Why the Big Deal about Big Data?

Size: px
Start display at page:

Download "Why the Big Deal about Big Data?"

Transcription

1 Why the Big Deal about Big Data? Ed Lazowska Bill & Melinda Gates Chair in Computer Science & Engineering Founding Director, escience Institute University of Washington Technology Alliance Insight to Impact March pptx

2 Today A quick tutorial on exponentials Big Data and Smart Everything Some closer-in examples Components of the ecosystem Computer Science: The ever-expanding sphere

3 Processing capacity Storage capacity Network bandwidth Sensors Every aspect of computing has experienced exponential improvement Astonishingly, even algorithms in some cases!

4 Exponentials are rare we re not used to them, so they catch us unaware 9,223,372,036,854,780,000 4,294,967,296 16,777,216 65,

5 In Computer Science, we can exploit these exponential improvements in two ways Constant capability at exponentially decreasing cost Exponentially increasing capability at constant cost RAM Disk Flash John McCallum / Havard Blok Ray Kurzweil Storage Price / MB, USD (semi-log plot) Microprocessor Performance, MIPS (semi-log plot)

6 The 1970s to today 1970 Ford Mustang 2014 Ford Mustang Size: roughly comparable Speed: roughly comparable Efficiency (MPG): roughly comparable Value (cost relative to performance): roughly comparable

7 The 1970s to today 1971 Intel 4004 (2,300 transistors) 2014 Intel Xeon (4,300,000,000 transistors) Size: area occupied by a transistor reduced by 1,000,000x Speed: operations per second increased by 100,000x Efficiency (operations per watt): improved by 6,750x Value (dollars per instruction executed): improved by 2,700x

8 The 1970s to today 1970 Ford Mustang 2014 Intel Xeon What if cars had improved as rapidly as microprocessors?

9 The 1970s to today Size: A car would be smaller than an ant! (About 1/5 th of an inch long!)

10 The 1970s to today Speed: A car would go 6,000,000 miles per hour! (San Francisco to New York in 1.7 seconds!)

11 The 1970s to today Efficiency: A car would get 100,000 miles per gallon! (San Francisco to New York on 1/2 cup of fuel!)

12 The 1970s to today Cost: A car would cost less than $10!

13 Today, these exponential improvements in technology and algorithms are enabling a big data revolution A proliferation of sensors Think about the sensors on your phone More generally, the creation of almost all information in digital form It doesn t need to be transcribed in order to be processed Dramatic cost reductions in storage You can afford to keep all the data Dramatic increases in network bandwidth You can move the data to where it s needed

14 Dramatic cost reductions and scalability improvements in computation With Amazon Web Services, 1000 computers for 1 day costs the same as 1 computer for 1000 days Dramatic algorithmic breakthroughs Machine learning, data mining fundamental advances in computer science and statistics Ever more powerful models producing everincreasing volumes of data that must be analyzed

15 So, exactly what is meant by big data? Credit: Dan Ariely, Duke University

16 Serious answer: big data is enabling computer scientists to put the smarts into everything Smart homes Smart cars Smart health Smart robots Smart crowds and humancomputer systems Smart education Smart interaction (virtual and augmented reality) Smart cities Smart discovery

17 Shwetak Patel, University of Washington 2011 MacArthur Fellow Smart homes (the leaf nodes of the smart grid)

18 Smart cars DARPA Grand Challenge DARPA Urban Challenge Google Self-Driving Car

19 Smart health Larry Smarr quantified self Evidence-based medicine P4 medicine

20 Smart robots

21 Smart crowds and human-computer systems Zoran Popovic, UW Computer Science & Engineering David Baker, UW Biochemistry

22 Zoran Popovic, UW Computer Science & Engineering Smart education

23 Smart interaction

24 Smart cities

25 Smart discovery (data-intensive discovery, or escience) Nearly every field of discovery is transitioning from data poor to data rich Oceanography: OOI Astronomy: LSST Physics: LHC Biology: Sequencing Neuroscience: EEG, fmri Sociology: The Web Economics: POS terminals

26 Some closer-in examples of big data in action Collaborative filtering

27 Fraud detection

28 Price prediction

29 Hospital re-admission prediction

30 Travel time prediction and route recommendation under specific circumstances

31 Coaching / play calling in all sports

32 Speech recognition

33 Machine translation Speech -> text Text -> text translation Text -> speech in speaker s voice 7:30 8:40

34 Presidential campaigning

35 Electoral forecasting

36 Secret government surveillance of American citizens Hemisphere Project 26 years of records of every call that passed through an AT&T switch New records added at a rate of 4B/day

