ES-7A Thermodynamics HW 5: 5-62, 81, 96, 134; 7-29, 40, 42, 67, 71, 106 Spring 2003 Page 1 of 7

Size: px
Start display at page:

Download "ES-7A Thermodynamics HW 5: 5-62, 81, 96, 134; 7-29, 40, 42, 67, 71, 106 Spring 2003 Page 1 of 7"

Transcription

1 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page of Heat Pum Given: A heat um i ued to maintain a houe at 3 C. he houe loe heat to the outide at a rate of 6, kj/h, and the houe generate 4 kj/h of heat. he COP of the heatum i.5. Find: Required ower inut to the houe. he COP of a heat um i defined a [what we want]/[what we ut in]: Q COP W H in In thi cae, the heat um need to uly enough heat to the houe to kee the houe at contant temerature: Q H Q lot Q generated 6, 4 56, kj/h. QH 56, Win,4 kj/h 6. kw. COP Carnot Heat Engine Given: A Carnot engine receive 65 kj of heat from a ource and reject kj to a ink at 7 C. Find: a) emerature of the ource, and b) thermal efficiency of the heat engine. a) For a Carnot cycle, Q L L S and Q H H S, and we can ay that: H L Q H Q H 65, o the temerature of the ource i H L K, or C. Q Q L b) he thermal efficiency of a Carnot Engine i given by: η th L / H (9/94.5).69, or 69. ercent. L 5-96 Carnot Air Conditioner Given: A revere-carnot cycle air conditioner tranfer heat from a houe at 75 kj/min to maintain it temerature at C. he outide temerature i 35 C. Find: Power required to oerate thi air conditioner. he COP for a revere-carnot air conditioner i: COP H L hi i alo equal to [what we want]/[what we ut in], or Q L /W in. W in Q L /COP 75/ kj/min.64 kw.

2 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page of Carnot Heat Engine/Refrigerator Given: A Carnot heat engine receive heat at 75 K and reject heat to 3 K. he work outut i ued to drive a Carnot refrigerator that remove heat from a -5 C ace at a rate of 4 kj/min and reject the heat to 3 K environment. Find: a) Rate of heat ulied to the heat engine, and b) total rate of heat rejection to the environment. a) he thermal efficiency of thi Carnot heat engine i: η th L / H (3/75).6 For the refrigerator, the COP i: COP H L he work inut into the refrigerator i: W in Q L /COP 4/ kj/min thi i equal to W out of the heat engine. Q in W out /η th 65./ kj/min, or.8 kw. b) he heat rejected into the environment by the Carnot Cycle i: Q out Q L Q in W in kj/min. he heat rejected by the refrigerator i: Q out Q H Q L W in kj/min. he total heat rejected i: kj/min, or 8.47 kw.

3 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page 3 of Exergy of R-34a Given: Piton/cylinder device with 5 kg of R-34a at.8 MPa and 5 C, cooled at contant reure until it exit a liquid at 3 C. Surrounding are at kpa and 3 C. Find: a) exergy of the refrigerant at initial and final tate, and b) exergy detroyed during thi roce. a) he exergy for cloed ytem, neglecting KE and PE, i: X m[u u P (v v ) ( )] At tate, we have uerheated vaor: v.846 m 3 /kg, u 6.6 kj/kg, h kj/kg,.97 kj/kgk. At tate, we have aturated liquid at 3 C: v.847 m 3 /kg, u 9.84 kj/kg, h 9.49 kj/kg,.3396 kj/kgk. At the dead tate, we have uerheated vaor: v.46 m 3 /kg, u kj/kg,. kj/kgk. X m[u u P (v v ) ( )] 5[ ( ) 33(.97.)] 4.3 kj. X m[u u P (v v ) ( )] 5[ ( ) 33(.3396.)] 3.3 kj. b) he exergy detroyed (irreveribility) i: I m ( ) Q. From the t Law, Q m(h h ) 5( ) kj (heat lo). I 5(33)( ) (-964.5) 7.8 kj. 7-4 Exergy of air Given: An inulated iton/cylinder device with 3 L of air at kpa and 7 C i heated for 5 min by a 5-W reitance heater in a contant reure roce. h urrounding are at kpa and 7 C. Find: he exergy detroyed during thi roce. Uing contant ecific heat (c.5 kj/kgk, c v.78 kj/kgk, R.87 kj/kgk): he ma of the air i: m P v /R (3/)/(.87 3).48 kg. Irreveribility i given by: I m ( ) Q P m c ln R ln ; lat term i zero becaue P P. P i found from the Firt Law: Q mc ( ) Q/mc (5 5 6/)/(.48.5) K. I.48(3)[.5 ln(657./3)] 9.88 kj

