Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators

Size: px
Start display at page:

Download "Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators"

Transcription

1 Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators Thomas Wrbka, 1,* Karl-Heinz Erb, 2 Niels B. Schulz, 2 Johannes Peterseil, 1 Christoph Hahn, 1 Helmut Haberl 2 1 Institute of Ecology and Conservation Biology, University of Vienna Department of Conservation Biology, Vegetation Ecology and Landscape Ecology Althanstraße 14, 1090 Vienna, Austria 2 Institute of Social Ecology, Vienna. Alpen-Adria Universität Klagenfurt Graz - WienSchottenfeldgasse 29, 1070 Vienna, Austria Corresponding author: Key words: Landscape diversity; Landscape indicators; Human appropriation of net primary production (HANPP); Hemeroby; Land use intensity. Land Use Policy Special Issue Land Use and Sustainability Indicators Guest editors: H. Haberl, M. Wackernagel, T. Wrbka Published as: Wrbka, Thomas, Karl-Heinz Erb, Niels B. Schulz, Johannes Peterseil, Christoph Hahn, Helmut Haberl, Linking pattern and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21(3), doi:

2 2 Abstract Landscapes can be seen as the contingent and historically variable outcome of an interplay between socio-economic and biophysical forces. Landscape ecologists use a wealth of indicators based on landscape patterns to evaluate landscape diversity, landscape structure, the naturalness of landscapes, and land-use intensity. Indicators such as the human appropriation of net primary production (HANPP) are increasingly used to evaluate the changes in ecosystem processes induced by land use. Based on a study region in the central part of Lower Austria (Niederösterreich), this paper explores interrelations between patterns and processes in landscapes by empirically analysing (1) whether landform affects spatial patterns of HANPP, (2) whether HANPP is correlated with indicators of landscape naturalness, and (3) whether HANPP is correlated with landscape diversity and landscape patterns. According to our results, landform influences patterns of HANPP but cannot explain them entirely. We found strong monotonous correlations between HANPP and urbanity, an indicator for the prevalence of human-dominated land-cover classes, as well as between HANPP and the hemerobiotic state, an indicator for landscape naturalness. We found significant unimodal (hump-shaped) correlations between HANPP and the landscape diversity. Landscape pattern indicators showed weak but significant relations to HANPP. Introduction Human activities have become a dominant factor shaping most cultivated landscapes of the Earth (Goudie and Viles, 1997). Human, animal and machine labour expended in using the land can create outstanding cultural landscapes with high aesthetic, cultural and ecological value such as the paddy-field rice terraces of south-east Asia (Droste et al., 1995), but may as well result in land degradation as is the case in some karst regions in the Mediterranean (McNeill, 1992; Thirgood, 1981). The distribution of landforms such as steep slopes, fertile plains, inundated valleys in a landscape sets the frame for land use by determining factors such as accessibility, water and nutrient availability (Risser, 1990), but may over long periods of time also be changed through land use. On the other hand, land use serves distinct socioeconomic purposes: Land may supply materials and energy through hunting, agriculture or forestry, it may host infrastructure, or it may be needed to absorb wastes and emissions (Haberl et al., 2004). Landscapes can be seen as the contingent and historically variable outcome of this interplay between socio-economic and biophysical forces. During the evolution of cultural landscapes throughout the world, humans have developed adaptive land use techniques and created specific patterns of fields, farmsteads, remnant woodlots and the like that depended on both natural and socio-economic conditions (Grigg, 1974). In European agricultural landscapes the long history of land transformation has led to regionally distinct regular patterns of geometrically arranged landscape elements, reflecting the historical and cultural background of the prevailing land use system of a region (Bell, 1999). The spatial distribution of ecotopes, the so-called landscape structure, has therefore often been regarded as a mosaic of frozen processes; i.e. landscape structure assumedly mirrors the processes which had been going on in a landscape. This perception has even become a central paradigm in modern landscape ecology (Forman and Godron, 1986; Forman, 1995). While many ecosystem processes are difficult to observe directly, landscape

3 3 structure can be derived from mapping as well as from remote-sensing data; therefore, landscape structure was often not only used to evaluate the ecological value of landscapes, but also to judge ecological aspects of the sustainability of land use patterns (Odum and Turner, 1989; Wrbka et al., 1999b,c). In recent years, however, indicators such as the human appropriation of net primary production (HANPP) have become available that allow researchers to measure specific aspects of ecosystem processes caused by land use on the landscape scale (Haberl et al., 2001), making it possible to relate landscape patterns and the underlying processes, as the human influence in landscapes, and thus test hypotheses such as the frozen process paradigm. This paper seeks to improve our understanding of the relationship between landscape patterns and society-nature interaction by analysing the dependency between landforms, land-use induced changes in ecosystems, and landscape patterns. We analysed the following questions: (1) To what extent is land use intensity (measured as HANPP) determined or at least limited by landforms? (2) What is the relation between HANPP and landscape patterns? Study Area We studied the central part of the Austrian province Lower Austria (Niederösterreich) around Lower Austria s capital St. Pölten (Figure 1). The study area consists of the territory of three political districts and includes 3 cities, St. Pölten (50,000 inhabitants), Krems (23,000 inhabitants) and Tulln (12,000 inhabitants). The smallest spatial object of our analysis was the political municipality which is the lowest level for which official land-use statistics are available. The average size of the municipalities in the study region is 31.8 km² but ranges from 0.4 to km 2. Figure 1. Location of the study region. Situated in the eastern part of Austria: from west to east and south to north.

4 4 The region was selected to contain Austria s major geo-ecological land units. The Hercynian uplands (1), the Eastern lowlands (2), the Lower northern Alps (3) and finally the Danube floodplain (4) are represented in the study region (see Figure 2a). With a total area of 2864 km² and its share of major land units the study area seemed to be a good representative for the ecological variety of eastern Austria as well as the variety of prevailing land-use systems. The region is characterised by subcontinental climatic conditions with an average annual temperature of 8.8 C and a mean annual sum of precipitation from 600 to 850 mm. The altitude ranges from 115 m to 1,301 m above sea level. The subsoil is dominated by quaternary and tertiary sediments in the eastern pre-alpine lowlands and basins, by granite and gneiss bedrock in the Hercynian Uplands and by limestone and sandstone in the lower northern Alps. While the land-cover map (see Figure 2b) reveals a rather fine-grained mixture of land-cover classes throughout the region, it also indicates that the four land units differ with respect to their predominant land use system. We find mixed agriculture (cropland and grasslands) with small to medium-sized woodlots in the Hercynian uplands. The alpine part of the study region is characterised by a mixture of forests and permanent grassland. The Eastern lowlands are dominated by arable land, settlements, and permanent cultures (e.g., vineyards or orchards), whereas the river corridor of the Danube floodplain is still covered by deciduous riparian forests. Forests cover is about 39.1 % of the study region, cropland and permanent cultures 36.2 %, grasslands 16.8 % and settlements 3.4 %.

5 5 Figure 2. Situation of the study region: a) Map of the geo-ecological land units, and b) Land cover map of the study area (derived from Landsat TM-5 satellite images using a combination of a segmentation and supervised classification procedure).