37 Secret government surveillance of foreign heads of state

38 Large Scale Deep Learning Jeff Dean Google Senior Fellow Joint work with many colleagues at Google Deep Learning : A form of Machine Learning A modern reincarnation of Artificial Neural Networks from the 1980s and 1990s Made practical by vast amounts of data (e.g., billions of images on the web) and vast computing resources Fully automated: General algorithms are trained and then turned loose

39 Generating Image Captions from Pixels Human: Three different types of pizza on top of a stove. Model sample 1: Two pizzas sitting on top of a stove top oven. Model sample 2: A pizza sitting on top of a pan on top of a stove.

40 Generating Image Captions from Pixels Human: A tennis player getting ready to serve the ball. Model: A man holding a tennis racquet on a tennis court.

41 Generating Image Captions from Pixels Human: Three different types of pizza on top of a stove. Model Model sample sample 1: I: Two A close pizzas up of sitting a child on holding top of a a stuffed stove top animal. oven. Model sample 2: A baby is asleep next to a teddy bear. Model sample 2: pizza sitting on top of a pan on top of a stove. Arthur C. Clarke: Any sufficiently advanced technology is indistinguishabl e from magic.

42 Infrastructure/Platforms Components of the ecosystem

43 Tools Elastic Map Reduce = Hadoop

44 Verticals/Services Real estate Traffic Government data IT operations Business expense management IT management Predictive analytics for businesses

45 Sensor systems

46 Intensive users

47 The open data movement: Civic data for civic good

48 Computer Science: The ever-expanding sphere Credit: Alfred Spector, Google

49 High Demand Fields in WA State, Baccalaureate Level & Above WSAC / SBCTC / WTECB, October Computer Science Engineering Health Professions* Current Completions Additional Annual Completions Needed, Research, Science, Technical* *Gap exists at the graduate and/or professional level only Data from Table 2 of the report linked at

50 Is this a great time or what? pptx

Big Data, Enormous Opportunity

Big Data, Enormous Opportunity Big Data, Enormous Opportunity Ed Lazowska Bill & Melinda Gates Chair in Computer Science & Engineering University of Washington Critical Conversations Lecture Series University at Buffalo The State University

More information

Big Data and Science: Myths and Reality

Big Data and Science: Myths and Reality Big Data and Science: Myths and Reality H.V. Jagadish http://www.eecs.umich.edu/~jag Six Myths about Big Data It s all hype It s all about size It s all analysis magic Reuse is easy It s the same as Data

More information

Harnessing the Potential of Data Scientists and Big Data for Scientific Discovery

Harnessing the Potential of Data Scientists and Big Data for Scientific Discovery Harnessing the Potential of Data Scientists and Big Data for Scientific Discovery Ed Lazowska, University of Washington Saul Perlmu=er, UC Berkeley Yann LeCun, New York University Josh Greenberg, Alfred

More information

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA

Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data

More information

Big Data, Enormous Opportunity

Big Data, Enormous Opportunity Big Data, Enormous Opportunity Ed Lazowska Bill & Melinda Gates Chair in Computer Science & Engineering University of Washington The 27th EllioH Organick Memorial Lectures University of Utah April 2014

More information

CSC384 Intro to Artificial Intelligence

CSC384 Intro to Artificial Intelligence CSC384 Intro to Artificial Intelligence What is Artificial Intelligence? What is Intelligence? Are these Intelligent? CSC384, University of Toronto 3 What is Intelligence? Webster says: The capacity to

More information

Big Data Hope or Hype?