4 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page 4 of Irreveribility of Argon ga Given: An inulated rigid tank divided into two equal art by a artition. One art contain 3 kg of argon ga at 3 kpa and 7 C, and the other art i evacuated. he artition i removed, and the ga fill the entire tank. he urrounding are at 5 C. Find: Exergy detroyed during thi roce. Uing contant ecific heat (c.53 kj/kgk, c v.3 kj/kgk, R.8 kj/kgk): Since the tank i inulated, there i no heat lo during the roce: Q m c v ( ) W ince W. Irreveribility i given by: I m ( ) Q m c v ln R ln ; Q ince the tank i inulated. I m R ln 3( 98 ).8 ln 8.95 kj.

5 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page 5 of Argon ga in comreor Given: Argon ga enter an adiabatic comreor at kpa and 3 C with a velocity of m/ and leave at. MPa and 53 C, with velocity of 8 m/. he inlet area i 3 cm. he urrounding are at 5 C. Find: a) Reverible ower inut, and b) exergy detroyed. Uing contant ecific heat (c.53 kj/kgk, c v.3 kj/kgk, R.8 kj/kgk): a) he reverible ower inut i the difference in exergy between exit and inlet: W& rev X& X& Exergy for Oen Sytem i: X & m& h h ( ), o X & X& i: W& rev m& h m& c h ( ) ( ) he ma flow rate i found from the inlet: c ln v R /P.8(33)/.555 m 3 /kg m& A v ( ) kg/ P R ln P 8 83 W & rev ( 53 3) ln.8 ln 6.4 kw 33 b) he exergy detroyed, or irreveribility, i: P I& m & ln ( ) m & c ln R P ( 98).53 ln.8 ln 4. kw 33

6 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page 6 of Steam in nozzle Given: Steam enter an adiabatic nozzle at 7 MPa and 5 C with a velocity of 7 m/, and exit at 5 MPa and 45 C. he urrounding are at 5 C. Find: a) Exit velocity, b) ientroic efficiency, and c) exergy detroyed. a) he roertie of team at the entrance are: h 34.3 kj/kg, kj/kgk. he roertie at the exit are: h 336. kj/kg, kj/kgk. he exit velocity i found from the Firt Law: q h h ( h h ) ( ) 7 93,, o m/. b) o find the ientroic efficiency, we firt need to find h. At and P, we are omewhere between 4 C ( kj/kgk, h kj/kg) and 45 C ( kj/kgk, h 336. kj/kg). We interolate to find h 33.5 kj/kg. We can olve for uing h : ( h h ) ( ) 7,5, and 47.7 m/. he ientroic efficiency for a nozzle i: η / 93, /,5.868, or 86.8 ercent. c) he exergy detroyed, or irreveribility, er unit ma i: ( ) 98( ) i 6.88 kj/kg.

7 ES-7A hermodynamic HW 5: 5-6, 8, 96, 34; 7-9, 4, 4, 67, 7, 6 Sring 3 Page 7 of wo-tage team turbine Given: Steam enter an adiabatic, two-tage turbine at 8 MPa and 5 C. It exand to MPa and 35 C in the firt tage. he team i then heated at contant reure to 5 C, then enter the econd tage. At the exit of the econd tage, the team i at 3 kpa with quality of 97 ercent. he total work outut of the turbine i 5 MW, and the urrounding i at 5 C. Find: a) Reverible ower outut, and b) rate or exergy detroyed in the turbine. a) he roertie at the entrance of firt tage are: h kj/kg, 6.74 kj/kgk. he roertie at the exit of firt tage are: h 337. kj/kg, kj/kgk. he roertie at the entrance of the econd tage: h kj/kg, kj/kgk. A he roertie at the exit of the econd tage: h f 89.3 kj/kg, h fg 336. kj/kg, f.9439 kj/kgk, fg kj/kgk. h 4 h f x 4 h fg (336.) 555. kj/kg 4 f x 4 fg (6.847) kj/kgk he ma flow rate of the turbine i found from the Firt Law: Q & m& h h m& h h & ( ) ( ) W h3 ( h h h ) 5 ( ) m & W& kg/ he reverible ower outut i given by ( X & X& ) ( X& & ) &. 4 X 3 X& m[ h h ( )] [ ( 6.74) ] 4.6[ ( )] & & W rev, X kw W & kw rev, he total reverible work outut i: kw. b) he total exergy detroyed i: [( ) ( )] ( )( ) I & m & 46.7 kw. 4 3