6 6 Data and Methods Conceptual considerations The conceptual framework of our analysis is depicted in Figure 3. Solid lines represent relations explicitly analysed in this study whereas dashed lines stand for important influences that could not be analysed in this paper. Our basic assumption is that landscape patterns such as naturalness, landscape structure or landscape diversity are a result of ecosystem processes which in turn are influenced not only by natural factors such as climate and landforms, but also by socio-economic metabolism (see Haberl et al., 2004; Krausmann et al., 2003). Landforms: elevation, slope, roughness Climate Biogeochemical cycles HANPP: land-use induced changes in ecosystem processes (energetics) Socio-economic metabolism: material and energy flows Landscape patterns: naturalness, landscape structure and heterogeneity Regional landscape ecosystem Influences explicitly considered in this study Influences not explicitly considered in this study Figure 3. Conceptual overview of this study. While socio-economic metabolism can, in principle, be analysed for administrative units it is difficult, if not impossible, to assess for small spatial units as represented for example by pixels in a GIS grid. What can be analysed in a spatially explicit way, however, are the changes in ecosystem processes that result from socio-economic metabolism. As is discussed in other papers in this issue (Haberl et al., 2004; Krausmann et al., 2004), HANPP is an indicator of the extent to which ecosystem processes are altered by human activities. HANPP takes into account potential and actual ecosystem processes and reflects important components of socio-economic metabolism, above all the domestic extraction of biomass (Haberl et al., 2001; 2004; Krausmann, 2001). As indicators of landforms we used simple measures that can be derived from digital terrain models such as elevation, slope and relief roughness. In order to describe landscape patterns we used indicators that are commonly used in landscape ecology to evaluate the naturalness, structure and diversity of landscapes.

7 7 Data on land use and land cover The land cover map of the study region (Figure 2) is part of a land cover map of Austria derived through automatic segmentation and classification of Landsat TM5 images with a pixel size of 30x30m (Wrbka et al., 1998). This map distinguishes 20 land cover classes (see Figure 2). The segmentation procedure placed high emphasis on spectral homogeneity of segments and used a region growing method. The resulting segments were classified using a decision tree classification based on the six reflective Landsat TM5 bands. The decision rules were formulated using expert knowledge. These rules were refined in an iterative process based on information from training samples. Further methodological details can be found in Wrbka et al. (1998). The segments resemble the parcels which are the units of land use. The automatic image interpretation was optimized to get information on the landscape structure and configuration. Data on land use within these land cover classes were inferred from agricultural and forestry statistics as well as the Austrian forest inventory. For example, crops assumed to be growing on the various cropland classes were inferred from agricultural statistics that are available on the level of municipalities. Agricultural yields on cropland and meadows were also taken from agricultural statistics and were available as averages for each political district. Spatial reference units The optimal spatial scale level for analysing patterns and processes in agricultural landscapes is controversially discussed and depends largely on natural preconditions as well as on the intensity of human impacts. Banko et al. (2003) suggested the use of predefined, ecologically meaningful landscape types as reference units for national and international reporting of environmental indicators (OECD, 2001). We adopted this approach by delineating land units that were roughly homogenous with respect to their biophysical conditions, i.e. the four geoecological land units described above (Fig. 2). One of them, however, the Danube floodplain was excluded from further analysis because it covered a too small area. As reference unit for statistical analysis a grid mesh of 1x1 km size was used, in accordance with the Austrian national grid. The single grid cell which is the basic analysis units is termed as landscape cell in the following text. Every landscape cell was assigned to one of the four geo-ecological land units. Alternatively we performed our analyses on the basis of the municipalities. Each municipality was assigned to one of the four geo-ecological land units to which it had the major share. We found this approach useful because land use statistics, derived from census data, are aggregated and officially reported at this level. It can be expected that municipality-based results might eventually better link with policies and their assessment, but they presumably blur the picture of the bio-physical aspects of socio-economic processes in the region because they seldom reflect geo-ecological borders in the region. Thus we see it as a complementary procedure, enabling us to explore the strength and weaknesses of both spatial reference units which also reflect the different spatial scales. All variables, land form indicators, landscape structure indicators and HANPP, were calculated on the basis of these sample units, both the landscape cells (L) and the municipalities. The landscape cells allowed to perform proper statistics with equally sized sample units.

8 8 Indicators We distinguished three main groups of indicators: (a) landform indicators, (b) landscape structure indicators and (c) HANPP. A detailed overview of indicators (a) and (b) used in this study is presented in Table 1. Table 1. Variables used in the analyses. All variables were calculated on two different sample units (a) the landscape cell and (b) the municipality. Name of Variable Remarks Landform indicators Altitude* Slope* Curvature* Roughness* Average altitude of a certain surface area (m a.s.l.). The rate of maximum change in altitudinal (z) value from a certain surface area ( ). Concavity or convexity of the land surface describing if there are merely ridges and hills or valleys. Standard deviation of curvature describes the variation of the land surface, if a surface is merely flat or hilly. Landscape structure indicators a. Heterogeneity Landscape richness** Landscape diversity** b. Pattern Patch Size** Matrix distance** Shape Index** Maximum Incircle** Minimum-bounding-rectangle** Elongation** c. Landscape fragmentation Influence by traffic infrastructure*** Remoteness*** Meshsize*** Settlement distance** d. Landscape naturalness Urbanity** Hemeroby** Number of land cover categories per area unit. Probability of the land cover category in a reference unit. Calculated as Simpson Diversity Index. Average size of the segments (landscape element). Euclidian distance between elements belonging to the matrix. A measure for the shape compactness. The maximum radius of a circle which can be drawn within the boundaries of the element (core areas). Relation between the area of the element and the area of the bounding rectangle (complexity of the element). Relation between the shortest and the longest axis of the element. Weighted mean distance of a certain point in the landscape to the next road using a minimum operator. Weighted mean distance of a certain point in the landscape to the next road using a maximum operator. Average area within the spatial reference unit which is encircled by traffic lines. The average distance between settlement patches. The urbanity index: an indicator of the extent to which landscapes are dominated by strongly human-altered systems. Describes gradients of human influence on landscape. * Calculated on the base of a 250m resolution digital terrain model (DTM) ** Calculated on the base of the land cover map of the study area. *** Calculated on the base of the Austrian Road Map (Austrian map 1: BEV)

9 9 As landform indicators we used basic variables such as elevation, slope, curvature and relief roughness as landform indicators (Nichols et al., 1998; O Brian, 1998). Altitude was considered as average altitude of a certain surface area (m a.s.l.). Slope was defined as the rate of maximum change of the altitudinal values for a certain surface area ( ). The curvature describes whether the surface area at a certain spot is upwardly convex or concave shaped and reflects if the surface is merely characterised by ridges and hills, valleys or plains. The roughness of the relief is defined as the standard deviation of curvature. It describes if the surface area is merely flat or hilly. Higher values reflect a high variation of the surface whereas low values reflect a plain and smooth surface. All land form indicators were derived from a digital terrain model (DTM) with a spatial resolution of 250 m which is used to describe the macro and meso-relief. Averages and standard deviation were computed for each sample unit, both the landscape cells and the municipalities, using the ARC/Info Grid module and the ArcView 3.3 Spatial Analyst extension. We used HANPP (Vitousek et al., 1986) as an indicator for changes in the availability of trophic energy in ecosystems induced by land use (Haberl et al., 2004; Krausmann et al., 2004). HANPP was calculated based on the land-use and land-cover data described above using methods explained in more detail elsewhere (Haberl et al., 2001). Basically, we used information on potential vegetation, climate and elevation to calculate potential productivity; harvest indices to extrapolate the productivity of croplands and meadows from agricultural statistics; and agricultural and forestry statistics to calculate harvest on cropland, grasslands and in forests. HANPP% expresses HANPP as the percentage of the potential vegetation s NPP appropriated by humans. In calculating HANPP we only considered the aboveground compartment. Indicators of landscape patterns were derived from the land cover map of the study area. The segments of the land cover map resulting from the automatic satellite image interpretation were treated as landscape elements, which are the basic spatial units at the landscape scale (Forman and Godron, 1986; Forman, 1995). Each segment was assigned to one of the 20 land cover classes and the various indices were calculated on the patch (for the individual segments) as well as on the class level (for the land cover category within the spatial reference unit). In a second step, average values of the measures on the patch level that describe patch shape and configuration were computed for the respective sample unit: the landscape cell and the municipality. We selected a comparatively small set of variables from the suite of landscape-metrics suggested by various authors (e.g., Elkie et al., 1999; Haines-Young and Chopping, 1996; Hargis et al., 1997; 1998; McGarigal and Marks, 1994) according to our research questions. We considered four types of indicators: (a) Landscape heterogeneity indicators indicators for landscape heterogeneity based on information theory, (b) landscape pattern indicators indicators for the size and shape of landscape elements, (c) landscape fragmentation indicators indicators for the fragmentation and dissection of landscapes and (d) landscape naturalness indicators. We analysed two indicators of landscape heterogeneity. Landscape richness (LR) is defined as the number of land-cover categories per unit of area (km²).