Big Data Hope or Hype? Big Data Hope or Hype? David J. Hand Imperial College, London and Winton Capital Management Big data science, September 2013 1 Google trends on big data Google search 1 Sept 2013: 1.6 billion hits on big

More information

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information

More information

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS Marcia Kaufman, Principal Analyst, Hurwitz & Associates Dan Kirsch, Senior Analyst, Hurwitz & Associates Steve Stover, Sr. Director, Product Management, Predixion

More information

Unlocking the Intelligence in. Big Data. Ron Kasabian General Manager Big Data Solutions Intel Corporation

Unlocking the Intelligence in. Big Data. Ron Kasabian General Manager Big Data Solutions Intel Corporation Unlocking the Intelligence in Big Data Ron Kasabian General Manager Big Data Solutions Intel Corporation Volume & Type of Data What s Driving Big Data? 10X Data growth by 2016 90% unstructured 1 Lower

More information

Key Findings Advanced, Predictive Analytics Breaking the Barriers to Adoption

Key Findings Advanced, Predictive Analytics Breaking the Barriers to Adoption Key Findings Advanced, Predictive Analytics Breaking the Barriers to Adoption January 2015 Vanguard Marketing International, Inc. Tel 480.488.5707 Advanced, Predictive Analytics Breaking the Barriers to

More information

Big Data simplified. SAPSA Impuls, Stockholm 2014-11-13 Martin Faiss & Niklas Packendorff, SAP

Big Data simplified. SAPSA Impuls, Stockholm 2014-11-13 Martin Faiss & Niklas Packendorff, SAP Big Data simplified SAPSA Impuls, Stockholm 2014-11-13 Martin Faiss & Niklas Packendorff, SAP Complexity built up over decades hampers the ability to innovate; radical simplification is needed to unlock

More information

Statistics for BIG data

Statistics for BIG data Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before

More information

Cloud Computing and Big Data. What s the Big Deal?

Cloud Computing and Big Data. What s the Big Deal? Cloud Computing and Big Data. What s the Big Deal? Arlene Minkiewicz, Chief Scientist PRICE Systems, LLC arlene.minkiewicz@pricesystems.com 2013 PRICE Systems, LLC All Rights Reserved Decades of Cost Management

More information

CONNECTING DATA WITH BUSINESS

CONNECTING DATA WITH BUSINESS CONNECTING DATA WITH BUSINESS Big Data and Data Science consulting Business Value through Data Knowledge Synergic Partners is a specialized Big Data, Data Science and Data Engineering consultancy firm

More information

The New Age of Smart Decision Making

The New Age of Smart Decision Making Competing on Business Analytics The New Age of Smart Decision Making Executive Summary June 3, 2009 columbus, ohio hosted by in collaboration with Competing on Business Analytics Executive Dinner Presented

More information

Hur hanterar vi utmaningar inom området - Big Data. Jan Östling Enterprise Technologies Intel Corporation, NER

Hur hanterar vi utmaningar inom området - Big Data. Jan Östling Enterprise Technologies Intel Corporation, NER Hur hanterar vi utmaningar inom området - Big Data Jan Östling Enterprise Technologies Intel Corporation, NER Legal Disclaimers All products, computer systems, dates, and figures specified are preliminary

More information

CPS 216: Advanced Database Systems (Data-intensive Computing Systems) Shivnath Babu

CPS 216: Advanced Database Systems (Data-intensive Computing Systems) Shivnath Babu CPS 216: Advanced Database Systems (Data-intensive Computing Systems) Shivnath Babu A Brief History Relational database management systems Time 1975-1985 1985-1995 1995-2005 Let us first see what a relational

More information

Brochure More information from http://www.researchandmarkets.com/reports/3181314/

Brochure More information from http://www.researchandmarkets.com/reports/3181314/ Brochure More information from http://www.researchandmarkets.com/reports/3181314/ Artificial Intelligence for Enterprise Applications - Deep Learning, Predictive Computing, Image Recognition, Speech Recognition,

More information

Regulating AI and Robotics

Regulating AI and Robotics Regulating AI and Robotics Steve Omohundro, Ph.D. PossibilityResearch.com SteveOmohundro.com SelfAwareSystems.com http://i791.photobucket.com/albums/yy193/rokib50/sculpture/lady-justice-frankfurt_zps970c5d8f.jpg

More information

Applications of Deep Learning to the GEOINT mission. June 2015

Applications of Deep Learning to the GEOINT mission. June 2015 Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics

More information

Digital Insurance Era: Stretch Your Boundaries

Digital Insurance Era: Stretch Your Boundaries Accenture Technology Vision for Insurance 2015 Digital Insurance Era: Stretch Your Boundaries EXECUTIVE SUMMARY INTRODUCTION A new We Economy is bringing change to the insurance industry whether carriers