ME 24-221 THERMODYNAMICS I

ME 24-221 THERMODYNAMICS I Solution to extra problem in chapter 8 Noember 9, 000 Fall 000 J. Murthy ME 4- HERMODYNAMICS I 8.5 Water i ued a the working fluid in a Carnot cycle heat engine, where it change from aturated liquid to

More information

Thermodynamics worked examples

Thermodynamics worked examples An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure

More information

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process. Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

ME 201 Thermodynamics

ME 201 Thermodynamics ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

More information

6 18 A steam power plant receives heat from a furnace at a rate of 280 GJ/h. Heat losses to the surrounding air from the steam as it passes through

6 18 A steam power plant receives heat from a furnace at a rate of 280 GJ/h. Heat losses to the surrounding air from the steam as it passes through Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 6:Chapter 6 6 17 A 600-MW steam power

More information

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6 Spring 2003 Page 1 of 6 2-30 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3

More information

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

More information

OUTCOME 1. TUTORIAL No. 2 THERMODYNAMIC SYSTEMS

OUTCOME 1. TUTORIAL No. 2 THERMODYNAMIC SYSTEMS UNI 6: ENGINEERING HERMODYNAMICS Unit code: D/60/40 QCF level: 5 Credit value: 5 OUCOME UORIAL No. HERMODYNAMIC SYSEMS. Understand the arameters and characteristics of thermodynamic systems Polytroic rocesses:

More information

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is apter 7 Exaple 7.- 6 ---------------------------------------------------------------------------------- Refrigerant 4a i te working fluid in an ideal vapor-opreion refrigeration yle tat ouniate terally

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction. APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Chapter 4. 4.3 Applications of Energy Balance

Chapter 4. 4.3 Applications of Energy Balance Capter 4 4. Appliation of Energy Balane We will diu exaple illutrating te analyi of erveral devie of interet in engineering, inluding nozzle and diffuer, turbine, opreor and pup, eat exanger, and trottling

More information

Numerical Simulation and Experimental Verification of Air Flow through a Heated Pipe

Numerical Simulation and Experimental Verification of Air Flow through a Heated Pipe International Journal of Mechanical & Mechatronic Engineering IJMME-IJENS Vol:0 No:02 7 Numerical Simulation and Exerimental Verification of Air Flow through a Heated Pie Qaier Abba, M. Mahabat Khan, Rizwan

More information

UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS

AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS Hyun W. Kim, Youngstown State University Hyun W. Kim, Ph.D., P.E. Hyun W. Kim is a professor of mechanical engineering

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

Increasing the Operating Safety of the Machine-Tools by Using Hydro-pneumatic Accumulators. Modeling - Simulation

Increasing the Operating Safety of the Machine-Tools by Using Hydro-pneumatic Accumulators. Modeling - Simulation ISBN 978-1-8466-xxx-x Proceeding of 011 International Conference on Otimization of the Robot and Maniulator (OPTIROB 011) Sinaia, Romania, 6-8 Mai, 011,. xxx-xxx Increaing the Oerating Safety of the Machine-Tool

More information

be the mass flow rate of the system input stream, and m be the mass flow rates of the system output stream, then Vout V in in out out

be the mass flow rate of the system input stream, and m be the mass flow rates of the system output stream, then Vout V in in out out Chater 4 4. Energy Balances on Nonreactive Processes he general energy balance equation has the form Accumulation Inut Outut Heat added = + of Energy of Energy of Energy to System Work by done System Let