10 10 N LR * A N is the total number of land cover categories within the sample unit and A is the total area of the sample unit (m², e.g. 1 km² for the landscape cell or the area of the municipality). Landscape diversity (LD) was calculated as the Simpson Diversity Index (McGarigal and Marks, 1994), defined by the formula LD 1 m Pi i 1 ² where P i is the probability of the occurrence of the land cover category i within the spatial reference unit and m is the number of land cover categories within the spatial reference unit. The Simpson Diversity Index is similar to the Dominance Index introduced by O Neill et al. (1988) and reflects to what extent a land cover category dominates the land mosaic within the sample unit. The value of LD increases as more land cover categories with similar proportions build up the land use mosaic and decreases as the land use mosaic is dominated by just a few land cover categories. We analysed six indicators for the size and shape of landscape elements. Patch Size (PS) is defined as the average size of the segments within the spatial reference unit (ha). This indicator is used to describe the grain size of the land mosaic within the sample unit. Matrix Distance (MD) is defined as the Euclidian distance (in m) between the segments which belong to the matrix. The matrix was identified as the prevailing land cover category within a 1 km radius of each 30x30m pixel of the land cover map. The average for each sample unit was calculated. The value increases as the matrix becomes more fragmented and decreases as the matrix becomes more connected. The Shape Index (SI) is a measure for the shape compactness as SI=1 when the shape is circular and increases without limit as the segment becomes more irregular. SI is defined as SIi Pi 2* * Ai and MSI m i 1 SIi NP where P i is the perimeter of the segment I, A i is the area of the segment I and m and NP is the total number of segments within the sample unit. The Maximum In-Circle (MXIN) is defined as the maximum radius of a circle which can be drawn within the boundaries of the segment. It is a measure for the size of the core area of a habitat which is an important quality for the appearance of interior species (Forman and Godron, 1986; Forman, 1995). The average was calculated for each sample unit. The Minimum Bounding Rectangle Fill (MBRF) is used as an indicator for the complexity of the segment. It is defined as the relation between the segment area and the area of the bounding rectangle which best fits the segment. The value increases as the segment becomes more complex and decreases towards 1 with decreasing complexity. A rectangular field shows the value 1. The Patch Elongation (ELON) is defined as the relation between the shortest and the longest axis of the segment. The value increases as the segment becomes more elongated.

11 11 We analysed four indicators for the fragmentation and dissection of landscapes which were based on a national road map (1:500,000 scale) and the land cover map. The Influence by Traffic Infrastructure (SPDMI, Wrbka et al., 2001) is defined as the weighted average distance of a certain point in the landscape to the next traffic line using a minimum operator when combining the different traffic layers. An expert based estimation of traffic intensity was used as weight. The distance is calculated as the true surface distance using the ARC/Info GRID function pathdistance. The value of SPDMI decreases with increasing influence by traffic infrastructure. Wilderness areas show high SPDMI values. The average value within the sample unit is calculated. Remoteness (SPDMA; Wrbka et al., 2001) is defined as the weighted average distance (see Influence by Traffic Infrastructure) of a certain point in the landscape to the next traffic line using a maximum operator. Distant areas are up-weighted and areas close to main traffic zones are down-weighted. The weighting and calculation procedure is similar to SPDMI. The value of SPDMA increases as the landscape gets more remote and decreases with increasing anthropogenic influence. The average value within the sample unit is calculated. Mesh size (SNET) is defined as the average area (in km²) which is encircled by traffic infrastructure. The average value within the sample unit is calculated. Settlement Distance is defined as connectedness of settlement areas and calculated as the average Euclidian distance between medium to highly sealed land cover categories using the ARC/Info GRID function pointdistance. The average value within the sample unit is calculated. As landscape naturalness indicators we used the urbanity index and hemeroby. The urbanity index (O Neill et al., 1988) is often used in landscape ecology as an indicator of the extent to which landscapes are dominated by strongly human-altered systems. It is defined as U A Urbanity log10 F W B where U denotes urban area, A agricultural area (cropland, agriculturally used grasslands), F forest areas, W water and wetland areas and B natural or semi-natural biotopes ( natural areas ). The concept of hemeroby was introduced by Jalas (1955) to describe gradients of human influence on landscape and flora. It was originally based on data of the share of life-forms (e.g., trees, shrubs, grasses) and introduced species of vascular plants. It was extended by central European ecologists by integrating parameters that describe human impacts on ecosystems such as land-use types, plant communities and soils (Blume and Sukopp, 1976; Bornkamm, 1980; Sukopp 1972, 1976). Data on hemeroby are given on a ordinal scale ranging from level 1 ( ahemerob; i.e., without actual human impact) to level 7 ( metahemerob; i.e., artificial landscape elements that do not resemble the originally prevalent biocoenoses). To assess the hemerobiotic state of each land cover type a hemeroby value was assigned based on expert judgement and the experience of an extensive field survey (Wrbka et al., 1999b,c). An area weighted average value of the hemerobiotic state was calculated for each sample unit. A similar method was recently used by Steinhardt et al. (1999).

12 12 Statistical analyses Following the conceptual model used in this study (see Figure 3) we first analysed the influence of land forms on land use intensity as assessed by HANPP%, using ordinary least square regressions techniques (Azola and Harrell, 2001). Variables were selected in a stepwise forward selection process. Linear and non-linear functions (restricted cubic splines piecewise polynomials of order higher than linear with linear restrictions to the upper and lower tail of the function; see Harrell, 2001) were fitted to the data and tested for their explanatory value. The resulting models were tested for an increase of r² using ANOVA (Ftest, p<0.05). Model validation was performed by a bootstrap method (resampling with replacement) with B=100 repetitions to get corrected r² values. Additionally we performed linear and non linear Spearman rho² rank correlation analyses (Azola and Harrell, 2001). The relationship between HANPP% and the various landscape structure indicators were analysed in a second step. HANPP%, as an indicator describing human-induced changes in processes in landscape ecosystems, was used as explanatory variable. The landscape structure indicators listed above were used as response variables. All landscape structure indicators were analysed individually. Again we performed an ordinary least square regression analysis. Linear as well as non-linear functions (e.g., restricted cubic splines) were fitted to the data. Model validation was performed using a bootstrap method with B=200 repetitions. In addition we performed Spearman rho² rank correlation analyses, examining linear as well as quadratic functions. First the landscape heterogeneity indicators (H) were analysed, second the landscape pattern indicators (P) as for example patch size and shape, third the landscape fragmentation indicators (F) and fourth the landscape naturalness indicators (N). The analysis was performed for two different levels of the spatial reference units: (a) the total study region (in the following text termed as Total ) and (b) the geo-ecological land units (in the following text identified by their names as given above). This design was used to assess the differences within the study region and between the different geo-ecological land units. The analysis was done using both sample units, landscape cells (n=2698) and municipalities (n=90). The analysis was performed using SPlus and the Hmisc and Design library (Azola and Harell, 2001). Results Dependence of HANPP on land form A highly significant result was obtained for nearly all spatial reference units (see Table 2). The different geo-ecological land units showed, for the landscape cells as well as for the municipalities, a slightly different degree of influence of landform on HANPP%. In general the relation between HANPP and land form variables was weaker for the landscape cell sample unit (corrected r² ranging from 0.17 to 0.38) than for the municipalities (corrected r² ranging from 0.68 to 0.83). Figure 4 presents the spatial distribution of some indicator values used in the analysis.