More information

Big Data and Healthcare

Big Data and Healthcare Big Data and Healthcare Dr. George Poste Chief Scientist, Complex Adaptive Systems Initiative and Del E. Webb Chair in Health Innovation Arizona State University george.poste@asu.edu www.casi.asu.edu Panel

More information

Data Intensive Scalable Computing. Harnessing the Power of Cloud Computing

Data Intensive Scalable Computing. Harnessing the Power of Cloud Computing Data Intensive Scalable Computing Harnessing the Power of Cloud Computing Randal E. Bryant February, 2009 Our world is awash in data. Millions of devices generate digital data, an estimated one zettabyte

More information

Impact of Big Data growth On Transparent Computing

Impact of Big Data growth On Transparent Computing Impact of Big Data growth On Transparent Computing Michael A. Greene Intel Vice President, Software and Services Group, General Manager, System Technologies and Optimization 1 Transparent Computing (TC)

More information

Doing Multidisciplinary Research in Data Science

Doing Multidisciplinary Research in Data Science Doing Multidisciplinary Research in Data Science Assoc.Prof. Abzetdin ADAMOV CeDAWI - Center for Data Analytics and Web Insights Qafqaz University aadamov@qu.edu.az http://ce.qu.edu.az/~aadamov 16 May

More information

Optimized Hadoop for Enterprise

Optimized Hadoop for Enterprise Optimized Hadoop for Enterprise Smart Big data Platform provides Reliability, Security, and Ease of Use + Big Data, Valuable Resource for Forecasting the Future of Businesses + Offers integrated and end-to-end

More information

Three Tech Trends that will drive Retail and how GS1 is part of them

Three Tech Trends that will drive Retail and how GS1 is part of them Three Tech Trends that will drive Retail and how GS1 is part of them Gernot Gutjahr Partner KPMG AG CIO & Sourcing Advisory September 2014 KPMG is convinced digital disruption for Retail will grow KEY

More information

Getting to Know Big Data

Getting to Know Big Data Getting to Know Big Data Dr. Putchong Uthayopas Department of Computer Engineering, Faculty of Engineering, Kasetsart University Email: putchong@ku.th Information Tsunami Rapid expansion of Smartphone

More information

12/7/2015. Data Science Master s programs

12/7/2015. Data Science Master s programs Data Science Master s programs 1 1 Who are we? Willem-Jan van den Heuvel Tilburg University Ksenia Podoynitsyna Eindhoven University of Technology 2 2 Program What is Data Science? The Data Science Initiative

More information

Center for Dynamic Data Analytics (CDDA) An NSF Supported Industry / University Cooperative Research Center (I/UCRC) Vision and Mission

Center for Dynamic Data Analytics (CDDA) An NSF Supported Industry / University Cooperative Research Center (I/UCRC) Vision and Mission Photo courtesy of Justin Reuter Center for Dynamic Data Analytics (CDDA) An NSF Supported Industry / University Cooperative Research Center (I/UCRC) Vision and Mission CDDA Mission Mission of our CDDA

More information

The NEW POSSIBILITY. How the Data Center Helps Your Organization Excel in the Digital Services Economy

The NEW POSSIBILITY. How the Data Center Helps Your Organization Excel in the Digital Services Economy The NEW CENTER OF POSSIBILITY How the Data Center Helps Your Organization Excel in the Digital Services Economy Powering the world s best ideas Dramatic improvements in compute, storage, and network technology

More information

IoT in Logistics. An assessment of today s and tomorrows opportunities

IoT in Logistics. An assessment of today s and tomorrows opportunities IoT in Logistics An assessment of today s and tomorrows opportunities DB Mobility Logistics AG Dr. Armin Günter Research and Innovation DB Schenker 03.03.2016 Logistics 4.0 will address strategic perspective,

More information

Deep Learning Meets Heterogeneous Computing. Dr. Ren Wu Distinguished Scientist, IDL, Baidu wuren@baidu.com

Deep Learning Meets Heterogeneous Computing. Dr. Ren Wu Distinguished Scientist, IDL, Baidu wuren@baidu.com Deep Learning Meets Heterogeneous Computing Dr. Ren Wu Distinguished Scientist, IDL, Baidu wuren@baidu.com Baidu Everyday 5b+ queries 500m+ users 100m+ mobile users 100m+ photos Big Data Storage Processing

More information

Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank

Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Agenda» Overview» What is Big Data?» Accelerates advances in computer & technologies» Revolutionizes data measurement»