More information

EDEXCEL HIGHERS ENGINEERING THERMODYNAMICS H2 NQF LEVEL 4. TUTORIAL No. 1 PRE-REQUISITE STUDIES FLUID PROPERTIES

EDEXCEL HIGHERS ENGINEERING THERMODYNAMICS H2 NQF LEVEL 4. TUTORIAL No. 1 PRE-REQUISITE STUDIES FLUID PROPERTIES EDEXCEL HIGHERS ENGINEERING HERMODYNAMICS H NQF LEEL 4 UORIAL No. PRE-REQUISIE SUDIES FLUID PROPERIES INRODUCION Before you study the four outcomes that make u the module, you should be cometent in finding

More information

Ideal Rankine Cycle T 1 2

Ideal Rankine Cycle T 1 2 Vapor Poer Cycle We kno that the Carnot cycle i mot efficient cycle operatg beteen to pecified temperature limit. Hoever; the Carnot cycle i not a uitable model for team poer cycle ce: he turbe ha to handle

More information

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley. Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

Combustion chamber. Fig.1: Schematic for an open gas-turbine cycle.

Combustion chamber. Fig.1: Schematic for an open gas-turbine cycle. Open Ga urbine Cycle Fuel Combution camber urbine Saft Compreor W net Air Combution product Woring rincipal Fig.: Scematic for an open ga-turbine cycle. Fre air enter te compreor at ambient temperature

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED HERMODYNAMICS UORIAL REVISION OF ISENROPIC EFFICIENCY ADVANCED SEAM CYCLES INRODUCION his tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more advanced

More information

Lecture 14: Transformers. Ideal Transformers

Lecture 14: Transformers. Ideal Transformers White, EE 3 Lecture 14 Page 1 of 9 Lecture 14: Tranforer. deal Tranforer n general, a tranforer i a ultiort ac device that convert voltage, current and iedance fro one value to another. Thi device only

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

Availability. Second Law Analysis of Systems. Reading Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10.

Availability. Second Law Analysis of Systems. Reading Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10. Availability Readg Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10.88 Second Law Analysis of Systems AVAILABILITY: the theoretical maximum amount of reversible work that can be obtaed

More information

AN INTRODUCTION TO THE CONCEPT OF EXERGY AND ENERGY QUALITY. Truls Gundersen

AN INTRODUCTION TO THE CONCEPT OF EXERGY AND ENERGY QUALITY. Truls Gundersen AN INRODUION O HE ONEP OF EXERGY AND ENERGY QUALIY by ruls Gundersen Department of Energy and Process Engineering Norwegian University of Science and echnology rondheim, Norway Version 4, March 211 ruls

More information

THE PSYCHROMETRIC CHART: Theory and Application. Perry Peralta NC State University

THE PSYCHROMETRIC CHART: Theory and Application. Perry Peralta NC State University THE PSYCHROMETRIC CHART: Theory and Application Perry Peralta NC State University PSYCHROMETRIC CHART Identify parts of the chart Determine moist air properties Use chart to analyze processes involving

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

Math 22B, Homework #8 1. y 5y + 6y = 2e t

Math 22B, Homework #8 1. y 5y + 6y = 2e t Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.

More information

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1 Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

σ m using Equation 8.1 given that σ

σ m using Equation 8.1 given that σ 8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature

More information

THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A

THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A THEORETICAL AND EXPERIMENTAL EVALUATION OF AUTOMOBILE AIR-CONDITIONING SYSTEM USING R134A Jignesh K. Vaghela Assistant Professor, Mechanical Engineering Department, SVMIT, Bharuch-392001, (India) ABSTRACT

More information

Physics Equation List :Form 5 Wave

Physics Equation List :Form 5 Wave Ocillation Phyic Equation Lit :Form 5 Wave f 1 T f frequency (Hz or -1 ) T Period () Dilacement-Time Grah Amlitude, Period and Frequency can be found from a Dilacement-Time Grah Wave v f λ v velocity (m

More information

Warm medium, T H T T H T L. s Cold medium, T L

Warm medium, T H T T H T L. s Cold medium, T L Refrigeration Cycle Heat flows in direction of decreasing temperature, i.e., from ig-temperature to low temperature regions. Te transfer of eat from a low-temperature to ig-temperature requires a refrigerator

