# The electrical field produces a force that acts

Size: px
Start display at page:

Transcription

1 Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES ABOUT THIS LESSON EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest multimeter, seven-function picture frame, plastic box-style, 8.5 in. 11 in. sensor, voltage probe ruler, clear metric tape, masking 2 pieces wires, copper, #16 gauge, approx. 20 cm TEACHER wire cutter wire, copper, #16 gauge The electrical field produces a force that acts between two charges in the same way that the gravitational field force acts between two masses. In this activity students will measure potentials that exist between charged regions, then plot electric fields which are implied by these differences in potential. OBJECTIVES Students will: Investigate the space between a pair of electrodes that are connected to a source of direct current Plot and examine the plot in terms of the implied electric field LEVEL Physics T E A C H E R P A G E S i

2 COMMON CORE STATE STANDARDS (MATH) A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (MATH) S-ID.6B Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. Informally assess the fit of a function by plotting and analyzing residuals. (LITERACY) RST Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text. (LITERACY) RST Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words. (LITERACY) RST By the end of grade 10, read and comprehend science/technical texts in the grades 9-10 text complexity band independently and proficiently. (LITERACY) W.1 Write arguments to support claims in an analysis of substantive topics or texts, using valid reasoning and relevant and sufficient evidence. (LITERACY) W.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. (LITERACY) W.3 Write narratives to develop real or imagined experiences or events using effective technique, well-chosen details, and well-structured event sequences. (MATH) A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm s law V = IR to highlight resistance R. (MATH) F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). (MATH) F-LE.5 Interpret expressions for functions in terms of the situation they model. Interpret the parameters in a linear or exponential function in terms of a context. (MATH) N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (MATH) S-ID.6A Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. T E A C H E R P A G E S v. 2.0, 2.0 ii

3 ASSESSMENTS The following types of formative assessments are embedded in this lesson: Assessment of prior knowledge Guided questions Assessments of Process Skills NEXT GENERATION SCIENCE STANDARDS DEVELOPING AND USING MODELS ANALYZING AND INTERPRETING DATA i OBTAINING/EVALUATING COMMUNICATING i The following additional assessments are located on our website: Physics Assessment: Electrostatics 2010 Physics Posttest, Free Response Question 2; 2008 Physics Posttest, Free Response Question 3; Physics Posttest, Free Response Question 2. CAUSE AND EFFECT ENERGY AND MATTER PATTERNS ACKNOWLEDGEMENTS Microsoft product screenshots reprinted with permission from Microsoft Corporation. Microsoft, Windows, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. EasyData, Graphical Analysis, LabPro, LabQuest, and Logger Pro 3 used with permission, Vernier Software & Technology. PS2: FORCES AND INTERACTION PS3: ENERGY PS4: WAVES T E A C H E R P A G E S iii

4 TEACHING SUGGESTIONS The concept of electric fields was introduced by Michael Faraday. The electric field is the region where the force on one charge is caused by the presence of another charge. The electric field is a vector quantity and by convention, electric fields emanate from positive charges and terminate on negative charges (Figure A). When the circuit is connected, chemical reactions will also start that will corrode the tips of the copper wire and will change the resistance, and thus will also distort the shape of the field if left too long. After each period, the copper wires should be cleaned with sandpaper or scraped clean. The plastic frames should be cleaned after each class period to avoid a build-up of copper compounds. The most likely chemical reactions are Cu Cu e H 2 O + 2e H 2 + O 2 CO 2 + O 2 CO 3 2 Cu +2 + CO 3 2 CuCO 3 H 2 O (s), a light blue precipitate Figure A. Electric field Plastic picture frames are available from retail stores in either 8 in. 10 in. or 8.5 in. 11 in. sizes. These frames consist of a plastic box with a cardboard back for holding pictures. The box makes a good flat container for holding a thin film of water. The picture frames should be kept as level as possible so that the electric field does not appear distorted. The water level should be kept shallow, just covering the bottom of the frame completely. There is also a science literacy piece that accompanies this lesson which requires students to interpret the soundness of articles written about the dangers of electromagnetic fields. T E A C H E R P A G E S iv