13 13 Figure 4. Illustration of the spatial distribution within the study region of exemplary indicators used in the analysis: a) altitude (m a.s.l.), b) roughness, c) landscape richness (number of land cover categories), d) landscape diversity (Simpson Diversity Index), e) HANPP% (Human Appropriation of Net Primary Production in percent of potential NPP), and f) the mean Hemerobiotic State. and process in cultural landscapes. An empirical study based on spatially explicit indicators. Land Use Policy 21(3), doi:

14 14 Table 2. Dependence of HANPP on land form. The analysis was performed for the whole study region (Total) as well as for the geo-ecological land units separately on the basis of two different sample units (a) the landscape cell (1x1km) and (b) the municipalities: n is the sample size, corr. r² is the corrected r² value resulting from model validation (bootstrap method), B is the number of repetitions used for the validation. All models are significant at a level of p < except n.s. where no significant model could be obtained. Model n Explanatory variables corr. r 2 B (a) Landscape cell Total 2698 altitude, slope, roughness Hercynian uplands 906 altitude, roughness Eastern lowlands 1095 altitude, slope, roughness Lower northern Alps 576 altitude, slope (b) Municipalities Total 90 roughness Hercynian uplands 32 altitude, roughness Eastern lowlands 38 n.s. Lower northern Alps 19 roughness For the whole study region altitude, slope and roughness turned out to be the best predicting variables to explain the variance of HANPP%, using landscape cells as sample units. The resulting regression model total explains 38% of the variance (corrected r² = 0.38, p> 0.001). Only non linear functions (restricted cubic splines with 4 knots for elevation and slope and a log10 function for the roughness of the relief) were used in the model. Generally HANPP% decreases with increasing altitude and slope (Figure 5). HANPP% decreases rapidly between 200m and 600m a.s.l., but there is greater variance and a weaker correlation in higher altitudes. The negative influence of slope on HANPP% is stronger for slight to moderate slopes and weaker in steep terrain. Roughness shows a nearly linear response function, but with high variation. The dependence of HANPP% on land form indicators differs markedly between the geoecological units. For the Hercynian uplands elevation and the roughness of the relief turned out to be the best predictors for HANPP% (corrected r²=0.34; p < 0.001). The weakest regression coefficient were found for the Lower northern Alps (corrected r²=0.17; p < 0.001) and the Eastern lowlands (corrected r²=0.20; p < 0.001). Different sets of variables had the best explanatory value for the different geo-ecological land units (see Table 2).

15 15 Figure 5. Influence of landform on HANPP. Scatterplots (a-c) and response functions (d-f) of the variables entered in the model and explaining most of the variation of HANPP% for the total study region (n=2698 landscape cells; ordinary least square regression, corrected r²=0.38, p<0.001): a) altitude, b) slope and c) roughness. The variables were fitted using linear and non linear functions (e.g. restricted cubic splines). Figure 4 shows the spatial distribution of selected indicators in the study region. A comparison of Figure 4a with Figure 4b reveals that roughness tends to be larger at higher altitudes with the exception of a part of the Hercynian uplands. This region is a plateau-like landscape with an average elevation of 650 m a.s.l. and low roughness values. This region is characterized by nutrient-poor sandy soils and an average annual temperature of 7.9 C, much less favourable geological and climate conditions for agriculture than in the other geoecological units. This explains why this region is less intensively used than the lowland areas, even if the relief would permit more intensive cultivation.

16 16 The models based on municipalities as sample units show similar results, but in general the relation is markedly better. For the total study region 68% (corrected r²=0.68; p < 0.001) of the variation of HANPP% could be explained only by roughness. HANPP% decreases rapidly with an increasing variability of the surface area. The roughness was a key explanatory variable in all models based on the municipality as sample units. In contrast to the previous results for the landscape cells a clear relation between HANPP% and the landform indicators could be demonstrated also for the Lower northern Alps. Only for the Eastern lowlands no significant model could be obtained (see Table 2). Dependence of landscape patterns on HANPP We analysed four different groups of landscape structure indicators: (a) landscape heterogeneity indicators, (b) landscape pattern indicators, (c) landscape fragmentation indicators and (d) landscape naturalness indicators. Samples of the spatial distribution of some indicator values in the study region are given in Figure 4. Significant relations between landscape heterogeneity and HANPP could be obtained for the total study region, for all geo-ecological land units at the landscape cells level, and for some indicators at the municipality level. Landscape richness as well as landscape diversity calculated for the landscape cells showed an unimodal, hump-shaped response curve (Figure 6). Landscape diversity and richness are highest at intermediate levels of HANPP. We found significant relations between HANPP% and landscape richness (corrected r²=0.35; p < 0.001) as well as between HANPP% and landscape diversity (corrected r²=0.43; p < 0.001). This also holds for the different geo-ecological land units, but in this case the response curves are slightly skewed. For the Lower northern Alps we found a left-skewed relation between richness and HANPP, in the Eastern lowlands they were distorted to the right, whereas the Hercynian Uplands yielded a classical unimodal curve. Landscape diversity revealed an even clearer optimum curve than did landscape richness. Nevertheless for all spatial reference units a more or less clear unimodal response curve could be obtained which means that landscape diversity (LD) and richness (LR) are highest at intermediate HANPP levels. All models were significant at p < (see Figure 6). When using municipalities as sample units (Table 3) valid and significant models could be obtained only for landscape richness (LR) in the Hercynian uplands (corrected r²=0.49, p<0.001) and for landscape diversity (LD) in the Eastern lowlands (corrected r²=0.65, p<0.001). HANPP was only weakly, if at all, correlated to indicators of landscape pattern. On the basis of the landscape cells as sample units weak but significant correlation could be shown for patch size, matrix distance, shape index and the maximum in-circle (Figure 6). Generally the relations are better for the separate geo-ecological land units (corrected r² ranging from 0.30 to 0.44, p<0.001) than for the total study region (corrected r² ranging from 0.23 to 0.31, p<0.001). Matrix distance shows an unimodal response curve to HANPP (see Figure 6). For the municipalities as sample units nearly no valid model could be obtained.

17 17 Table 3. Dependence of landscape structure on HANPP. The analysis was performed for the whole study region (Total) as well as for the geo-ecological land units separately on the basis of two different sample units (a) the landscape cell (1x1km) and (b) the municipalities: n is the sample size, corr. r² is the corrected r² value resulting from model validation (bootstrap method with 200 repetitions). All models are significant at a level of p < except n.v. where no valid model could be obtained. Total Hercynian uplands Eastern lowlands Low. north. Alps corr. r 2 corr. r 2 corr. r 2 corr. r 2 (a) Landscape cell n=2698 n=906 n=1095 n=576 H Landscape richness H Landscape diversity P Patch Size P Matrix distance P Shape Index P Maximum Incircle P Minimum bounding rectangle P Elongation 0.02 n.v F Influence by traffic infrastructure F Remoteness F Meshsize F Settlement distance N Hemeroby N Urbanity (b) Municipalities n=90 n=32 n=38 n=20 H Landscape richness n. v. n. v. H Landscape diversity 0.19 n. v n. v. P Patch Size n. v. n. v. n. v. n. v. P Matrix distance n. v. n. v. n. v. n. v. P Shape Index n. v. n. v. n. v. n. v. P Maximum Incircle n. v. n. v. n. v. n. v. P Minimum bounding rectangle 0.17 n. v. n. v. n. v. P Elongation n. v. n. v. n. v. n. v. F Influence by traffic infrastructure 0.22 n. v. n. v. n. v. F Remoteness n. v. n. v. n. v. n. v. F Meshsize 0.28 n. v. n. v. n. v. F Settlement distance 0.35 n. v. n. v. n. v. N Hemeroby N Urbanity Landscape structure indicators: (H) landscape heterogeneity, (P) landscape pattern, (F) landscape fragmentation and (N) landscape naturalness.

18 18 Figure 6. Influence of HANPP on landscape structure indicators. Scatterplots (a-d) and response functions (e-h) for some exemplary indicators used in the analysis: a) Landscape richness (corrected r²=0.35), b) Maximum incircle (corr. r²=0.31), c) Matrix distance (corr. r²=0.25) and d) Meshsize (corr. r²=0.24). All variables were analysed separately using ordinary least square regression techniques. Non linear functions (e.g. cubic or restricted cubic splines) were used. All models are significant at p<0.001.