More information

Large Generators and High Power Drives

Large Generators and High Power Drives Large Generator and High Power Drive Content of lecture 1. Manufacturing of Large Electrical Machine 2. Heating and cooling of electrical machine 3. Eddy current loe in winding ytem 4. Excitation of ynchronou

More information

1D STEADY STATE HEAT

1D STEADY STATE HEAT D SEADY SAE HEA CONDUCION () Pabal alukda Aociate Pofeo Depatment of Mecanical Engineeing II Deli E-mail: pabal@mec.iitd.ac.in Palukda/Mec-IID emal Contact eitance empeatue ditibution and eat flow line

More information

Business Model of Micro-Chp Efficiency and Energy Requirements

Business Model of Micro-Chp Efficiency and Energy Requirements Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center Mississippi State University 1. THERMOECONOMIC MODELING OF MICRO-CHP (MICRO-COOLING, HEATING, AND POWER) FOR SMALL COMMERCIAL APPLICATIONS

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

where V is the velocity of the system relative to the environment.

where V is the velocity of the system relative to the environment. Exergy Exergy is the theoretical limit for the wor potential that can be obtaed from a source or a system at a given state when teractg with a reference (environment) at a constant condition. A system

More information

Engineering Problem Solving as Model Building

Engineering Problem Solving as Model Building Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem

More information

How To Calculate The Performance Of A Refrigerator And Heat Pump

How To Calculate The Performance Of A Refrigerator And Heat Pump THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India. International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

More information

Polarization resolved measurement of Rayleigh backscatter in fiber-optic components

Polarization resolved measurement of Rayleigh backscatter in fiber-optic components 1. Introduction Polarization reolved meaurement of Rayleigh backcatter in fiber-otic comonent B. J. Soller, M. Wolfe, M. E. Froggatt Luna Technologie Inc., 2020 Kraft Dr. Suite 2000, Blackburg, VA 24060

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design

Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design C. Patrascioiu Abstract The paper describes the modeling and simulation of the heat pumps domain processes. The main

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System

Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System Photoenergy, Article ID 964021, 9 pages http://dx.doi.org/10.1155/2014/964021 Research Article Performance Evaluation of a Small Scale Modular Solar Trigeneration System Handong Wang M. & E. School of

More information

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

The final numerical answer given is correct but the math shown does not give that answer.

The final numerical answer given is correct but the math shown does not give that answer. Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

More information

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

Solutions to Sample Problems for Test 3

Solutions to Sample Problems for Test 3 22 Differential Equation Intructor: Petronela Radu November 8 25 Solution to Sample Problem for Tet 3 For each of the linear ytem below find an interval in which the general olution i defined (a) x = x

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS

GEOTHERMAL POWER PLANT CYCLES AND MAIN COMPONENTS Presented at Short Course on Geothermal Drilling, Resource Development and Power Plants, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January -, 0. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A.

More information

Solved Problems Chapter 3: Mechanical Systems

Solved Problems Chapter 3: Mechanical Systems ME 43: Sytem Dynamic and Contro Probem A-3-8- Soved Probem Chapter 3: Mechanica Sytem In Figure 3-3, the impe penduum hown conit of a phere of ma m upended by a tring of negigibe ma. Negecting the eongation

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

EVALUATION OF A HYBRID SOLAR / GAS COMBINED HEAT AND POWER SMALL SYSTEM

EVALUATION OF A HYBRID SOLAR / GAS COMBINED HEAT AND POWER SMALL SYSTEM EVALUATION OF A HYBRID SOLAR / GAS COMBINED HEAT AND POWER SMALL SYSTEM Jorge Facão and Armando C. Oliveira Faculty of Engineering, University of Porto Dept. Mechanical Engineering and Industrial Management

More information

Waste Heat Recovery through Air Conditioning System

Waste Heat Recovery through Air Conditioning System International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 3 (December 2012), PP. 87-92 Waste Heat Recovery through Air Conditioning

More information

Chapter H - Problems

Chapter H - Problems Chapter H - Problem Blinn College - Phyic 45 - Terry Honan Problem H.1 A wheel rotate from ret to 1 ê in 3. Aume the angular acceleration i contant. (a) What i the magnitude of the wheel' angular acceleration?