More information

The Potential and Challenge of Data

The Potential and Challenge of Data The Potential and Challenge of Data Methodology & Overview THE THIRD ANNUAL CISCO CONNECTED WORLD TECHNOLOGY REPORT Based on a survey of 1800 INFORMATION TECHNOLOGY PROFESSIONALS The data in this presentation

More information

Cloud Computing for Research Roger Barga Cloud Computing Futures, Microsoft Research

Cloud Computing for Research Roger Barga Cloud Computing Futures, Microsoft Research Cloud Computing for Research Roger Barga Cloud Computing Futures, Microsoft Research Trends: Data on an Exponential Scale Scientific data doubles every year Combination of inexpensive sensors + exponentially

More information

Big Data and Industrial Internet

Big Data and Industrial Internet Big Data and Industrial Internet Keijo Heljanko Department of Computer Science and Helsinki Institute for Information Technology HIIT School of Science, Aalto University keijo.heljanko@aalto.fi 16.6-2015

More information

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage Parallel Computing Benson Muite benson.muite@ut.ee http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework

More information

Data Mining in the Swamp

Data Mining in the Swamp WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all

More information

What is the number one issue that Organizational Leaders are facing today?

What is the number one issue that Organizational Leaders are facing today? What is the number one issue that Organizational Leaders are facing today? Managing time and energy in the face of growing complexity...the sense that the world is moving faster -Chris Zook (Bain & Company

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Cognitive APIs - The Building Blocks for Smarter Apps

Cognitive APIs - The Building Blocks for Smarter Apps ITM 1.6 Cognitive APIs - The Building Blocks for Smarter Apps Andy Boyd Senior Product Manager IBM Watson Developer Cloud 1 Data Center World Certified Vendor Neutral Each presenter is required to certify

More information

Education in Transition. Learning in the 21 st Century. Paige Johnson Education Strategist Intel

Education in Transition. Learning in the 21 st Century. Paige Johnson Education Strategist Intel Education in Transition Education in Transition Learning in the 21 st Century Rick Herrmann and Jeff Galinovsky Intel Americas Education and Intel Education Group Paige Johnson Education Strategist Intel

More information

The Evolving Internet of Things Market

The Evolving Internet of Things Market The Evolving Internet of Things Market Key Trends and Implications By Kevin Foley, Todd Bricker and Syed Raza The phrase Internet of Things (IoT) is firmly established in today s business lexicon but no

More information

Big Data Use Cases Update

Big Data Use Cases Update Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected

More information

Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料

Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置

More information

SEAIP 2009 Presentation

SEAIP 2009 Presentation SEAIP 2009 Presentation By David Tan Chair of Yahoo! Hadoop SIG, 2008-2009,Singapore EXCO Member of SGF SIG Imperial College (UK), Institute of Fluid Science (Japan) & Chicago BOOTH GSB (USA) Alumni Email:

More information

REDEFINING ANALYTICS WWW.EMCIEN.COM. This White Paper does the following: Examines current and emerging technologies.

REDEFINING ANALYTICS WWW.EMCIEN.COM. This White Paper does the following: Examines current and emerging technologies. WHITE PAPER 2015 Emcien REDEFINING ANALYTICS This White Paper does the following: Examines current and emerging technologies. Proposes that rather than search through data, organizations need the ability

More information

Predictive Dynamix Inc Turning Business Experience Into Better Decisions

Predictive Dynamix Inc Turning Business Experience Into Better Decisions Overview Geospatial Data Mining for Market Intelligence By Paul Duke, Predictive Dynamix, Inc. Copyright 2000-2001. All rights reserved. Today, there is a huge amount of information readily available describing

More information

Big Data lisää älyä tiedosta

Big Data lisää älyä tiedosta 2011 Tieto Corporation Big Data lisää älyä tiedosta ebusiness Forum 21.5.2013 Ilkka Korkiakoski VP Financial Services Agenda Megatrends and needs for Big Data What is the value of Big Data? Use scenarios

More information

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first

More information

Considerations for Management of Laboratory Data

Considerations for Management of Laboratory Data Considerations for Management of Laboratory Data 2003 Scientific Computing & Instrumentation LIMS Guide, November 2003 Michael H Elliott Drowning in a sea of data? Nervous about 21 CFR Part 11? Worried

More information

Eindhoven December 4, 2014

Eindhoven December 4, 2014 Eindhoven December 4, 2014 Waves: Visualizing spatio-temporal Soccer Data Insight Reports of sport events can be enhanced by real-time feature analysis. Solutions Complex spatio-temporal sports-analytics

More information

Big Data a threat or a chance?