5 ANSWER KEY DATA AND OBSERVATIONS T E A C H E R P A G E S Figure A. Equipotential lines, point probe v

6 ANSWER KEY (CONTINUED) T E A C H E R P A G E S Figure B. Equipotential lines, parallel line probe vi

7 ANSWER KEY (CONTINUED) ANALYSIS 1. The electric field is constant on the straight line between the two charges. The electric field is not constant along the curved electric field lines. Electric field lines Equipotential lines Figure C. Equipotential and electric field lines, point source 2. For example, choose two equipotential lines, one at 10 V and 0.04 m from the positive terminal and one at 2 V and 0.06 m from the positive terminal. The electric field between them can be approximated as V 10V 2V E = = = 400 V/m = 400 N/C d 0.06 m 0.04 m Notice that the units V/m are equivalent to force per unit of charge, newtons per coulomb (N/C). Table 1. Calculating Electric Field Strength Line Contact Points Voltage (V) Distance (m) Electric Field (V/m) 1 A to C 8 4 = B to D 6 2 = C to D 4 2 = A to G 8 ( 4) = T E A C H E R P A G E S 5 C to I 4 ( 8) = The electric field between the point charges varies depending on the distance from each charged point, becoming weaker with increasing distance. The electric field between the parallel lines is relatively constant. + _ Figure D. Equipotential and electric field lines, parallel lines vii

8 ANSWER KEY (CONTINUED) CONCLUSION QUESTIONS 1. An electric field is a region in space where one charge experiences a force from another charge. Electric potential is the amount of energy stored in an electric charge due to its position in an electric field. The strength of an electric field is directly related to the magnitude of the electric charge producing the field. 2. Electric field lines begin on positive charges and radiate away from them toward negative charges, where they terminate. 3. Equipotential lines are lines connecting points of the same electric potential. All electric field lines cross all equipotential lines perpendicularly. 4. a. The work along an electric field line depends on the magnitude of the charge and the potential difference through which the charge is moved. b. No work is required to move a charge along an equipotential line because no force is required, and there is no change in potential. 5. a. Closely spaced electric field lines indicate a strong electric field. The closer the lines, the stronger the electric field. b. Equally spaced electric field lines indicate the electric field is uniform. T E A C H E R P A G E S viii

9 Physics Equipotential Lines and Electric Fields Plotting the Electric Field PURPOSE MATERIALS 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer In this experiment, the concept of electric field will be developed by investigating the space between a pair of electrodes connected to a source of direct current. You will plot equipotential lines and sketch in lines representing the electric field between the electrodes. LabQuest multimeter, seven-function picture frame, plastic box-style, 8.5 in. 11 in. sensor, voltage probe ruler, clear metric tape, masking 2 pieces wires, copper, #16 gauge, approx. 20 cm 1

10 PROCEDURE RUN #1 1. Tape the grid diagram with the squares and dots on the outside face of the plastic container, aligning the edges so that it can be seen through the picture frame. 2. Prepare two pieces of copper wire each approximately 50 cm in length. (If the wire is insulated, remove about 1 cm of insulation from each end.) Place the wires over the edge of the plastic frame and clip them securely, one to each short side, using a binder clip. Adjust the wires so that the point is down and directly over one of the dots on the paper diagram. 3. Snap the two 9-V batteries together so the positive terminal of one connects to the negative terminal of the other. This essentially makes a battery with a potential of 18 V. 4. Using an alligator clip, connect the negative terminal of the battery to one of the wires attached to the picture frame with the binder clip. Attach the other wire to the positive terminal of the battery with another alligator clip. Using a third alligator clip, connect the common or black lead from the voltmeter to the center where the two batteries are clipped together. For the compete setup, see Figure 1. Figure 1. Experimental setup, point probes Two 9 V Batteries Clipped Together Negative - + Common Positive Data Collection Device or Meter Positive Picture Frame with about 1/2 cm of Water Check that the alligator clips are connected to the positive and negative terminals and are not also touching the casing of any of the batteries. 2