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR

AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR SERVICE CAPACITY (Value) : Rs. 15,40,000/- MONTH AND YEAR : July, 2014 OF PREPARATION PREPARED BY : Sh. Sunil Arora Investigator (Mechanical) 1. INTRODUCTION

More information

0.002432 1.002432. where x is check for normality T 105.67 5.2546

0.002432 1.002432. where x is check for normality T 105.67 5.2546 6 PRACTICAL NUMERICAL METHODS Chapter 3 VBA Practice Problem Ue Excel and VBA to olve the following problem. Document your olution uing the Expert Problem Solving tep outlined in Table 1.2. 1.961 x 0.5

More information

Research on the Air Conditioning Water Heater System

Research on the Air Conditioning Water Heater System Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 28 Research on the Air Conditioning Water Heater System Fei Liu Gree Electric

More information

GAS TURBINE PERFORMANCE WHAT MAKES THE MAP?

GAS TURBINE PERFORMANCE WHAT MAKES THE MAP? GAS TURBINE PERFORMANCE WHAT MAKES THE MAP? by Rainer Kurz Manager of Systems Analysis and Field Testing and Klaus Brun Senior Sales Engineer Solar Turbines Incororated San Diego, California Rainer Kurz

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Stuart Self 1, Marc Rosen 1, and Bale Reddy 1 1 University of Ontario Institute of Technology, Oshawa, Ontario Abstract

More information

1D STEADY STATE HEAT

1D STEADY STATE HEAT D SEADY SAE HEA CONDUCION () Prabal alukdar Aociate Profeor Department of Mechanical Engineering II Delhi E-mail: prabal@mech.iitd.ac.in Convection Boundary Condition Heat conduction at the urface in a

More information

Saving energy by solar collector and heat pump combination in hot water production in residential and hotel sectors

Saving energy by solar collector and heat pump combination in hot water production in residential and hotel sectors Saving energy by solar collector and heat pump combination in hot water production in residential and hotel sectors Dr. Nguyen Nguyen An, HUST CONTENTS Energy consumption to produce hot water in residential

More information

Air Water Vapor Mixtures: Psychrometrics. Leon R. Glicksman c 1996, 2010

Air Water Vapor Mixtures: Psychrometrics. Leon R. Glicksman c 1996, 2010 Air Water Vapor Mixtures: Psychrometrics Leon R. Glicksman c 1996, 2010 Introduction To establish proper comfort conditions within a building space, the designer must consider the air temperature and the

More information

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives

Chapter 14. At temperatures below the critical temperature, the gas GAS VAPOR MIXTURES AND AIR-CONDITIONING. Objectives Chapter 14 GAS VAPOR MIXTURES AND -CONDITIONING At temperatures below the critical temperature, the gas phase of a substance is frequently referred to as a vapor. The term vapor implies a gaseous state

More information

Diesel Cycle Analysis

Diesel Cycle Analysis Engineering Software P.O. Box 1180, Germantown, MD 20875 Phone: (301) 540-3605 FAX: (301) 540-3605 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Diesel Cycle Analysis Diesel Cycle

More information

APPLICATIONS AND DEFINITIONS

APPLICATIONS AND DEFINITIONS HEAT PUMP APPLICATIONS AND DEFINITIONS Per Fahlén SP Energy Technology APPLICATIONS OF HEAT PUMPS 900s: Refrigeration, need to chill food; Survival: very large application; chilled food comprises Turnover:

More information

Supplementary Notes on Entropy and the Second Law of Thermodynamics

Supplementary Notes on Entropy and the Second Law of Thermodynamics ME 4- hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change

More information

C H A P T E R T W O. Fundamentals of Steam Power

C H A P T E R T W O. Fundamentals of Steam Power 35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

Measurement And Application of Performance Characteristics Of A Free Piston Stirling Cooler

Measurement And Application of Performance Characteristics Of A Free Piston Stirling Cooler Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 00 Measurement And Application of Performance Characteristics Of A Free Piston

