Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,
Numerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
Grade 4 Unit 3: Multiplication and Division; Number Sentences and Algebra
Grade 4 Unit 3: Multiplication and Division; Number Sentences and Algebra Activity Lesson 3-1 What s My Rule? page 159) Everyday Mathematics Goal for Mathematical Practice GMP 2.2 Explain the meanings
5) The table below describes the smoking habits of a group of asthma sufferers. two way table ( ( cell cell ) (cell cell) (cell cell) )
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine which score corresponds to the higher relative position. 1) Which score has a better relative
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Mark Scheme (Results) June 2011. GCSE Mathematics (1380) Paper 3H (Non-Calculator)
Mark Scheme (Results) June 011 GCSE Mathematics (1380) Paper 3H (Non-Calculator) Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range
Statistics. Measurement. Scales of Measurement 7/18/2012
Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does
SAMPLE BOOKLET Published July 2015
National curriculum tests Key stage 2 Mathematics Mark schemes SAMPLE BOOKLET Published July 2015 This sample test indicates how the national curriculum will be assessed from 2016. Further information
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
Mark Scheme. Mathematics 6360. General Certificate of Education. 2006 examination June series. MPC1 Pure Core 1
Version 1.0: 0706 abc General Certificate of Education Mathematics 660 MPC1 Pure Core 1 Mark Scheme 006 examination June series Mark schemes are prepared by the Principal Examiner and considered, together
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
The Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University
The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University [email protected] Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random
Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4
MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:
Mind on Statistics. Chapter 8
Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Mark Scheme (Results) November 2009
Mark Scheme (Results) November 2009 GCSE GCSE Mathematics (Linear) - 1380 Paper: Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range
Minnesota Academic Standards
A Correlation of to the Minnesota Academic Standards Grades K-6 G/M-204 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley
Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards
Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of
Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Non-Parametric Tests (I)
Lecture 5: Non-Parametric Tests (I) KimHuat LIM [email protected] http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent
That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12
That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways
Autumn - 12 Weeks. Spring 11 Weeks. Summer 12 Weeks. Not As We Know It Limited 2014
A Year 5 Mathematician Planning of coverage and resources. Autumn - 12 Weeks Spring 11 Weeks Summer 12 Weeks TARGETS NHM YR 5 Collins 5 Abacus 5 Abacus 6 LA Prior Step NHM 4 CPM 4 Ginn 4 Number, place
6 th grade Task 2 Gym
experiences understanding what the mean reflects about the data and how changes in data will affect the average. The purpose of statistics is to give a picture about the data. Students need to be able
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and
Year 6 Mathematics - Student Portfolio Summary
Year 6 - Student Portfolio Summary WORK SAMPLE PORTFOLIOS These work sample portfolios have been designed to illustrate satisfactory achievement in the relevant aspects of the achievement standard. The