19 19 With respect to landscape fragmentation indicators, significant relations were rare. Only for mesh size (Figure 6) and settlement distance a very weak relation could be obtained. Higher land use intensity is correlated with a denser traffic infrastructure, but nevertheless the relation is very weak (corrected r²=0.24, p<0.001). The models for the three geo-ecological land units show no relation at all (see Table 3). For the municipalities no valid model at all could be obtained. Hemeroby and urbanity show a high correlation to HANPP% (Figure 7). The corrected r² values ranges between 0.57 and 0.91 for the landscape cells and between 0.38 and 0.95 for the municipalities (Table 3). The relation between HANPP and the landscape naturalness indicators is nearly linear showing a decreasing naturalness with increasing HANPP levels. But the variation in the naturalness values at high HANPP levels is higher than for low HANPP values. The models for the separate geo-ecological land units show some differences, but in general the trend is similar. Even for the municipalities as sample units good correlations could be obtained: corrected r² values ranged from 0.86 to 0.94 with the exception of the Lower northern Alps (p<0.001). Figure 7. Influence of HANPP on landscape naturalness indicators. Scatterplots (a-b) and response functions (cd) for the indicators used in the analysis: a) Hemeroby Index (corrected r²=0.84), b) Urbanity Index (corr. r²=0.87). All variables were analysed separately using ordinary least square regression techniques. Non linear functions (e.g. cubic or restricted cubic splines) were used. All models are significant at p<0.001.

20 20 Discussion The influence of land form on the intensity of land use Only 38% of the spatial variance of HANPP could be explained by factors describing the geoecological conditions in the study region. Climatic variables are only indirectly considered; for example, through the gradients in temperature und precipitation with elevation. Geological and soil condition could not be taken into consideration due to the lack of detailed data. Figure 4 shows the spatial distribution of selected indicators used in the survey for the study region. The different geo-ecological land units exhibit clear differences that can be explained by differences in their biophysical conditions. But also within one geo-ecological land unit we find different patterns, for example in the Eastern lowlands north and south of the Danube, even though these areas are very similar with respect to geological and climatic preconditions: While the northern part of the Eastern lowlands is dominated by a diverse mosaic of crop farming and permanent cultures (mostly viticulture; Figure 2b) the southern part is dominated by large, rectangular-shaped fields for crop and fodder crop farming. These differences can not be explained just by biophysical variables, but must be seen as a result of different farming traditions and thus of socio-economic conditions. Cultural landscapes have, in contrast to natural and semi-natural landscapes, special characteristics. The disturbance regime as well as the major material and energy fluxes in these transformed landscapes are controlled to a large extent by humans (Fischer-Kowalski et al., 1997; Nassauer, 1995). This is done by the different land use practices applied for meadows, arable land or forests. Decisions about land use are made according to the local agro-ecological characteristics which are nested in a hierarchy of social, economical and technical constraints (Burel and Baudry, 1995; Deffontaines et al., 1995; Nassauer, 1995). Cultural landscapes can thus only be understood by analysing the interplay between biophysical and socio-economic patterns and processes (Nassauer, 1995). Within this conceptual framework we interpret our findings as follows: Spatial patterns of land use intensity as measured by HANPP are influenced by a number of factors. Even in industrialized countries landforms explain HANPP patterns to some extent, but of course other factors can also play a significant role. We would expect that, by considering a set of biophysical factors such as climate, geology, etc. as well as social and economic factors such as agricultural policies (Krausmann et al., 2003), energy policy (Haberl et al., 2003), farming traditions, etc., one could explain these pattern to a larger extent. Landscape structure and intensity of land use does the process and pattern paradigm hold? Odum and Turner (1989) found that the landscape elements of the Georgia landscape in the early 1930s had a higher fractal dimension than the elements of the same region in the 1980s. During the same period of time the use of fertilizers, pesticides and other agrochemicals increased dramatically. This illustrates that the growing human impact on the land may result in a landscape with decreasing geometrical complexity. The same can be said for agricultural landscapes in north-eastern Germany, where Stachow and Piorr (1995) detected a negative correlation between indices describing the complexity of patch shapes of landscape elements on one hand and the hemerobiotic state on the other hand. Wrbka et al. (1998) showed for several Austrian cultural landscapes that there is a significant influence of the hemerobiotic

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological

More information

State of Ontario's Forests - Indicator Report

State of Ontario's Forests - Indicator Report Criterion 1 Conserving Biological Diversity Element 1 Conserving Ecosystem Diversity Indicator 2 Levels of Fragmentation and Connectedness of Forest Ecosystem Components Indicator Condition State Trend

More information

Landforms form an integral part

Landforms form an integral part Landform classification using GIS by Karsten Drescher, Terralogix Consulting, and Willem de Frey, Ekoinfo Refining existing landform classifications using ESRI s model builder. Landforms form an integral

More information

Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing ABSTRACT

Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing ABSTRACT 1 Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing Zhaohui Deng, Yohei Sato, Hua Jia Department of Biological and Environmental Engineering, Graduate School of Agricultural

More information

Environmentally Significant Areas of Alberta. Volume 3. Prepared by: Sweetgrass Consultants Ltd. Calgary, AB. for:

Environmentally Significant Areas of Alberta. Volume 3. Prepared by: Sweetgrass Consultants Ltd. Calgary, AB. for: Environmentally Significant Areas of Alberta Volume 3 Prepared by: Calgary, AB for: Resource Data Division Alberta Environmental Protection Edmonton, Alberta March 1997 EXECUTIVE SUMMARY Large portions

More information

National Inventory of Landscapes in Sweden

National Inventory of Landscapes in Sweden Key messages Approaching the landscape perspective in monitoring experiences in the Swedish NILS program Johan Svensson, Future Forest Monitoring, 091112 Landscape level approaches are necessary to deal

More information

Analysis of Land Use/Land Cover Change in Jammu District Using Geospatial Techniques

Analysis of Land Use/Land Cover Change in Jammu District Using Geospatial Techniques Analysis of Land Use/Land Cover Change in Jammu District Using Geospatial Techniques Dr. Anuradha Sharma 1, Davinder Singh 2 1 Head, Department of Geography, University of Jammu, Jammu-180006, India 2

More information

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with

More information

San Francisco Bay Margin Conservation Decision Support System (DSS)

San Francisco Bay Margin Conservation Decision Support System (DSS) San Francisco Bay Margin Conservation Decision Support System (DSS) Presented by Brian Fulfrost1, MS David Thomson2, MS 1 Brian Fulfrost and Associates 2 San Francisco Bay Bird Observatory Transitional

More information

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Materials and Methods Overview Forest cover change is calculated using a sample of 102 observations distributed

More information

Degree of human transformation of landscapes: a case study from Hungary

Degree of human transformation of landscapes: a case study from Hungary Hungarian Geographical Bulletin 2009. Vol. 58. No 2. pp. 91 99. Degree of human transformation of landscapes: a case study from Hungary Abstract Csorba, Péter Szabó, Szilárd 1 CORINE land use categories

More information

What is Landscape Ecology?

What is Landscape Ecology? Introduction to Landscape Ecology By Kevin McGarigal Disclaimer: Some of the material in this document was borrowed from Turner et al. (2001) and Dean Urban s Landscape Ecology course notes, Duke University.