More information

Heat transfer to or from a fluid flowing through a tube

Heat transfer to or from a fluid flowing through a tube Heat tranfer to or from a fluid flowing through a tube R. Shankar Subramanian A common ituation encountered by the chemical engineer i heat tranfer to fluid flowing through a tube. Thi can occur in heat

More information

Exergy Analysis and Efficiency Improvement of a Coal Fired Thermal Power Plant in Queensland

Exergy Analysis and Efficiency Improvement of a Coal Fired Thermal Power Plant in Queensland Chapter 1 Exergy Analysis and Efficiency Improvement of a Coal Fired Thermal Power Plant in Queensland R. Mahamud, M.M.K. Khan, M.G. Rasul and M.G. Leinster Additional information is available at the end

More information

A Performance Comparison of Vapour Compression Refrigeration System Using Eco Friendly Refrigerants of Low Global Warming Potential

A Performance Comparison of Vapour Compression Refrigeration System Using Eco Friendly Refrigerants of Low Global Warming Potential International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 1 A Performance Comparison of Vapour Compression Refrigeration System Using Eco Friendly Refrigerants of

More information

Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003

Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003 LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C

More information

Lecture 15: Transformer Shunt Inductance. Tuned Transformers.

Lecture 15: Transformer Shunt Inductance. Tuned Transformers. White, EE 3 ecture 15 Page 1 of 8 ecture 15: Tranforer Shunt nductance. Tuned Tranforer. n the lat lecture, we derived the tranforer equation V = V (6.1) and V jω (6.) where = agnetization current and

More information

Cooling kw 5.2 6.0 7.1 Heating kw 5.65 6.35 7.75

Cooling kw 5.2 6.0 7.1 Heating kw 5.65 6.35 7.75 Specifications COOLING ONLY / HEAT PUMP 005 006 007 Capacity (Eurovent) Cooling kw 5.2 6.0 7.1 Heating kw 5.65 6.35 7.75 Nominal input (Eurovent) Cooling kw 1.89 2.35 2.95 Heating kw 1.97 2.24 2.83 EER

More information

Performance Test of Solar Assisted Solid Desiccant Dryer

Performance Test of Solar Assisted Solid Desiccant Dryer Performance Test of Solar Assisted Solid Desiccant Dryer S. MISHA 1,2,*, S. MAT 1, M. H. RUSLAN 1, K. SOPIAN 1, E. SALLEH 1, M. A. M. ROSLI 1 1 Solar Energy Research Institute, Universiti Kebangsaan Malaysia,

More information

Chapter 8: Heat Exchangers

Chapter 8: Heat Exchangers Chapter 8: Heat Exchangers Section 8.1: Introduction to Heat Exchangers 8.1-1 (8-1 in text) Dry air at T a,in = 30 C, and atmospheric pressure is blown at V a = 1.0 m 3 /s through a cross-flow heat exchanger

More information

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative

More information

Heat Exchangers - Introduction

Heat Exchangers - Introduction Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq

More information

AME 50531: Intermediate Thermodynamics Homework Solutions

AME 50531: Intermediate Thermodynamics Homework Solutions AME 50531: Intermediate Thermodynamics Homework Solutions Fall 2010 1 Homework 1 Solutions 1.1 Problem 1: CPIG air enters and isentropic nozzle at 1.30 atm and 25 C with a velocity of 2.5 m/s. The nozzle

More information

Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

More information

On Reference RIAA Networks by Jim Hagerman

On Reference RIAA Networks by Jim Hagerman On eference IAA Network by Jim Hagerman You d think there would be nothing left to ay. Everything you need to know about IAA network ha already been publihed. However, a few year back I came acro an intereting

More information

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air Exergy Calculation This chapter is intended to give the user a better knoledge of exergy calculations in Cycle-Tepo. Exergy is not an absolute quantity but a relative one. Therefore, to say soething about

More information

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power

Ohm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,

More information

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT

THEORETICAL ANALYSIS OF THE PERFORMANCE OF DUAL PRESSURE CONDENSER IN A THERMAL POWER PLANT INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

High Pressure Ammonia Systems New Opportunities

High Pressure Ammonia Systems New Opportunities Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 High Pressure Ammonia Systems New Opportunities Andy Pearson Star Refrigeration

More information