11 PROCEDURE (CONTINUED) 5. Add enough tap water to just evenly cover the bottom of the plastic container. Turn the voltmeter on, making sure it is set for DC volts and to the smallest range greater than 6 V. The positive or red lead of the meter is used to measure the potential in the water. 6. Data Collection a. Manual Using a second grid, have your lab partner write down the measurements as you move the probe from dot to dot along the rows of dots. Try to keep the probe straight and make sure the water depth is the same all over the plastic container. Move as quickly as you can. Do not be concerned that the readings will not be steady. These are digital averaging meters. Allow the meter to adjust, and record the number that stays displayed for the longest period of time. b. Alternate You may also use a data collection device with a voltage sensor to collect data. This data may be exported to your data analysis software or directly onto a computer with Microsoft Excel. You may use this alternate procedure to speed up data collection and enhance the analysis. One partner should place the probe as you move from dot to dot along the rows. When the reading stabilizes somewhat, your lab partner should press the appropriate button to collect and record the data point on the device or software. Make sure that the stored data set is always moved to the end of the table. This may need to be done manually when the data is moved into your spreadsheet software. Each data set may be accompanied with an event number or other designation. You will need to remove all these extra columns, leaving only the voltage readings for the corresponding cells. Select each of these columns and delete them, leaving only the potentials in the spreadsheet. 3

12 PROCEDURE (CONTINUED) 7. After completing the measurements, enter or import the data into a Microsoft Excel spreadsheet. When the data is entered, follow these steps to generate a graph: a. Use the cursor to highlight all the data. b. From the Insert menu, select Chart. c. Pick the Surface plot from the standard types and 3-D Surface as the subtype. d. Select Finish and examine the resulting graph. The graph may be rotated by grabbing a corner with the cursor and moving the corner to view the graph from different perspectives. In newer versions of Excel, you will need to use the dialog box to rotate the plot to view it from various angles to see the potential peaks and potential wells. 8. To complete the analysis, view and print the graph viewed from directly above. This is not the best view to gain insight into the significance of both equipotential and electric field lines. However, printing the graph from this angle will be best for completing the Data and Observations section of the student pages. You may need to change the number of divisions along each axis, especially the potential axis, to produce a smoother plot showing more equipotential and field lines. 4

13 PROCEDURE (CONTINUED) RUN #2 Repeat the entire procedure except instead of the ends of the wire touching the grid dots, add straight pieces of clean copper wire so they make parallel lines (Figure 2). Repeat the data collection and analysis. Figure 2. Experimental setup, parallel line probes Two 9 V Batteries Clipped Together Negative - + Common Positive Data Collection Device or Meter Positive Picture Frame with about 1/2 cm of Water 5

14 DATA AND OBSERVATIONS After both sets of equipotential lines are drawn, draw a set of electric field lines starting from the positive 20 V and going to 0 V, crossing each equipotential line perpendicular to the line (Figure 3). Figure 3. Equipotential and electric field lines Electric field lines Equipotential lines Begin by drawing the first line straight between the two pins. Draw five additional lines above and five lines below this straight line, keeping the newly drawn lines perpendicular to each equipotential line. Repeat this procedure for the other sheet. These perpendicular lines that you have drawn on the paper represent the electric field between the two electrodes. The electric field lines are always directed from positive to negative (or from greater positive potential to lesser positive potential). When the data is copied and exported into Excel extra columns ( Event, Figure 4) may have to be deleted, leaving only the voltage data in the spreadsheet. Figure 4. Data as it appears in Logger Pro 6

15 DATA AND OBSERVATIONS (CONTINUED) The following graphs represent sample data generated from Excel. Figure 5. Threedimensional plot of potential 7

16 DATA AND OBSERVATIONS (CONTINUED) Figure 6. Plot of potential viewed from above Figure 7. Plot of potential viewed from side 8