Big Data a threat or a chance? Big Data a threat or a chance? Helwig Hauser University of Bergen, Dept. of Informatics Big Data What is Big Data? well, lots of data, right? we come back to this in a moment. certainly, a buzz-word but

More information

COMP 590: Artificial Intelligence

COMP 590: Artificial Intelligence COMP 590: Artificial Intelligence Today Course overview What is AI? Examples of AI today Who is this course for? An introductory survey of AI techniques for students who have not previously had an exposure

More information

Using Big Data and GIS to Model Aviation Fuel Burn

Using Big Data and GIS to Model Aviation Fuel Burn Using Big Data and GIS to Model Aviation Fuel Burn Gary M. Baker USDOT Volpe Center 2015 Transportation DataPalooza June 17, 2015 The National Transportation Systems Center Advancing transportation innovation

More information

ebook Adaptive Analytics for Population Health Management

ebook Adaptive Analytics for Population Health Management ebook Adaptive Analytics for Population Health Management 1 The Data Problem The healthcare industry is reinventing itself in search of a more financially sustainable business model that also results in

More information

Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme

Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme Big Data Analytics Prof. Dr. Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 33. Sitzung des Arbeitskreises Informationstechnologie,

More information

Grab n Go: Session 1 Velkommen til den digitale revolution

Grab n Go: Session 1 Velkommen til den digitale revolution Grab n Go: Session 1 Velkommen til den digitale revolution This is not a car 2 The 4 th Industrial Revolution Industrial Revolution IT Revolution Machines replace repetitive and tedious work Digital Revolution

More information

Bill & Melinda Gates Foundation Host Day Speakers

Bill & Melinda Gates Foundation Host Day Speakers Bill & Melinda Gates Foundation Host Day Speakers Sasha Barab Sasha Barab is a Professor of the Teachers College at Arizona State University, where he holds the Pinnacle West Presidential Chair of Educational

More information

Big Data. Fast Forward. Putting data to productive use

Big Data. Fast Forward. Putting data to productive use Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize

More information

What You Need to Know About the Future of Data-Driven Marketing

What You Need to Know About the Future of Data-Driven Marketing The Big Picture on Big Data: What You Need to Know About the Future of Data-Driven Marketing By Dr. Charles Stryker So much is being written about Big Data and the huge business opportunities that accompany

More information

Conquering the Astronomical Data Flood through Machine

Conquering the Astronomical Data Flood through Machine Conquering the Astronomical Data Flood through Machine Learning and Citizen Science Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ The Problem:

More information

Data Isn't Everything

Data Isn't Everything June 17, 2015 Innovate Forward Data Isn't Everything The Challenges of Big Data, Advanced Analytics, and Advance Computation Devices for Transportation Agencies. Using Data to Support Mission, Administration,

More information

Big-Data Computing: Creating revolutionary breakthroughs in commerce, science, and society

Big-Data Computing: Creating revolutionary breakthroughs in commerce, science, and society Big-Data Computing: Creating revolutionary breakthroughs in commerce, science, and society Randal E. Bryant Carnegie Mellon University Randy H. Katz University of California, Berkeley Version 8: December

More information

What is Artificial Intelligence?

What is Artificial Intelligence? CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. 1 What is AI? What is

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

ECE6130 Grid and Cloud Computing

ECE6130 Grid and Cloud Computing ECE6130 Grid and Cloud Computing Howie Huang Department of Electrical and Computer Engineering School of Engineering and Applied Science Cloud Computing Hardware Software Outline Research Challenges 2

More information

CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015

CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015 CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions

More information

A Professional Big Data Master s Program to train Computational Specialists

A Professional Big Data Master s Program to train Computational Specialists A Professional Big Data Master s Program to train Computational Specialists Anoop Sarkar, Fred Popowich, Alexandra Fedorova! School of Computing Science! Education for Employable Graduates: Critical Questions

More information

Why big data? Lessons from a Decade+ Experiment in Big Data

Why big data? Lessons from a Decade+ Experiment in Big Data Why big data? Lessons from a Decade+ Experiment in Big Data David Belanger PhD Senior Research Fellow Stevens Institute of Technology dbelange@stevens.edu 1 What Does Big Look Like? 7 Image Source Page:

More information

Tap into Big Data at the Speed of Business

Tap into Big Data at the Speed of Business SAP Brief SAP Technology SAP Sybase IQ Objectives Tap into Big Data at the Speed of Business A simpler, more affordable approach to Big Data analytics A simpler, more affordable approach to Big Data analytics

More information

Big Data Analytics: 14 November 2013

Big Data Analytics: 14 November 2013 www.pwc.com CSM-ACE 2013 Big Data Analytics: Take it to the next level in building innovation, differentiation and growth 14 About me Data analytics in the UK Forensic technology and data analytics in

More information

Beyond the Customer Satisfaction Horizon Fostering Loyalty through Customer Service

Beyond the Customer Satisfaction Horizon Fostering Loyalty through Customer Service Beyond the Customer Satisfaction Horizon Fostering Loyalty through Customer Service By Nancy Jamison Jamison Consulting January 2010 Jamison Consulting Page 1 1. Beyond Customer Satisfaction The contact

More information

The Fusion of Supercomputing and Big Data. Peter Ungaro President & CEO

The Fusion of Supercomputing and Big Data. Peter Ungaro President & CEO The Fusion of Supercomputing and Big Data Peter Ungaro President & CEO The Supercomputing Company Supercomputing Big Data Because some great things never change One other thing that hasn t changed. Cray

More information

Strategies For Setting Up Your Organisation For Success With Big Data. Kevin Long Business Development Director Teradata

Strategies For Setting Up Your Organisation For Success With Big Data. Kevin Long Business Development Director Teradata Strategies For Setting Up Your Organisation For Success With Big Data Kevin Long Business Development Director Teradata Agenda Developing a big data strategy and plan that is aligned with your organisation

More information

Big Data Big Deal? Salford Systems www.salford-systems.com

Big Data Big Deal? Salford Systems www.salford-systems.com Big Data Big Deal? Salford Systems www.salford-systems.com 2015 Copyright Salford Systems 2010-2015 Big Data Is The New In Thing Google trends as of September 24, 2015 Difficult to read trade press without

More information

Cloud Computing and Big Data What s the Big Deal

Cloud Computing and Big Data What s the Big Deal Cloud Computing and Big Data What s the Big Deal Arlene Minkiewicz, Chief Scientist PRICE Systems, LLC arlene.minkiewicz@pricesystems.com Optimize tomorrow today. 1 Agenda Introduction Cloud Computing

More information

Cloud Computing and Big Data. What s the Big Deal?

Cloud Computing and Big Data. What s the Big Deal? Cloud Computing and Big Data. What s the Big Deal? Arlene Minkiewicz, Chief Scientist PRICE Systems, LLC arlene.minkiewicz@pricesystems.com 2013 PRICE Systems, LLC All Rights Reserved Decades of Cost Management

More information

Data Centric Computing Revisited

Data Centric Computing Revisited Piyush Chaudhary Technical Computing Solutions Data Centric Computing Revisited SPXXL/SCICOMP Summer 2013 Bottom line: It is a time of Powerful Information Data volume is on the rise Dimensions of data

More information

Harnessing the Data Flood: Oracle s Visionary Platform from Device to Data Center. Chris Baker Senior Vice President Worldwide ISV/OEM Java Sales

Harnessing the Data Flood: Oracle s Visionary Platform from Device to Data Center. Chris Baker Senior Vice President Worldwide ISV/OEM Java Sales Harnessing the Data Flood: Oracle s Visionary Platform from Device to Data Center Chris Baker Senior Vice President Worldwide ISV/OEM Java Sales Canvas Lumber Compass Sextant 1851 America s Cup The oldest

More information

Exploiting Data at Rest and Data in Motion with a Big Data Platform

Exploiting Data at Rest and Data in Motion with a Big Data Platform Exploiting Data at Rest and Data in Motion with a Big Data Platform Sarah Brader, sarah_brader@uk.ibm.com What is Big Data? Where does it come from? 12+ TBs of tweet data every day 30 billion RFID tags

More information

Innovations in Big Data Analytics (Technical Insights)

Innovations in Big Data Analytics (Technical Insights) Brochure More information from http://www.researchandmarkets.com/reports/2725522/ Innovations in Big Data Analytics (Technical Insights) Description: The exponential growth of digital data has been well