More information

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination

More information

720 Contour Grading. General. References. Resources. Definitions

720 Contour Grading. General. References. Resources. Definitions 720 Contour Grading General Contour grading directs water to a desired point, prevents erosion, provides noise deflection, provides visual fit of the facility into the landscape, and protects desirable

More information

Relevance of moving window size in landform classification by TPI

Relevance of moving window size in landform classification by TPI Relevance of moving window size in landform classification by TPI Zbigniew Zwoliński Institute Geoecology and Geoinformation Adam Mickiewicz University in Poznań Dzięgielowa 27, 61-680 Poznań, Poland zbzw@amu.edu.pl

More information

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS? Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information

More information

Landscape and Fragmentation Analysis. Patch Analyst Patch Analyst (Grid)

Landscape and Fragmentation Analysis. Patch Analyst Patch Analyst (Grid) Landscape and Fragmentation Analysis Patch Analyst Patch Analyst (Grid) Crash Course in. Landscape Ecology Study of landscape patterns Interaction among patches within a landscape Dynamics and change in

More information

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite R.Manonmani, G.Mary Divya Suganya Institute of Remote Sensing, Anna University, Chennai 600 025

More information

Understanding Raster Data

Understanding Raster Data Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed

More information

Description of Simandou Archaeological Potential Model. 13A.1 Overview

Description of Simandou Archaeological Potential Model. 13A.1 Overview 13A Description of Simandou Archaeological Potential Model 13A.1 Overview The most accurate and reliable way of establishing archaeological baseline conditions in an area is by conventional methods of

More information

Multi-scale upscaling approaches of soil properties from soil monitoring data

Multi-scale upscaling approaches of soil properties from soil monitoring data local scale landscape scale forest stand/ site level (management unit) Multi-scale upscaling approaches of soil properties from soil monitoring data sampling plot level Motivation: The Need for Regionalization

More information

Madagascar: Makira REDD+

Madagascar: Makira REDD+ project focus Madagascar: Makira REDD+ Madagascar is considered to be one of the top five biodiversity hotspots in the world due to more than 75% of all animal and plant species being endemic while less

More information

TOWARDS A GLOBAL STRATEGY FOR THE ENVIRONMENTAL SUSTAINABILITY OF THE PROVINCE OF CUENCA (SPAIN)

TOWARDS A GLOBAL STRATEGY FOR THE ENVIRONMENTAL SUSTAINABILITY OF THE PROVINCE OF CUENCA (SPAIN) Boletín de la Towards Asociación a global de Geógrafos strategy for Españoles the environmental N.º 59-2012, sustainability págs. 435-440 of the province of Cuenca (Spain) I.S.S.N.: 0212-9426 TOWARDS A

More information

Integration of GIS and Multivariate Statistical Analysis in Master Plan Study on Integrated Agricultural Development in Lao PDR

Integration of GIS and Multivariate Statistical Analysis in Master Plan Study on Integrated Agricultural Development in Lao PDR Integration of GIS and Multivariate Statistical Analysis in Master Plan Study on Integrated Agricultural Development in Lao PDR GIS Makoto ISHIZUKA, Tetsunari GEJO, Shigeya OOTSUKA and Yukiyasu SUMI GIS

More information

WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10

WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10 WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10 SUMMARY 2009-10 The Willochra Basin is situated in the southern Flinders Ranges in the Mid-North of South Australia, approximately 50 km east of Port Augusta

More information

Origins and causes of river basin sediment degradation and available remediation and mitigation options. Feedback from the Riskbase workshop

Origins and causes of river basin sediment degradation and available remediation and mitigation options. Feedback from the Riskbase workshop Origins and causes of river basin sediment degradation and available remediation and mitigation options Feedback from the Riskbase workshop Corinne Merly 1, Olivier Cerdan 1, Laurence Gourcy 1 Emmanuelle

More information

COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change?

COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change? Coastal Change Analysis Lesson Plan COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change? NOS Topic Coastal Monitoring and Observations Theme Coastal Change Analysis Links to Overview Essays

More information

Fragmentation of land by urbanisation, transport infrastructure and agriculture

Fragmentation of land by urbanisation, transport infrastructure and agriculture Fragmentation of land by urbanisation, transport infrastructure and agriculture Background The survival of threatened species depends on populations which are large enough to maintain their genetic diversity

More information

Landscale to Regional Scale Concerns About Human Well-Being in the Context of Global Change: Approaches to Problem Solving

Landscale to Regional Scale Concerns About Human Well-Being in the Context of Global Change: Approaches to Problem Solving Landscale to Regional Scale Concerns About Human Well-Being in the Context of Global Change: Approaches to Problem Solving John Tenhunen Department of Plant Ecology, University of Bayreuth Institute of

More information

area caves channel confined flat geologic glaciers natural ocean precipitation waterfalls wide

area caves channel confined flat geologic glaciers natural ocean precipitation waterfalls wide Module 1 Environment A River Landscape 1 Complete the text with the words in the box. area caves channel confined flat geologic glaciers natural ocean precipitation waterfalls wide A river is a (1)...

More information

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003 2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT Final Report by Michael Lackner, B.A. Geography, 2003 February 2004 - page 1 of 17 - TABLE OF CONTENTS Abstract 3 Introduction 4 Study

More information

Some elements of photo. interpretation

Some elements of photo. interpretation Some elements of photo Shape Size Pattern Color (tone, hue) Texture Shadows Site Association interpretation Olson, C. E., Jr. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric

More information

GLOSSARY OF TERMS CHAPTER 11 WORD DEFINITION SOURCE. Leopold

GLOSSARY OF TERMS CHAPTER 11 WORD DEFINITION SOURCE. Leopold CHAPTER 11 GLOSSARY OF TERMS Active Channel The channel that contains the discharge Leopold where channel maintenance is most effective, sediment are actively transported and deposited, and that are capable

More information

ERP: Willamette-Ecosystem Services Project

ERP: Willamette-Ecosystem Services Project ERP: Willamette-Ecosystem Services Project Presented by Iris Goodman to NAS Sustainability R&D Forum October 17-18, 2007 Conserving ecosystem services through proactive decision-making making Linking Human

More information

4.2 Buena Vista Creek Watershed

4.2 Buena Vista Creek Watershed Buena Vista Creek Watershed 4.2 Buena Vista Creek Watershed Watershed Overview The Buena Vista Creek Watershed is the fourth-largest system within the Carlsbad Hydrologic Unit. The watershed extends approximately

More information

A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW ABSTRACT

A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW ABSTRACT A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW Mingjun Song, Graduate Research Assistant Daniel L. Civco, Director Laboratory for Earth Resources Information Systems Department of Natural Resources

More information

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA Abineh Tilahun Department of Geography and environmental studies, Adigrat University,

More information

Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green

Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green Land Cover Mapping of the Comoros Islands: Methods and Results February 2014 ECDD, BCSF & Durrell Lead author: Katie Green About the ECDD project The ECDD project was run by Bristol Conservation & Science

More information

y = Xβ + ε B. Sub-pixel Classification

y = Xβ + ε B. Sub-pixel Classification Sub-pixel Mapping of Sahelian Wetlands using Multi-temporal SPOT VEGETATION Images Jan Verhoeye and Robert De Wulf Laboratory of Forest Management and Spatial Information Techniques Faculty of Agricultural

More information

Technical Study and GIS Model for Migratory Deer Range Habitat. Butte County, California

Technical Study and GIS Model for Migratory Deer Range Habitat. Butte County, California Technical Study and GIS Model for Migratory Deer Range Habitat, California Prepared for: Design, Community & Environment And Prepared by: Please Cite this Document as: Gallaway Consulting, Inc. Sevier,

More information

Red-listed plants in semi-natural landscapes

Red-listed plants in semi-natural landscapes Red-listed plants in semi-natural landscapes Esgo Kuiper & Anders Bryn Norwegian Forest and Landscape Institute, PO Box 115, Raveien 9, NO-1431 Aas, Norway. Phone: +47 64948000, e-mail: Esgo.Kuiper@gmail.com

More information

Chapter 5: Working with contours

Chapter 5: Working with contours Introduction Contoured topographic maps contain a vast amount of information about the three-dimensional geometry of the land surface and the purpose of this chapter is to consider some of the ways in

More information

Natural Resource-Based Planning*

Natural Resource-Based Planning* Natural Resource-Based Planning* Planning, when done well, is among the most powerful tools available to communities. A solid plan, based on good natural resource information, guides rational land-use

More information

FORESTED VEGETATION. forests by restoring forests at lower. Prevent invasive plants from establishing after disturbances