17 ANALYSIS 1. The strength of an electric field is measured in units of volts per meter. The field strength at a point is found by selecting a second point fairly close to the first and dividing the difference in voltage between the two points by the distance in meters between the electric field lines: V E = (Eq. 1) d Make a sketch of the equipotential and electric field lines in the space provided. Where is the electric field constant? 2. Using the sheet with the parallel conducting lines, select two points along the same field line and measure the difference in potential between the points and the distance between them. Use Equation 1 to calculate the strength of the field. Calculate the field strength for five pairs of points between the parallel lines from the second sheet of paper. Record your values in Table 1 and make a sketch of the equipotential and field lines in the space provided. 9

18 ANALYSIS (CONTINUED) Table 1. Calculating Electric Field Strength Line Contact Points Voltage (V) Distance (m) Electric Field (V/m) Compare the variations observed in electric field strength between electrodes that are small points and between electrodes that are long parallel lines. 10

19 CONCLUSION QUESTIONS 1. Compare and contrast electric field and electric potential. 2. In general, how are electric field lines drawn in the vicinity of electric charges? 3. Define equipotential line. How are electric field lines and equipotential lines drawn relative to each other? 11

20 CONCLUSION QUESTIONS (CONTINUED) 4. Describe the amount of work you would have to do to move a positive charge along: a. An electric field line b. An equipotential line 5. Describe the strength of an electric field represented by electric field lines that are: a. Closely spaced b. Equally spaced 12

21 13 L E S S O N C O N S U M A B L E 13 Physics Equipotential Lines and Electric Fields Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

### ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

### GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

### Parallel Plate Capacitor

Parallel Plate Capacitor Capacitor Charge, Plate Separation, and Voltage A capacitor is used to store electric charge. The more voltage (electrical pressure) you apply to the capacitor, the more charge

### A Guide to Using Excel in Physics Lab

A Guide to Using Excel in Physics Lab Excel has the potential to be a very useful program that will save you lots of time. Excel is especially useful for making repetitious calculations on large data sets.

### Appendix C. Vernier Tutorial

C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

### The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

### Using Ohm s Law to Build a Voltage Divider

Using Ohm s Law to Build a Voltage Provided by TryEngineering - Lesson Focus Students will design, build, and characterize one of the basic circuits of electrical engineering, the voltage divider. These

### Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

### Lab 2: Resistance, Current, and Voltage

2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

### Electric Field Mapping Lab 3. Precautions

HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading

### Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning

### Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

### Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

### Experiments on the Basics of Electrostatics (Coulomb s law; Capacitor)

Experiments on the Basics of Electrostatics (Coulomb s law; Capacitor) ZDENĚK ŠABATKA Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague The physics textbooks

Intro to Excel spreadsheets What are the objectives of this document? The objectives of document are: 1. Familiarize you with what a spreadsheet is, how it works, and what its capabilities are; 2. Using

### Introduction to the TI-Nspire CX

Introduction to the TI-Nspire CX Activity Overview: In this activity, you will become familiar with the layout of the TI-Nspire CX. Step 1: Locate the Touchpad. The Touchpad is used to navigate the cursor

### PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

### Tutorial 2: Using Excel in Data Analysis

Tutorial 2: Using Excel in Data Analysis This tutorial guide addresses several issues particularly relevant in the context of the level 1 Physics lab sessions at Durham: organising your work sheet neatly,

### Plots, Curve-Fitting, and Data Modeling in Microsoft Excel

Plots, Curve-Fitting, and Data Modeling in Microsoft Excel This handout offers some tips on making nice plots of data collected in your lab experiments, as well as instruction on how to use the built-in

### LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:

LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also

### Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

### Atomic Force Microscope and Magnetic Force Microscope Background Information

Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic

### Quick Reference Manual

Quick Reference Manual ii TABLE OF CONTENTS This guide first leads you through the basics of Logger Pro, including software installation procedures. You will learn how to collect data, manually enter data,

### Volumes of Revolution

Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students

### OPEN LESSON SAMPLE LESSONS FOR THE CLASSROOM FROM LAYING THE FOUNDATION

OPEN LESSON SAMPLE LESSONS FOR THE CLASSROOM FROM LAYING THE FOUNDATION Middle Grades Science Running the Stairs Measuring Work, Energy, and Power About this Lesson This activity can be used to introduce