More information

Big Data and Your Data Warehouse Philip Russom

Big Data and Your Data Warehouse Philip Russom Big Data and Your Data Warehouse Philip Russom TDWI Research Director for Data Management April 5, 2012 Sponsor Speakers Philip Russom Research Director, Data Management, TDWI Peter Jeffcock Director,

More information

Deploying Big Data to the Cloud: Roadmap for Success

Deploying Big Data to the Cloud: Roadmap for Success Deploying Big Data to the Cloud: Roadmap for Success James Kobielus Chair, CSCC Big Data in the Cloud Working Group IBM Big Data Evangelist. IBM Data Magazine, Editor-in- Chief. IBM Senior Program Director,

More information

Outline. What is Big data and where they come from? How we deal with Big data?

Outline. What is Big data and where they come from? How we deal with Big data? What is Big Data Outline What is Big data and where they come from? How we deal with Big data? Big Data Everywhere! As a human, we generate a lot of data during our everyday activity. When you buy something,

More information

Hyper-connectivity and Artificial Intelligence

Hyper-connectivity and Artificial Intelligence Hyper-connectivity and Artificial Intelligence How hyper-connectivity changes AI through contextual computing Chuan (Coby) M 04/03/15 Description of Major Sections Background Artificial intelligence (AI)

More information

SMART CITIES THRIVE ON ADVANCED ANALYTICS AND INNOVATION JOS VAN DER VELDEN, ACADEMIC PROGRAM MANAGER

SMART CITIES THRIVE ON ADVANCED ANALYTICS AND INNOVATION JOS VAN DER VELDEN, ACADEMIC PROGRAM MANAGER SMART CITIES THRIVE ON ADVANCED ANALYTICS AND INNOVATION JOS VAN DER VELDEN, ACADEMIC PROGRAM MANAGER AGENDA INTRODUCTION Introduction About SAS SAS Business Analytics Examples Geo-C http://youtu.be/msk5kpwd1je

More information

CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing. University of Florida, CISE Department Prof.

CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing. University of Florida, CISE Department Prof. CIS 4930/6930 Spring 2014 Introduction to Data Science Data Intensive Computing University of Florida, CISE Department Prof. Daisy Zhe Wang Data Science Overview Why, What, How, Who Outline Why Data Science?

More information

Internet of Things, 5G, Big Smart Data Interplay. The Convergence and Integration of Mobile Communications, Internet, and Smart Data Processing

Internet of Things, 5G, Big Smart Data Interplay. The Convergence and Integration of Mobile Communications, Internet, and Smart Data Processing www.internet-of-things-research.eu IERC Internet of Things, 5G, Big Smart Data Interplay The Convergence and Integration of Mobile Communications, Internet, and Smart Data Processing 01 st July 2015, Paris,

More information

Berkeley Institute for Data Science (BIDS)

Berkeley Institute for Data Science (BIDS) Berkeley Institute for Data Science (BIDS) Saul Perlmutter & David Culler Astrophysics EECS University of California, Berkeley BEARS 2014 The Fourth Paradigm 1. Empirical + experimental 2. Theore5cal 3.

More information

Internet of Things and Wearables Driving the next phase of growth in Computing

Internet of Things and Wearables Driving the next phase of growth in Computing Internet of Things and Wearables Driving the next phase of growth in Computing Sridhar Solur Director, Next Gen Computing and Cloud Services, Mobility GBU, Printing & Personal Systems Population penetration

More information

Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging

Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging

More information

The Data Lifecycle: Managing Data through Business. Ewan Willars Friday 27 February

The Data Lifecycle: Managing Data through Business. Ewan Willars Friday 27 February The Lifecycle: Managing through Business Ewan Willars Friday 27 February ACCA s unrivalled global network 4,000 members & students in Canada The changing role of finance and the CFO Traditional control

More information

Who needs humans to run computers? Role of Big Data and Analytics in running Tomorrow s Computers illustrated with Today s Examples

Who needs humans to run computers? Role of Big Data and Analytics in running Tomorrow s Computers illustrated with Today s Examples 15 April 2015, COST ACROSS Workshop, Würzburg Who needs humans to run computers? Role of Big Data and Analytics in running Tomorrow s Computers illustrated with Today s Examples Maris van Sprang, 2015

More information

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction

More information