FORESTED VEGETATION. forests by restoring forests at lower. Prevent invasive plants from establishing after disturbances FORESTED VEGETATION Type of strategy Protect General cold adaptation upland and approach subalpine forests by restoring forests at lower Specific adaptation action Thin dry forests to densities low enough

More information

Chapter 1 Introducing GIS

Chapter 1 Introducing GIS Chapter Introducing GIS Learning objectives Learn what geographic information systems are used for Learn how GIS layers work Differentiate between GIS features and surfaces Obtain preliminary knowledge

More information

Colorado Natural Heritage Program

Colorado Natural Heritage Program CNHP s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage

More information

Woodland caribou (Rangifer tarandus caribou) in the Far North of Ontario: Background information in support of land use planning

Woodland caribou (Rangifer tarandus caribou) in the Far North of Ontario: Background information in support of land use planning Woodland caribou (Rangifer tarandus caribou) in the Far North of Ontario: Background information in support of land use planning The Far North Caribou Project (FNCP) was initiated in 2008 to support land

More information

Forest Fire Research in Finland

Forest Fire Research in Finland International Forest Fire News (IFFN) No. 30 (January June 2004, 22-28) Forest Fire Research in Finland Effective wildfire suppression and diminished use of prescribed burning in forestry has clearly eliminated

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

SANTA BARBARA COUNTY COMPREHENSIVE PLAN LOMPOC AREA

SANTA BARBARA COUNTY COMPREHENSIVE PLAN LOMPOC AREA SANTA BARBARA COUNTY COMPREHENSIVE PLAN LOMPOC AREA A. LAND USE ELEMENT INTERPRETIVE GUIDELINES B. COMMUNITY BENEFITS C. COUNTY ACTION ITEMS Adopted by the Board of Supervisors November 9, 1999 A. Santa

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

Backyard Buffers. Protecting Habitat and Water Quality

Backyard Buffers. Protecting Habitat and Water Quality Backyard Buffers Protecting Habitat and Water Quality What is a buffer? A buffer (also called a riparian buffer area or zone) is the strip of natural vegetation along the bank of a stream, lake or other

More information

Evaluation of Forest Road Network Planning According to Environmental Criteria

Evaluation of Forest Road Network Planning According to Environmental Criteria American-Eurasian J. Agric. & Environ. Sci., 9 (1): 91-97, 2010 ISSN 1818-6769 IDOSI Publications, 2010 Evaluation of Forest Road Network Planning According to Environmental Criteria Amir Hosian Firozan,

More information

Modelling neutral agricultural landscapes with tessellation methods: the GENEXP-LANDSITES software - Application to the simulation of gene flow

Modelling neutral agricultural landscapes with tessellation methods: the GENEXP-LANDSITES software - Application to the simulation of gene flow Modelling neutral agricultural landscapes with tessellation methods: the GENEXP-LANDSITES software - Application to the simulation of gene flow F. Le Ber, ENGEES-LHYGES & LORIA C. Lavigne, INRA PSH K.

More information

1 Introduction. 1.1 Key objective. 1.2 Why the South Esk

1 Introduction. 1.1 Key objective. 1.2 Why the South Esk 1 Introduction 1.1 Key objective The aim of this study is to identify and assess possible options for improving the quality of the river channel and habitats in the River South Esk catchment whilst helping

More information

Keywords: soil and water conservation, yield increase, cost-benefit, watershed management, food security.

Keywords: soil and water conservation, yield increase, cost-benefit, watershed management, food security. 20 years of watershed management in Niger: approaches, impacts and economic aspects of large scale soil and water conservation measures Nill, D.; Ackermann, K; Schöning, A.; Trux, A.; van den Akker, E.;

More information

Farming. In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed.

Farming. In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed. Types of Farming In the Standard Grade Geography exam there are three types of farming you need to know about arable, livestock and mixed. Arable farms are ones where the main way of making money is by

More information

ARIMNet 2 Call 2014-15

ARIMNet 2 Call 2014-15 Coordination of the Agricultural Research In the Mediterranean Area Call i text ARIMNet 2 Call 2014-15 SUBMISSION Pre-proposal by December 1 st, 2014 Full Proposal by May 11 th 2015 on http://arimnet-call.eu/

More information

Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales. Richard R. Harris University of California, Berkeley Cooperative Extension

Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales. Richard R. Harris University of California, Berkeley Cooperative Extension Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales Richard R. Harris University of California, Berkeley Cooperative Extension Issues Riparian communities provide multiple benefits

More information

USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION

USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION AURELIE DAVRANCHE TOUR DU VALAT ONCFS UNIVERSITY OF PROVENCE AIX-MARSEILLE 1 UFR «Sciences géographiques et de l aménagement»

More information

RELATIONSHIP OF NATURE AND LIVING

RELATIONSHIP OF NATURE AND LIVING 3 RELATIONSHIP OF NATURE AND LIVING The vicinity of sea and abundance of natural and cultural landscapes are clear assets of Greater Helsinki. Good utilisation of that asset warrants a regional landscape

More information

Natural Resources and Landscape Survey

Natural Resources and Landscape Survey Landscape Info Property Name Address Information Contact Person Relationship to Landscape Email address Phone / Fax Website Address Landscape Type (private/muni/resort, etc.) Former Land Use (if known)

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

Dimensions of landscape diversity: ecological indicators for landscape protection planning

Dimensions of landscape diversity: ecological indicators for landscape protection planning Dimensions of landscape diversity: ecological indicators for landscape protection planning The European Land Use Institute Sheraton Four Point Hotel Dresden, May 17-20, 2011 Session Science and Practice

More information

MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING

MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING 1 MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING This note is intended as a general guideline to setting up a standard MIKE 21 model for applications

More information

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers

Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Research to improve the use and conservation of agricultural biodiversity for smallholder farmers Agricultural biodiversity the variability of crops and their wild relatives, trees, animals, arthropods,

More information

Soil Erosion and Control

Soil Erosion and Control Soil Erosion and Control Erosion is by water and wind. Crudely, about 2/3 is by water and 1/3 by wind. The loss of topsoil means loss of soil fertility. Plant growth is reduced and the soil is even more

More information

Status of the World s Soil Resources

Status of the World s Soil Resources 5 December 2015 Status of the World s Soil Resources The Intergovernmental Technical Panel on Soils (ITPS), the main scientific advisory body to the Global Soil Partnership (GSP) hosted by the Food and

More information

APPLICATION OF GEOSPATIAL TECHNOLOGIES FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT

APPLICATION OF GEOSPATIAL TECHNOLOGIES FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT APPLICATION OF GEOSPATIAL TECHNOLOGIES FOR SUSTAINABLE NATURAL RESOURCES AND ENVIRONMENTAL MANAGEMENT IN MALAYSIA By James Dawos Mamit, Ph.D. Deputy Minister Ministry of Natural Resources and Environment,

More information

Introduction to Landscape Ecology

Introduction to Landscape Ecology Instructor: K. McGarigal Introduction to Landscape Ecology Assigned Reading: Turner et al. 2001 (Chapter 1) Objective: Describe the focus of the science of landscape ecology, including its historical context

More information

State of Green Infrastructure in the Gauteng City-Region

State of Green Infrastructure in the Gauteng City-Region State of Green Infrastructure in the Gauteng City-Region Valuing Natural Capital Dialogue City of Johannesburg 26 th February 2014 Kerry Bobbins Researcher GCRO kerry.bobbins@gcro.ac.za Overview Structure

More information

DEPARTMENT OF FORESTRY DRAFT REVISED NATIONAL FOREST POLICY OF MALAWI

DEPARTMENT OF FORESTRY DRAFT REVISED NATIONAL FOREST POLICY OF MALAWI DEPARTMENT OF FORESTRY DRAFT REVISED NATIONAL FOREST POLICY OF MALAWI July, 2013 1. Foreword 2. Preface 3. Introduction 4. Policy linkages 5. Broad Policy Direction 6. Policy Priority Areas Provides the

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

2015 Esri Canada GIS Scholarship Award

2015 Esri Canada GIS Scholarship Award 2015 Esri Canada GIS Scholarship Award Application Evaluating urban tree condition using airborne LiDAR Application by Andrew A. Plowright M.Sc. Candidate Faculty of Forestry University of British Columbia

More information

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan

FUTURE CHALLENGES OF PROVIDING HIGH-QUALITY WATER - Vol. II - Environmental Impact of Food Production and Consumption - Palaniappa Krishnan ENVIRONMENTAL IMPACT OF FOOD PRODUCTION AND CONSUMPTION Palaniappa Krishnan Bioresources Engineering Department, University of Delaware, USA Keywords: Soil organisms, soil fertility, water quality, solar

More information

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension 3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, suraa12@gmail.com

More information

The Role of Spatial Data in EU Agricultural Policy Analysis

The Role of Spatial Data in EU Agricultural Policy Analysis The Role of Spatial Data in EU Agricultural Policy Analysis Wolfgang Britz Institute for Food and Resource Economics, University Bonn Geospatial Open Source Hosting of Agriculture, Resource and Environmental

More information

Rural Flooding: The Potential Role of Forestry

Rural Flooding: The Potential Role of Forestry Rural Flooding: The Potential Role of Forestry Nadeem Shah, Tom Nisbet, & Huw Thomas Centre for Forestry and Climate Change Structure Background Woodland and Flood Alleviation The Theory. Studies on Woodland

More information

Since early 1994, The Northern Sacramento Valley Sustainable Landscapes

Since early 1994, The Northern Sacramento Valley Sustainable Landscapes Using Population Distribution Forecasts and GIS Technology to Assess Potential Hardwood Loss in the Northern Sacramento Valley 1 Charles W. Nelson 2 Mark Radabaugh 3 Abstract: Since its inception, The

More information

Monitoring alterations in vegetation cover and land use in the Upper Paraguay River Basin Brazilian Portion Period of Analysis: 2002 to 2008

Monitoring alterations in vegetation cover and land use in the Upper Paraguay River Basin Brazilian Portion Period of Analysis: 2002 to 2008 Monitoring alterations in vegetation cover and land use in the Upper Paraguay River Basin Brazilian Portion Period of Analysis: 2002 to 2008 Introduction The Upper Paraguay River Basin encompasses international

More information

Environmental impacts of agricultural practices

Environmental impacts of agricultural practices Environmental impacts of agricultural practices Dr. Rainer Oppermann Institute of Agroecology and Biodiversity (IFAB) EEB Conference on 30. November 2010 in Brussels: Reforming the CAP: Greener, better,

More information

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES Narong Chinabut Office of Science for Land Development Land Development Department, Ministry of Agriculture and Cooperatives, Bangkok

More information

Grasslands. Environmental Science Chapters 8

Grasslands. Environmental Science Chapters 8 Grasslands Environmental Science Chapters 8 Grassland Biome A grassland ecosystem is an area that receives more rainfall than a desert, but not enough to support the trees of a forest. These usually exist

More information

Grade 7. Objective. Students will be able to:

Grade 7. Objective. Students will be able to: Grade 7 Objective Students will be able to: Describe the carbon cycle in more detail: o Learn about the importance of carbon and the role it plays in photosynthesis and cellular respiration, Identify elements

More information

CIESIN Columbia University

CIESIN Columbia University Conference on Climate Change and Official Statistics Oslo, Norway, 14-16 April 2008 The Role of Spatial Data Infrastructure in Integrating Climate Change Information with a Focus on Monitoring Observed

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Land Division Systems

GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Land Division Systems GEOGRAPHIC INFORMATION SYSTEMS Lecture 11: Land Division Systems Land Division Systems - in many applications of GIS, land ownership is an important data layer and it is important for GIS users to be familiar

More information

UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM

UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM UPPER COLUMBIA BASIN NETWORK VEGETATION CLASSIFICATION AND MAPPING PROGRAM The Upper Columbia Basin Network (UCBN) includes nine parks with significant natural resources in the states of Idaho, Montana,

More information

understanding Sustainable Landscaping & Tree Preservation Standards

understanding Sustainable Landscaping & Tree Preservation Standards understanding Sustainable Landscaping & Tree Preservation Standards Purpose To promote landscaping around development that is compatible with the existing environment, and which reduces greenhouse gas

More information

Flood Zone Investigation by using Satellite and Aerial Imagery

Flood Zone Investigation by using Satellite and Aerial Imagery Flood Zone Investigation by using Satellite and Aerial Imagery Younes Daneshbod Islamic Azad University-Arsanjan branch Daneshgah Boulevard, Islamid Azad University, Arsnjan, Iran Email: daneshbod@gmail.com

More information

Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model

Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort xavier.conort@gear-analytics.com Motivation Location matters! Observed value at one location is

More information

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance

More information

Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies. Chien Wang (MIT)

Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies. Chien Wang (MIT) Potential Climate Impact of Large-Scale Deployment of Renewable Energy Technologies Chien Wang (MIT) 1. A large-scale installation of windmills Desired Energy Output: supply 10% of the estimated world

More information

The NSS - Rural Development and Rural Settlement

The NSS - Rural Development and Rural Settlement The NSS - Rural Development and Rural Settlement Spatial Planning Unit, Department of the Environment and Local Government, February 2003 Introduction. This paper has three main parts that outline: (1)

More information

Sub-pixel mapping: A comparison of techniques

Sub-pixel mapping: A comparison of techniques Sub-pixel mapping: A comparison of techniques Koen C. Mertens, Lieven P.C. Verbeke & Robert R. De Wulf Laboratory of Forest Management and Spatial Information Techniques, Ghent University, 9000 Gent, Belgium

More information

The WOCAT Map Methodology, a Standardized Tool for Mapping Degradation and Conservation

The WOCAT Map Methodology, a Standardized Tool for Mapping Degradation and Conservation 12th ISCO Conference Beijing 2002 The WOCAT Map Methodology, a Standardized Tool for Mapping Degradation and Conservation Godert Van Lynden 1, Hanspeter Liniger 2 and Gudrun Schwilch 2 World Overview of

More information

The River Ribble is one of the longest rivers in the North West of England

The River Ribble is one of the longest rivers in the North West of England River Ribble The River Ribble is one of the longest rivers in the North West of England Did you know? The tidal limit of the Ribble is 11 miles inland (above Preston); The River Ribble is home to a variety

More information

DEVELOPMENT OF SETTLEMENT FRAGMENTATION INDICES FOR ENERGY INFRASTRUCTURE COST ASSESSMENT IN AUSTRIA

DEVELOPMENT OF SETTLEMENT FRAGMENTATION INDICES FOR ENERGY INFRASTRUCTURE COST ASSESSMENT IN AUSTRIA DEVELOPMENT OF SETTLEMENT FRAGMENTATION INDICES FOR ENERGY INFRASTRUCTURE COST ASSESSMENT IN AUSTRIA Thomas Blaschke a, Gerald Griesebner a, Manfred Mittlböck b a ZGIS, Department of Geography und Geoinformatics,

More information

Aneeqa Syed [Hatfield Consultants] Vancouver GIS Users Group Meeting December 8, 2010

Aneeqa Syed [Hatfield Consultants] Vancouver GIS Users Group Meeting December 8, 2010 NEAR-REAL-TIME FLOOD MAPPING AND MONITORING SERVICE Aneeqa Syed [Hatfield Consultants] Vancouver GIS Users Group Meeting December 8, 2010 SLIDE 1 MRC Flood Service Project Partners and Client Hatfield

More information

Restoration Planning and Development of a Restoration Bank

Restoration Planning and Development of a Restoration Bank Restoration Planning and Development of a Restoration Bank Black Creek Pioneer Village, South Theatre 8:30 a.m. to 3:30 p.m. Habitat Restoration and Environmental Monitoring Projects Section Restoration

More information