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

### Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

### Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

### Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Correcting the Lateral Response Artifact in Radiochromic Film Images from Flatbed Scanners

Correcting the Lateral Response Artifact in Radiochromic Film Images from Flatbed Scanners Background The lateral response artifact (LRA) in radiochromic film images from flatbed scanners was first pointed

### Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Electromagnetic Power! Lesson Overview Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Suggested Grade

### Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

### MARS STUDENT IMAGING PROJECT

MARS STUDENT IMAGING PROJECT Data Analysis Practice Guide Mars Education Program Arizona State University Data Analysis Practice Guide This set of activities is designed to help you organize data you collect

### Using Excel for Handling, Graphing, and Analyzing Scientific Data:

Using Excel for Handling, Graphing, and Analyzing Scientific Data: A Resource for Science and Mathematics Students Scott A. Sinex Barbara A. Gage Department of Physical Sciences and Engineering Prince

### Resistors in Series and Parallel Circuits

69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

### Using Ohm s Law to Build a Voltage Divider

Using Ohm s Law to Build a Voltage Provided by TryEngineering - Lesson Focus Students will design, build, and characterize one of the basic circuits of electrical engineering, the voltage divider. These

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### Excel Math Project for 8th Grade Identifying Patterns

There are several terms that we will use to describe your spreadsheet: Workbook, worksheet, row, column, cell, cursor, name box, formula bar. Today you are going to create a spreadsheet to investigate

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### The Electrical Control of Chemical Reactions E3-1

Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and

### Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

### Investigating Area Under a Curve

Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

### This activity will show you how to draw graphs of algebraic functions in Excel.

This activity will show you how to draw graphs of algebraic functions in Excel. Open a new Excel workbook. This is Excel in Office 2007. You may not have used this version before but it is very much the

### Exploring Magnetism. DataQuest

Exploring Magnetism Magnetism is the force of attraction or repulsion between a magnet and something else. Magnets attract materials made of iron, nickel, or cobalt. Can you think of five things to which

### Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

### Formulas, Functions and Charts

Formulas, Functions and Charts :: 167 8 Formulas, Functions and Charts 8.1 INTRODUCTION In this leson you can enter formula and functions and perform mathematical calcualtions. You will also be able to

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### Guide To Creating Academic Posters Using Microsoft PowerPoint 2010

Guide To Creating Academic Posters Using Microsoft PowerPoint 2010 INFORMATION SERVICES Version 3.0 July 2011 Table of Contents Section 1 - Introduction... 1 Section 2 - Initial Preparation... 2 2.1 Overall

### Excel -- Creating Charts

Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel

### Tutorials Drawing a 555 timer circuit

Step 1 of 10: Introduction This tutorial shows you how to make an electronic circuit using Livewire and PCB Wizard 3. You should follow this tutorial to learn the basic skills you will need to use Livewire

### Magnets. Electromagnets. and. Thomas Jefferson National Accelerator Facility - Office of Science Education http://education.jlab.

Magnets and Electromagnets Magnets and Electromagnets Can you make a magnet from a nail, some batteries and some wire? Problems Can the strength of an electromagnet be changed by changing the voltage of

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### P C B Wiz a r d 3 T u t o r i a l 3 Drawing a test probe circuit

Step 1 of 10: Introduction This tutorial shows you how to design and make a test probe with PCB Wizard. You should follow this tutorial to learn the basic skills you will need to use PCB Wizard effectively.

### Plotting: Customizing the Graph

Plotting: Customizing the Graph Data Plots: General Tips Making a Data Plot Active Within a graph layer, only one data plot can be active. A data plot must be set active before you can use the Data Selector

### Physics 3330 Experiment #2 Fall 1999. DC techniques, dividers, and bridges R 2 =(1-S)R P R 1 =SR P. R P =10kΩ 10-turn pot.

Physics 3330 Experiment #2 Fall 1999 DC techniques, dividers, and bridges Purpose You will gain a familiarity with the circuit board and work with a variety of DC techniques, including voltage dividers,

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

### Figure 1. An embedded chart on a worksheet.

8. Excel Charts and Analysis ToolPak Charts, also known as graphs, have been an integral part of spreadsheets since the early days of Lotus 1-2-3. Charting features have improved significantly over the

### FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### 0 Introduction to Data Analysis Using an Excel Spreadsheet

Experiment 0 Introduction to Data Analysis Using an Excel Spreadsheet I. Purpose The purpose of this introductory lab is to teach you a few basic things about how to use an EXCEL 2010 spreadsheet to do

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### Lab 4 - Data Acquisition

Spring 11 Lab 4 - Data Acquisition Lab 4-1 Lab 4 - Data Acquisition Format This lab will be conducted during your regularly scheduled lab time in a group format. Each student is responsible for learning

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### Introduction to Microsoft Excel 2007/2010

to Microsoft Excel 2007/2010 Abstract: Microsoft Excel is one of the most powerful and widely used spreadsheet applications available today. Excel's functionality and popularity have made it an essential

### Generating ABI PRISM 7700 Standard Curve Plots in a Spreadsheet Program

Generating ABI PRISM 7700 Standard Curve Plots in a Spreadsheet Program Overview The goal of this tutorial is to demonstrate the procedure through which analyzed data generated within an ABI PRISM 7700

### Data representation and analysis in Excel

Page 1 Data representation and analysis in Excel Let s Get Started! This course will teach you how to analyze data and make charts in Excel so that the data may be represented in a visual way that reflects

### Photovoltaic Cell: Converting Light to Electricity

Photovoltaic Cell: Converting Light to Electricity Outcomes: 1. Understand that a photovoltaic cell produces DC voltage when light shines on its surface. 2. Understand that the electrical voltage produced

### Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms.

Volume of Right Prisms Objective To provide experiences with using a formula for the volume of right prisms. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

### STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### Experiment 7: Forces and Torques on Magnetic Dipoles

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

### Oscilloscope, Function Generator, and Voltage Division

1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

Advanced Microsoft Excel 2010 Table of Contents THE PASTE SPECIAL FUNCTION... 2 Paste Special Options... 2 Using the Paste Special Function... 3 ORGANIZING DATA... 4 Multiple-Level Sorting... 4 Subtotaling

### SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP

SOLAR ENERGY Solar Energy, Kit #6A: Efficiency of Solar Cells Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP PARC Contents: Topic Template 3 Introduction: Photovoltaic

### Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

### Electrochemistry Revised 04/29/15

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, BATTERIES, & THE NERNST EQUATION Experiment partially adapted from J. Chem. Educ., 2008, 85 (8), p 1116 Introduction Electrochemical cell In this experiment,

### Teacher s Guide. Alignment with the Common Core State Standards for Reading... 3. Alignment with the Common Core State Standards for Writing...

My Insurance Teacher s Guide Introduction to the Unit... 2 What are the activities? What is the assessment? What are the activity descriptions? How does this unit align with the Common Core State Standards?

### THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

### Calibration and Linear Regression Analysis: A Self-Guided Tutorial

Calibration and Linear Regression Analysis: A Self-Guided Tutorial Part 1 Instrumental Analysis with Excel: The Basics CHM314 Instrumental Analysis Department of Chemistry, University of Toronto Dr. D.

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

### RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY

RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY I. INTRODUCTION According to the Common Core Standards (2010), Decisions or predictions are often based on data numbers

### SECTION 2-1: OVERVIEW SECTION 2-2: FREQUENCY DISTRIBUTIONS

SECTION 2-1: OVERVIEW Chapter 2 Describing, Exploring and Comparing Data 19 In this chapter, we will use the capabilities of Excel to help us look more carefully at sets of data. We can do this by re-organizing

### Episode 126: Capacitance and the equation C =Q/V

Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference

### Using Excel for descriptive statistics

FACT SHEET Using Excel for descriptive statistics Introduction Biologists no longer routinely plot graphs by hand or rely on calculators to carry out difficult and tedious statistical calculations. These

### Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

### EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

### Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram